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With the wide application of Internet of Things (IoT), a huge number of data are collected from IoT networks and are required
to be processed, such as data mining. Although it is popular to outsource storage and computation to cloud, it may invade
privacy of participants’ information. Cryptography-based privacy-preserving datamining has been proposed to protect the privacy
of participating parties’ data for this process. However, it is still an open problem to handle with multiparticipant’s ciphertext
computation and analysis. And these algorithms rely on the semihonest security model which requires all parties to follow
the protocol rules. In this paper, we address the challenge of outsourcing ID3 decision tree algorithm in the malicious model.
Particularly, to securely store and compute private data, the two-participant symmetric homomorphic encryption supporting
addition and multiplication is proposed. To keep from malicious behaviors of cloud computing server, the secure garbled circuits
are adopted to propose the privacy-preserving weight average protocol. Security and performance are analyzed.

1. Introduction

In the modern Internet of Things (IoT), huge data are
collected from sensor-networks and need to be provided for
analysis by high-effective techniques, such as data mining.
This process requires enormous computation and storage
to support; cloud computing technology can provide the
corresponding support. However, this process may leak the
privacy of participants’ information. The privacy-preserving
data mining (PPDM) based on encryption method has
emerged as a solution to this problem.

Privacy-Preserving Data Mining Framework. Considering
different frameworks and theories, PPDM was originated by
Lindell et al. [1] and Agrawal et al. [2] in 2002, respectively.
Lindell’s framework is essentially a secure cryptography-
based two-participant computation protocol without out-
sourcing. In other words, two parties can interactively com-
pute (𝑥1 + 𝑥2)ln(𝑥1 + 𝑥2) on their private input 𝑥1 and
𝑥2. Agrawal’s framework is essentially a single-participant
disturbance-based data storage and computation outsourcing
algorithm. In particular, one party can upload disturbed data

to server for private computation. With the development
of cloud computation and IoT, a multiparty storage and
computation outsourcing framework is preferred.

Cryptography-based privacy-preserving data mining
supporting one-party outsourcing has been studied [3, 4],
with homomorphic encryption. However, multiple-key
homomorphic encryption is an open problem whenmultiple
parties are involved in the outsourcing framework. For
example, how to execute ciphertext addition and multipli-
cation on ciphertexts encrypted by different public keys?

Security Models. We usually consider two different security
models, including the semihonest and malicious security
model. The definition in the semihonest model requires
that all the users need to follow the rules of protocol.
But we allow the dishonest users to obtain internal states
of the other users. In the malicious model, different from
the first security model, the corrupted users are allowed
to deviate from the specified protocol. The success of the
adversarymeans that the adversary can get the results of these
protocols.
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Data Distribution. Three types of distributed datasets are
defined in related works, including the horizontally dis-
tributed datasets, vertically distributed datasets, and arbi-
trarily distributed datasets. The users in the horizontally
distributed dataset can keep divided parts for the same
attributes. However, in the vertical datasets, users are allowed
to keep different attributes. In the last one, the datasets can be
arbitrarily divided and stored by the users.

Due to the existence of malicious participants in the
real environment, malicious participants may not follow the
protocol. For example, they can intentionally tamper with the
data, suspend the protocol anytime during the execution of
the protocol, and so on. To solve this problem, this paper
combines the noncontact commitment and confusion circuit
mechanism, studies the average computing protocol based
on confusion circuit, and then proposes the framework of
a secure cryptography-based two-participant protocol with
data storage and computation outsourcing. The framework
consists of two data owners and two cloud servers (cloud stor-
age server (CSS) and cloud computing server (CCS)). Each
data owner has a horizontally distributed private database
that is encrypted before being outsourced to the cloud for
storage and computation.

1.1. Our Contribution. We decompose the key function of
distributed ID3 decision tree, 𝐺𝑎𝑖𝑛(𝑆, 𝐴 𝑖), into counting,
(𝑥1 + 𝑥2)/(𝑎1 + 𝑎2), sum, multiplication, and comparison.

In counting, we propose the Secure Equivalent Testing
(SET) protocol to calculate the number of items for each
attribute value based on the encrypted data.

To calculate the value of (𝑥1 + 𝑥2)/(𝑎1 + 𝑎2) in malicious
model, we implement the Outsourcing Secure Circuit (OSC)
protocol.

To perform the sum and multiplication operations over
ciphertext, we adopt the Paillier encryption system and
implement the Secure Multiplication (SM) protocol.

To execute comparison over ciphertext, we adopt the
Secure Minimum out of 2 Numbers (SMIN2) protocol.

1.2. Related Work

Distributed PPDM without Outsourcing. Distributed PPDM
without outsourcing is mainly for data stored and calculated
locally by the participant, based on distributed data based on
various data mining methods, which can be decomposed to
different operations, such as average calculation, calculation,
and calculation of logarithmic vector inner product. Then
the cryptography-based technology is used to design various
privacy-preserving computing protocols. In 2002, Lindell and
Pinkas [1] proposed a secure ID3 decision tree algorithm
over horizontally partitioned data. They decompose the
distributed ID3 algorithm to multilogarithmic calculation,
polynomial evaluation calculation, and data comparison,
and then designed the security log protocol, polynomial
evaluation protocol, and secure comparison protocol, so as
to achieve privacy-preserving in distributed ID3 algorithm.
In 2007, Emekci et al. [5] implemented a secure addition com-
putational protocol based on the secret sharing algorithm and
extended the secure logarithmic computing protocol from

two parties to multiple parties; thus realizing the multiparty
participation of the privacy protection ID3method.However,
the complexity of the algorithm increases exponentially when
the participant data are more numerous. In 2012, Lory et al.
[6] used Chebyshev polynomial expansion to replace Taylor
expansion in [1], thus further improving the computational
efficiency of secure logarithmic computing protocols. How-
ever, their agreements still have limited efficiency in the
implementation of privacy protection protocols.

Different from above, in 2003, Vaidya et al. [7, 8] designed
a multiparty privacy-preserving ID3 algorithm of vertically
distributed data sets.They vectorized all attribute value infor-
mation by constructing constraint sets and then computed
it by using the method of secure intersection protocol, thus
designing privacy-preserving ID3 for vertically distributed
data sets.

In 2007, Han and Ng [9] proposed a multiparty dis-
tributed privacy-preserving ID3 method based on arbitrary
distributed data sets. Firstly, each participant’s data set is
vectorized, and then the attribute value information is com-
puted by using security intersection protocol and so on.
Then, the entropy value of each attribute is computed by
using security logarithm computation protocol and so on.
Thus, the ID3 decision tree classification method of privacy
protection based on arbitrary distributed data set is obtained.
However, with the increase of the number of participants, the
computing volume of the client increases exponentially.

Li et al. [10] and Gao et al. [11] addressed the Naive Bayes
Learning for aggregated arbitrary distributed databases.

PPDM with Computation Outsourcing. Cryptography-based
privacy-preserving data mining has a lot of encryption and
decryption operations in the computation process.Therefore,
it is difficult for large-scale data processing. As a measure
for solving resource-restricted problems, the outsourcing
technique has been widely used in cloud computing appli-
cations, such as data sharing [12, 13], data storing [14, 15],
data updating [16, 17], and social network analysis [18, 19].
In this context, we need to rely on security outsourcing
technology to outsource computing or storage tasks of all
participants to the cloud to process, thus greatly reducing
the computing/storage load of each participant. In 2014, Liu
et al. [3] adopted a new encryption scheme that supports
both addition and multiplication over cipher texts. In this
scheme, most of the computations are performed on the
cloud, which reduces the computation workload of the data
owner. However, the scheme is limited to a single party’s data
mining operation. Chen et al. [20] designed new algorithms
for secure outsourcing of modular exponentiations. In 2015,
Bost et al. [21] proposed the privacy-preserving hyperplane
decision, Naive Bayesian, and decision tree classification
algorithms, and through the semihonest model, secure two-
party computation model to prove that the above scheme
can satisfy the semantic security (Semantic Security); and
the related protocol makes it possible to design an adaptive
enhancement algorithm (Adaptive Boosting) combine to
further enhance the accuracy of the algorithm; building a
classifier can be used to construct the privacy protection
of the library, the further development of the classification
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algorithms for privacy-preserving technology in the future
lays a solid foundation.

PPDM with Multiparticipant Data Storage and Computation
Outsourcing. In 2013, Peter et al. [22] proposed a new
solution for the outsourcing of multiparty computation.
Such a technique can be used in our setting. But as the
security analysis in the previous works, they can only achieve
security in the semihonest model. In [23], a new protocol
was proposed to achieve data mining for two parties. In
[24], association rule mining was addressed in the malicious
model. In [25], the privacy-preservingKNN classificationwas
addressed. In [26], the deep learning task was addressed.
Besides the above related work, several fundamental secure
algorithms, such as dynamic homomorphic encryption [27,
28], authentication [29, 30], and light-weight multiparty
computation [31], which have also been considered in the
malicious model, have been proposed. However, to the
best of our knowledge, no existing study has considered
a method for outsourcing computation in the malicious
model.

In this study, the secure outsourcing of ID3 data min-
ing is considered in the malicious model for the cloud
environment. We show how to solve the outsourcing
problem for ID3 protocol over horizontally partitioned
data.

2. Preliminaries

In this section, we present a brief overview of the prelim-
inaries used in this paper, including the ID3 decision tree
algorithm, Paillier’s homomorphic encryption scheme, and
the other related protocols.

2.1. Distribute ID3 Decision Tree Algorithm. The ID3 algo-
rithm description is given as follows. It builds a decision
tree in a top-down manner with the information of samples.
Starting at the root, the best object classification will be
obtained. The best prediction is computed with the informa-
tion gain. The information gain of an attribute 𝐴 𝑡 is defined
as

𝐺𝑎𝑖𝑛 (𝑆, 𝐴 𝑡) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆)

− ∑
𝑎𝑡𝑗∈𝐴𝑡

󵄨󵄨󵄨󵄨󵄨󵄨𝑆𝑎𝑡𝑗
󵄨󵄨󵄨󵄨󵄨󵄨

|𝑆| 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑎𝑡𝑗)
(1)

Assume that there are 2 parties, P = {𝑃𝑖 | 𝑖 = 1, 2},
with 2 databases, S = {𝑆𝑖 | 𝑖 = 1, 2}. Each party 𝑃𝑖 has
one database 𝑆𝑖 . All databases share the same general attribute
(column) set A = {𝐴 𝑡 | 𝑡 = 1, 2, .., 𝑝} and each attribute 𝐴 𝑡
has several general discrete attribute values, denoted by 𝐴 𝑡 =
{𝑎𝑡𝑗 | 𝑗 = 1, 2, . . . , 𝑚𝑡}, and one class attribute 𝐶 = {𝑐𝑗 | 𝑗 =
1, 2, ..., 𝑚}.

Without considering privacy, each party𝑃𝑖 shares his own
|𝑆𝑎𝑡𝑗𝑐𝑗 |𝑖, |𝑆𝑎𝑡𝑗 |𝑖 and |𝑆𝑐𝑗 |𝑖 to all other parties. As a result, any
party can calculate 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑎𝑡𝑗).

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) =
𝑚

∑
𝑗=1

−
󵄨󵄨󵄨󵄨󵄨󵄨𝑆𝑐𝑗
󵄨󵄨󵄨󵄨󵄨󵄨

|𝑆| log2

󵄨󵄨󵄨󵄨󵄨󵄨𝑆𝑐𝑗
󵄨󵄨󵄨󵄨󵄨󵄨

|𝑆|

=
𝑚

∑
𝑗=1

−
∑𝑛𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨𝑆𝑐𝑗
󵄨󵄨󵄨󵄨󵄨󵄨𝑖

|𝑆| log2
∑𝑛𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨𝑆𝑐𝑗
󵄨󵄨󵄨󵄨󵄨󵄨𝑖

|𝑆|

(2)

where 𝑆𝑐𝑗 is the subset of 𝑆 with tuples that have value 𝑐𝑗 for
class attribute 𝐶. |𝑆𝑐𝑗 |𝑖 equals the set of transactions with class
attribute 𝐶 set to 𝑐𝑗 in database 𝑆𝑖.

Then the value of 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑎𝑗) can be calculated as

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑎𝑡𝑗) =
𝑚𝑡

∑
𝑗=1

−
∑𝑛𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨𝑆𝑎𝑡𝑗𝑐𝑗
󵄨󵄨󵄨󵄨󵄨󵄨𝑖

∑𝑛𝑖=1
󵄨󵄨󵄨󵄨󵄨󵄨𝑆𝑎𝑡𝑗
󵄨󵄨󵄨󵄨󵄨󵄨𝑖
⋅ log2

∑𝑛𝑖=1
󵄨󵄨󵄨󵄨󵄨󵄨𝑆𝑎𝑡𝑗𝑐𝑗

󵄨󵄨󵄨󵄨󵄨󵄨𝑖
∑𝑛𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨𝑆𝑎𝑡𝑗
󵄨󵄨󵄨󵄨󵄨󵄨𝑖

(3)

where 𝑆𝑎𝑡𝑗𝑐𝑗 is the subset of 𝑆 with tuples that have values 𝑎𝑗
for attribute 𝐴 𝑡 and 𝑐𝑗 for class attribute 𝐶.

Therefore, (3) can be easily computed by party 𝑃𝑖 and
parties 𝑃𝑗 (𝑗 ̸= 𝑖) all of the values |𝑆𝑎𝑡𝑗 |𝑖 and |𝑆𝑎𝑡𝑗𝑐𝑗 |𝑖 from its
database. Each party 𝑃𝑗 then sums these together with the
values |𝑆𝑎𝑡𝑗 |𝑗 and |𝑆𝑎𝑡𝑗𝑐𝑗 |𝑗 from its database and completes the
computation.

Then each party can calculate 𝐺𝑎𝑖𝑛(𝑆, 𝐴 𝑡) value at its own
side.

2.2. Paillier’s Homomorphic Encryption Scheme. Homomor-
phic encryption is a special type of encryption in which
the result of applying a special algebraic operation to plain
texts can be obtained by applying another algebraic operation
(which may be different or the same) to the corresponding
ciphertexts. Thus, even when the user does not know the
plain texts, he/she can still obtain the results of applying that
algebraic operation to the plain texts.

Let𝑚1 and𝑚2 be two plain texts with encryptions 𝐸(𝑚1)
and 𝐸(𝑚2), respectively.

The Paillier encryption scheme [32] is described as
follows:

𝐸 (𝑚1) ⊕ 𝐸 (𝑚2) = 𝐸 (𝑚1 + 𝑚2) (4)

2.3. Li’s Symmetric Homomorphic Encryption Scheme. The
description of symmetric homomorphic encryption scheme
proposed by Li et al. [33] is as follows.

(i) KeyGen():
(𝑠, 𝑞, 𝑝) ←󳨀 𝐾𝑒𝑦𝐺𝑒𝑛 (𝜆) (5)

𝐾𝑒𝑦𝐺𝑒𝑛() is used to generate key for users as 𝑆𝐾 =
(𝑠, 𝑞). 𝑝 and 𝑞 are primes with the condition that 𝑝 ≫
𝑞. 𝑠 is chosen from Z∗𝑁.

(ii) Encsk():

𝐸𝑛𝑐𝑠𝑘 (𝑚, 𝑑) = 𝑠𝑑 (𝑟𝑞 + 𝑚) mod𝑝. (6)

𝑑 is a small positive integer, which is denoted as
ciphertext degree in this paper.
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1. The computation at Data owner:
Compute 𝜏 = 𝐸𝑛𝑐𝑠𝑘(1) for the cloud.
2. The computation at cloud:
𝑢, V are chosen such that

𝑢 ≫ V
V ≫ max(𝛼, 𝛽)

(𝑞 − 1)
2 ≫ 𝛽 × 𝑢 + V

−𝛼 × 𝑢 + V ≫ −(𝑞 − 1)2
3. The cloud compute the following value for the data owner:
Φ = 𝑐𝑢 + 𝜏V mod𝑝, and sendsΦ.
4. Data Owner computes the following values:
𝜑 = 𝐷𝑒𝑐𝑠𝑘(𝑆𝐾,Φ, 𝑑) = (𝑚 × 𝑢 + V) mod 𝑞,
and compares 𝜑 with (𝑞 − 1)/2.
If 𝜑 < (𝑞 − 1)/2,𝑚 ≥ 0. Otherwise,𝑚 < 0.

Algorithm 1: Secure outsourcing comparison (OSCP).

(iii) Decsk():

𝐷𝑒𝑐𝑠𝑘 (𝑐, 𝑑) = (𝑐 × 𝑠−𝑑 mod𝑝) mod 𝑞. (7)

2.3.1. Properties of the Proposed Homomorphic Encryption

Homomorphic Multiplication. Let 𝑐1, 𝑐2 be the ciphertexts of
two plaintexts𝑚1,𝑚2.Thenwe have 𝑐1 = 𝑠𝑑1(𝑟1𝑞+𝑚1) mod𝑝
and 𝑐2 = 𝑠𝑑2(𝑟2𝑞 + 𝑚2) mod𝑝 for some random ingredients
𝑟1 and 𝑟2. And we can obtain that

(𝑐1 × 𝑐2) mod𝑝

= 𝑠𝑑1 (𝑟1𝑞 + 𝑚1) mod𝑝 × 𝑠𝑑2 (𝑟2𝑞 + 𝑚2) mod𝑝

= 𝑠𝑑1+𝑑2 ((𝑟1𝑟2𝑞 + 𝑟1𝑚2 + 𝑟2𝑚1) 𝑞 + 𝑚1 × 𝑚2) mod𝑝
= 𝐸𝑛𝑐𝑠𝑘 (𝑚1 × 𝑚2, 𝑑1 + 𝑑2) .

(8)

Homomorphic Addition

(𝑐1 + 𝑐2) mod𝑝 = 𝑠𝑑 (𝑟1𝑞 + 𝑚1) mod𝑝

+ 𝑠𝑑 (𝑟2𝑞 + 𝑚2) mod𝑝

= 𝑠𝑑 ((𝑟1 + 𝑟2) 𝑞 + 𝑚1 + 𝑚2) mod𝑝
= 𝐸𝑛𝑐𝑠𝑘 (𝑚1 + 𝑚2, 𝑑)

(9)

Readers may refer to [18] for details on the scheme.

2.4. Garbling Scheme. Agarbling scheme [34] consists of four
algorithms, which is denoted by 𝐺 = (𝐺𝑏, 𝐸𝑛,𝐷𝑒, 𝐸V). 𝑓 can
be transformed by Gb into (𝐹, 𝑒, 𝑑). Note that 𝐹 is the garbled
circuit. The encoding and decoding information algorithms
are denoted by 𝑒, 𝑑. The output of garbled 𝑌 can be encrypted
and get the result 𝑦 = 𝐷𝑒(𝑑, 𝑌).

2.5. Noninteractive Commitment. A noninteractive commit-
ment scheme [35] is also required in our paper, denoted by

(Com𝑐𝑟𝑠,Chk𝑐𝑟𝑠). The distribution of Com𝑐𝑟𝑠(𝑥; 𝑟) is deter-
mined by the value of 𝑟 as Com𝑐𝑟𝑠(𝑥).

2.6. Basic Cryptographic Subprotocols. In this section, we
present a set of cryptographic subprotocols that will be used
as subroutines when constructing the proposed protocol.

2.6.1. Outsourcing Secure Comparison Protocol (OSCP). The
value of𝑚 is kept secure from the cloud and users. The value
of 𝑐 = 𝐸(𝑚mod 𝑞) is computed. 𝑆𝐾 is kept by the data owner
(Algorithm 1).

2.6.2. Secure Equivalent Testing Protocol (SET). With two
ciphertexts c1 = Encsk(m1) and c2 = Encsk(m2), SET is to
compute f and decide if the plaintexts are identical (m1 = m2)
(Algorithm 2).

2.6.3. Secure Multiplication Protocol (SMP). The algorithm is
described as in Algorithm 3.

2.6.4. Secure Minimum out of 2 Numbers Protocol (SMIN2).
The algorithm is described as in Algorithm 4.

2.7. SecureCircuit Protocol (SCP). Wedenote the three parties
of the protocol by CSS1, CSS2, and CCS and their respective
inputs by x1, x2, or x

∗
3 .Their goal is to securely compute the

function y = f(x1, x2, x∗3 ) = x1 ⋅ x2/x∗3 [34] (Algorithm 5).
For simplicity, we assume that |xi| = |y| = m. All

communication between parties is via private point-to-point
channels. Next, we assume that CSS1 and CSS2 can learn the
same output y, while CCS can get the garbled values for the
portion of the output wires corresponding to its own outputs
only. CCS cannot get the output y with these garbled values.
This protocol uses a garbling scheme, a four-tuple algorithm
𝛿 = (Gb,En,De, Ev), as the underlying algorithm. Gb is a
randomized garbling algorithm that transforms a function of
a triple. En and De are encoding and decoding algorithms,
respectively. Ev is an algorithm that produces a garbled output
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Two ciphertext are computed by the cloud as 𝑐1 = 𝐸𝑛𝑐𝑠𝑘(𝑚1) and 𝑐2 = 𝐸𝑛𝑐𝑠𝑘(𝑚2).
1. The cloud computes 𝑐00 = 𝐸𝑛𝑐𝑠𝑘(𝑚00) = 𝑐1 − 𝑐2 and 𝑐01 = 𝐸𝑛𝑐𝑠𝑘(𝑚01) = 𝑐2 − 𝑐1.
2. Check if𝑚00 ≥ 0 or𝑚01 ≥ 0 and computes
if𝑚00 ≥ 0 ∧ 𝑚01 < 0, 𝑓0 = 1, 𝑓1 = 0. else if𝑚00 < 0 ∧ 𝑚01 ≥ 0, 𝑓0 = 0, 𝑓1 = 1.
3. The value of 𝑓 is computed as follows:

𝑓 = 𝑓0 ⊕ 𝑓1.
If 𝑓 = 0, set𝑚1 = 𝑚2.

Algorithm 2: Secure equivalent testing protocol (SET).

The values are computed 𝐸𝑝𝑘(𝑥) and 𝐸𝑝𝑘(𝑦); 𝑃 keeps (𝑝𝑘, 𝑠𝑘).
1. 𝐶:
(𝑎) Choose 𝑟𝑥, 𝑟𝑦 ∈ 𝑍𝑁
(𝑏) 𝑥󸀠 ←󳨀 𝐸𝑝𝑘(𝑥)𝐸𝑝𝑘(𝑟𝑥), 𝑦󸀠 ←󳨀 𝐸𝑝𝑘(𝑦)𝐸𝑝𝑘(𝑟𝑦)
(𝑐) computes and sends 𝑥󸀠, 𝑦󸀠 to 𝑃
2. 𝑃 computes:
(𝑎) ℎ𝑥 ←󳨀 𝐷𝑠𝑘(𝑥󸀠), ℎ𝑦 ←󳨀 𝐷𝑠𝑘(𝑦󸀠), ℎ ←󳨀 ℎ𝑥ℎ𝑦 mod𝑁, ℎ󸀠 ←󳨀 𝐸𝑝𝑘(ℎ)
(𝑏)The value of ℎ󸀠 is sent to C
3. 𝐶 computes:
(𝑎) 𝑠 ←󳨀 ℎ󸀠𝐸𝑝𝑘(𝑥)𝑁−𝑟𝑦 , 𝑠󸀠 ←󳨀 𝑠𝐸𝑝𝑘(𝑦)𝑁−𝑟𝑥
(𝑏) 𝐸𝑝𝑘(𝑥𝑦) ←󳨀 𝑠󸀠𝐸𝑝𝑘(𝑟𝑥𝑟𝑦)𝑁−1

Algorithm 3: 𝑆𝑀(𝐸𝑝𝑘(𝑥), 𝐸𝑝𝑘(𝑦)) 󳨀→ 𝐸𝑝𝑘(𝑥𝑦).

1. 𝐶:
(𝑎)The function is chosen 𝐹
(𝑏)
for 𝑖 = 1 to 𝜆 do
𝐸𝑝𝑘(𝑢𝑖V𝑖) ←󳨀 𝑆𝑀(𝐸𝑝𝑘(𝑢𝑖), 𝐸𝑝𝑘(V𝑖)).
if 𝐹: 𝑢 > V then
𝑊𝑖 ←󳨀 𝐸𝑝𝑘(𝑢𝑖)𝐸𝑝𝑘(𝑢𝑖V𝑖)𝑁−1 ,

end
else
𝑊𝑖 ←󳨀 𝐸𝑝𝑘(V𝑖)𝐸𝑝𝑘(𝑢𝑖V𝑖)𝑁−1

end
𝐺𝑖 ←󳨀 𝐸𝑝𝑘(𝑢𝑖 ⊕ V𝑖),𝐻𝑖 ←󳨀 𝐻𝑟𝑖𝑖−1𝐺𝑖; 𝑟𝑖∈𝑅
𝑍𝑁 and𝐻0 = 𝐸(0)
Φ𝑖 ←󳨀 𝐸𝑝𝑘(−1)𝐻𝑖,
𝐿 𝑖 ←󳨀 𝑊𝑖Φ𝑟

󸀠
𝑖

𝑖 ; 𝑟󸀠𝑖 ∈ 𝑍𝑁
end
(𝑐) Sends 𝐿 to 𝑃
2. 𝑃:
(𝑎) 𝑀𝑖 ←󳨀 𝐷(𝐿 𝑖), for 1 ≤ 𝑖 ≤ 𝜆
(𝑏)
if ∃𝑗 such that 𝑀𝑗 = 1 then
𝛼 ←󳨀 1 (which means 𝑢 > V)

end
else
𝛼 ←󳨀 0 (which means 𝑢 < V)

end

Algorithm 4: Secure Minimum out of 2 Numbers Protocol (SMIN2).
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Input: CSS1 has 𝑥1, CSS2 has 𝑥2
Output: (𝑥1 + 𝑥2)/(𝑎1 + 𝑎2)
1. CCS:
(𝑎) Randomly selects 𝑐𝑟𝑠 for commitment, and sends 𝑐𝑟𝑠 to 𝐶𝑆𝑆1 and 𝐶𝑆𝑆2.
(𝑏) Generates the random number 𝜆 and share it secretly as 𝜆 = 𝜆1 ⊕ 𝜆2, sends 𝑙𝑎𝑚𝑏𝑑𝑎1 to 𝐶𝑆𝑆1, and sends 𝑙𝑎𝑚𝑏𝑑𝑎2 to 𝐶𝑆𝑆2.
2. 𝐶𝑆𝑆1: Select seed 𝑟 ←󳨀 0, 1𝑘 for pseudo random function 𝑃𝑅𝐹 and send 𝑟 to 𝐶𝑆𝑆2.
3. CSS1 and CSS2: (𝑎) Generate corresponding circuit 𝐺𝑏(1𝜅, 𝑓) 󳨀→ (𝐹, 𝑒, 𝑑) based on function 𝑓 = (𝑥1 + 𝑥2) ∗ 𝜆. (𝑏) Random
selection of 𝑏1, 𝑏2 ←󳨀 {0, 1}4𝑚 and generate the following commitments for all 𝑗 ∈ [4𝑚] and 𝑡 ∈ {0, 1}:
(𝐶𝑡1,𝑗, 𝜎𝑡1,𝑗) ←󳨀 Com𝑐𝑟𝑠(𝑒[𝑗, 𝑏1[𝑗] ⊕ 𝑡]).
(𝐶𝑡2,𝑗, 𝜎𝑡2,𝑗) ←󳨀 Com𝑐𝑟𝑠(𝑒[𝑗, 𝑏2[𝑗] ⊕ 𝑡]).

(𝑐) 𝐶𝑆𝑆1 and 𝐶𝑆𝑆2 send the following information to 𝐶𝐶𝑆:
(𝑏1 [2𝑚 + 1 ⋅ ⋅ ⋅ 4𝑚] , 𝐹, {𝐶𝑡1,𝑗}𝑗,𝑡).
(𝑏2 [2𝑚 + 1 ⋅ ⋅ ⋅ 4𝑚] , 𝐹, {𝐶𝑡2,𝑗}𝑗,𝑡).

4. CCS: Abort if CSS1 and CSS2 report different values for these items.
5. CSS1 and CSS2:
(𝑎) CSS1 sends decommitment
𝜎𝑥1[𝑗]⊕𝑏1[𝑗]1,𝑗 , 𝜎𝜆1[𝑗]⊕𝑏1[2𝑚+𝑗]1,2𝑚+𝑗 , 𝜎𝑥1[𝑗]⊕𝑏2[𝑗]2,𝑗 and 𝜎𝜆1 [𝑗]⊕𝑏2[2𝑚+𝑗]2,2𝑚+𝑗 to CCS
(𝑏) CSS2 sends decommitment 𝜎𝑥2[𝑗]⊕𝑏1[𝑚+𝑗]1,𝑚+𝑗 , 𝜎𝜆2[𝑗]⊕𝑏1[3𝑚+𝑗]1,3𝑚+𝑗 , 𝜎𝑥2[𝑗]⊕𝑏2[𝑚+𝑗]2,𝑚+𝑗 and 𝜎𝜆2[𝑗]⊕𝑏2[3𝑚+𝑗]2,3𝑚+𝑗 to CCS.
6. CCS: (𝑎) For 𝑗 ∈ [4𝑚], compute𝑋[𝑗] = Chk𝑐𝑟𝑠(𝐶𝑜[𝑗]1,𝑗 , 𝜎𝑜[𝑗]1,𝑗 ),𝑋󸀠[𝑗] = Chk𝑐𝑟𝑠(𝐶𝑜[𝑗]2,𝑗 , 𝜎𝑜[𝑗]2,𝑗 ), for the appropriate 𝑜[𝑗]. If any call to
Chk returns ⊥, then abort. Similarly, CCS knows the values 𝑏1[2𝑚 + 1 ⋅ ⋅ ⋅ 4𝑚] and 𝑏2[2𝑚 + 1 ⋅ ⋅ ⋅ 4𝑚], and aborts if CSS1 or CSS2
can not open the corresponding commitments of 𝜆1 and 𝜆2: 𝐶𝜆1[𝑗]⊕𝑏1[2𝑚+𝑗]1,2𝑚+𝑗 , 𝐶𝜆2[𝑗]⊕𝑏1[3𝑚+𝑗]1,3𝑚+𝑗 , 𝐶𝜆1[𝑗]⊕𝑏2[2𝑚+𝑗]2,2𝑚+𝑗 and 𝐶𝜆2[𝑗]⊕𝑏2[3𝑚+𝑗]2,3𝑚+𝑗 .
(𝑏) Run 𝑌 ←󳨀 Ev(𝐹,𝑋) and 𝑌󸀠 ←󳨀 Ev(𝐹,𝑋󸀠), then broadcasts 𝑌 and 𝑌󸀠 to CSS1 and CSS2.
7. CSS1 and CSS2: Compute (𝑥1 + 𝑥2)/(𝑎1 + 𝑎2) = 𝐷𝑒(𝑑, 𝑌)/𝐷𝑒(𝑑, 𝑌󸀠).

Algorithm 5: Secure circuit protocol (SCP).

for a garbled input and garbled circuit. Further, Chk is an
algorithm that can verify commitments.

3. Outsourcing Privacy-Preserving ID3
Decision Tree Algorithm in Malicious Model

In this section, we present our secure outsourcing ID3
decision tree in cloud computing using the homomorphic
encryption scheme and subprotocols proposed in Section 2
as building blocks.

3.1. Main Concept. The aim is to privately compute ID3 over
encrypted databases, and the key is to find privately the
attribute A for which Gain is maximum. From the above
description, the key value which needs to be calculated with
other parties is Entropy(Sai).

Since all the data was encrypted and sent to the cloud, the
cloud server can count the number of |S(ck)|t, |S|it using the
SETprotocol described in Section 2.Now, (3) can be executed
as (x1+x2)/(a1+a2)log2(x1+x2)/(a1+a2), and the calculation
of the logarithmic operation can be performed in CSS. The
value to be calculated is the value of c1 = (x1 + x2)/(a1 + a2),
which can be easily determined using our SCP protocol as
explained in Section 2. Then, all the parties can calculate the
value of Entropy(S) independently.

3.2. System Model. The system model is shown in Figure 1,
which includes two data owners and cloud servers (cloud
storage server {CSS1, CSS2}, and cloud computing server
CCS). Each data owner owns a private data set that is
encrypted and outsourced to cloud server storage. Data

owners can request cloud server to process ID3 data on
encrypted data. At the same time, CSS and CCS servers
participate in supporting the outsourcing privacy protec-
tion ID3 data mining algorithm steps; after the imple-
mentation of the algorithm, the final results are sent to
the data owner. Assuming that the data owner and the
CSS server are semihonest participants, CCS is a malicious
participant.

3.3. Details of the Proposed Algorithm. Our securely out-
sourcing ID3 decision tree (SOID3) algorithm is detailed as
follows:
(1) P1 and P2 run KeyGen(𝜆) to generate the secret key

SKi, i = 1, 2 and a public parameter p of Li’s homomorphic
encryption scheme. Further, each party shares p with the
other party and the cloud but shares SKi only with itself.
(2) Each party uses its key SKi to encrypt every attribute

value of its database, and then outsources the encrypted
database to the CSS (CSS1 and CSS2).
(3)The CSS1 and CSS2 use the SET protocol to calculate

the value of |Saj |i and |Saj(ck)|i for each attribute with each
party Pi.
(4)Eachparty generates its Paillier public and private keys

(pki, ski), i = 1, 2, and sends the public keys to the CSS1 and
CSS2.
(5) CCS, CSS1, and CSS2 jointly use the SCP protocol to

compute (x1 + x2)/(a1 + a2). Here, CSS1 has (x1, a1), and CSS2
has (x2, a2).
(6) Each party decrypts the received information, cal-

culates it with the logarithmic operation of (x1 + x2/a1 +
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Figure 1: System model under consideration.

a2)log2(x1 + x2/a1 + a2), and then encrypts it with its public
key. Then, it sends it back to the cloud.
(7)After getting the result, CSS1 and CSS2 use the SMIN2

protocol to select the ciphertext data with theminimum value
and then further select the attribute label with the maximum
information gain and return it to each participant.
(8) The participants divide the data sets and build tree

nodes. Then, go to Step (3) until termination.

4. Security Analysis

In this section, we prove that the secure outsourcing ID3
decision tree (SOID3) algorithm can offer protection against
the malicious cloud server.

Theorem 1. The SOID3 algorithm can achieve privacy for each
party and the semihonest cloud storage server.

Proof. We mainly consider the security model under the
noncollusive semihonest model and the semihonest cloud
server. Suppose there are two parties, P1 and P2, and cloud
storage server CSS.

Let P = (P1, P2,CSS) be the participants of all protocols.
Consider three types of attackers ( AP1 , AP2 , and ACSS) that
can invade P1, P2, and CSS. In the real model, P1 and P2 have
data sets Dx and Dy , respectively, and CSS has encrypted data
sets Enc(𝐷𝑥) and Enc(𝐷𝑦).MakeH ⊂ P a collection of honest
participants. For all Pi𝜖H, outPi indicates the output of Pi. If
Pi is invaded, outPi represents all views of participant Pi in
running protocol Π.

For each P∗ ∈ P, the attacker A = (AP1 , AP2 ,ACSS) view
in the runtime protocol Π can be defined as

REALP
∗

Π,A,H (Dx,Dy) = outPi : Pi𝜖H ∪ outP∗ (10)

In the ideal model, there exists an ideal model F for
function f, and all participants can interact with the model
F. That is, Challenger DPa and participant Pi can send data x
and y to F. If Dx or Dy is ⊥, F returns ⊥. Finally, F can return

f(Dx,Dy) to challenger DPa. As mentioned earlier, H ⊂ P is
a collection of honest participants. For each participant Pi𝜖H
in the collection, return the outPi as F output to Pi. If Pi is
intruded on by a semihonest attacker, outPi is still consistent
with the output of Pi in previous realistic models.

For all P∗ ∈ P, in the ideal model, in the presence of
independent simulators Sim = (SimP1 , SimP2 , SimCSS), the P∗
view is

IDEALP
∗

F,Sim,H (Dx,Dy) = outPi : Pi𝜖H ∪ outP∗ (11)

Therefore, it is considered that the protocolΠ is secure in
the presence of noncolluded semitruthful attackers.
Definition 2. Let f be a deterministic functionality among
parties in P. Let H ⊂ P be the subset of honest parties
in P. We say that Π securely realizes f if there exists a set
Sim = {SimP1 , SimP2 , SimS} of PPT transformations (where
SimDa

= SimP1(AP1 ) and so on) such that for all semihonest
PPT adversaries A = {AP1 ,AP2 ,AS}, for all inputs Dx,Dy and
auxiliary inputs z, and for all parties P ∈ P the following
holds:

REALP
∗

Π,A,H,z (𝜆, x, y)𝜆∈N ≡̃

IDEALP
∗

F,Sim,H,z (𝜆, x, y)𝜆∈N ,
(12)

where ≡̃ denotes computational indistinguishability.

Theorem 2. The SOID3 algorithm is secure with the semi-
honest cloud storage server and the malicious cloud computing
server.

Proof. First consider the case where CSS1 or CSS2 is cor-
rupted. It is necessary to prove that, in the SCP protocol, the
ideal model and the realistic model are not distinguishable.
That is, in the following interactions, it is impossible to dis-
tinguish between the various types of interaction information
and outputs of the participants in the ideal model and the real
model.
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(1) In the realmodel, assume that there is an emulator that
can simulate various behaviors of a semihonest participant
CSS1 (or CSS2), and receive inputs (x1, a2) and (x2, a2) from
the execution environment of the protocol. At the same time,
the simulator can simulate the function Ff , which sends all
inputs (x1, a1) and (x2, a2) to the simulated Ff . Since the
simulator does not do anything computed by Ff , there is no
difference between the real Ff and the simulated Ff from the
execution environment point of view.
(2) Because in Step 2, CSS1 and CSS2 uniformly select the

seed r of Pseudo-Random Function (PRF), the PRF security
shows that the real model in Step 2 is indistinguishable from
the ideal model.
(3) In Step 3, we modify the simulator, which knows in

advance what promises will be opened when the simulator
generates commitment C. First, the simulator selects the
random numbers o1, o2 that can be marked which promises
to be opened and calculates the values of b1 = o1 ⊕ x1 ‖ x2,
b2 = o2 ⊕ a1 ‖ a2. At this point, the simulator has obtained
the values of x1, x2, and a1, a2.Then, the simulator can submit
the markings that promise not to be opened. In this process,
due to the concealment of commitment, the realistic model
and the ideal model are equally indistinguishable.
(4) In Step 6a, the simulated CSS1 and CSS2 stop exe-

cuting when De(D, Ỹ) = ⊥. Change the emulator to make
Ỹ ̸= Ev(F,X). By obfuscating the authenticity of the circuit,
CCS has only negligible probability to obtain Ỹ ̸= Ev(F,X) in
De(d, Ỹ) = ⊥. Therefore, in this step, the realistic model and
the ideal model are equally indistinguishable.
(5) In Step 6b, the correctness of the obfuscation circuit

guarantees that both CSS1 and CSS2 of the analog can be
output. Therefore, if there is no pause in 6a, we can modify
the simulator to an analog obfuscation circuit that generates
(F,X, d). We can simulate the output of CSS1 and CSS2 by
simulating the instructions of Ff . According to the security of
the confusing circuit, the real model is also indistinguishable
from the ideal model in this step.

Therefore, in this protocol, the execution environment
can not distinguish between the realistic model and the ideal
model. And the protocol is secure when CCS is a malicious
participant.

5. Performance Analysis

In this paper, we consider that CSS has a strong calculation
ability and we ignore its computation time. Each data owner
does not need to store the ciphertext but can just use the
public key to encrypt the message and the private key to
decrypt the ciphertext.

In each iteration, first, each data owner will execute the
SBD protocol and SMIN2 protocol with the cloud. There are
two interactions in the SBD protocol and 2k interactions in
the SMIN2 protocol.Then, CSS1, CSS2, and CCS will execute
6 interactions in the SCP protocol. Finally, each data owner
will execute 1 interaction when it goes to the new iteration.
We assume that t is the iteration time, so the communication
traffic is at most O(k ∗ t).

In this paper, a secure average computing protocol
based on SCP is implemented. The server selected in the
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Figure 2: Performance measurements for our SOID3 with 2 partic-
ipants.

experimental environment is CPU: Intel (R) Xeon (R) CPU
E5-2620 v3@2.40GHz∗2, memory: 32G, operating system
Ubuntu 16.04.4 LTS version. In the experiment, AES-128
is chosen as the basic encryption method of the confusion
circuit, and the open source code of JustGarble is changed,
and the commitment protocol is implemented based on SHA-
256. Finally, the average values obtained from experiments
are as follows.

In our secure outsourcing ID3 decision tree (SOID3)
algorithm experiment, two participants were tested with
different numbers of records. The experimental results are
shown in Figure 2.

From Figure 2, since the client is only responsible for
encrypting uploaded data, the time consumption is very low.
In the cloud, CCS and CSS servers need to run SCP protocol,
resulting in a lot of time consumption (Table 1). The main
reason is that a large number of bit commitment processing
is needed in the obfuscation circuit, and the performance
improvement will be focused on this issue in the follow-up
work.

6. Conclusion

In this paper, we proposed a secure outsourcing ID3 decision
tree algorithm for two parties of the malicious model. Our
algorithm can preserve the privacy of the users’ data as well
as that of the data mining scheme for the cloud servers. The
parties can get only the result trees and have no knowledge
about the data mining scheme. Moreover, the cloud servers
cannot get any private information about the parties. In
summary, our protocol offers protection against malicious
cloud servers.

In the future, we intend to extend our algorithm to
vertical and arbitrary partitioning in the malicious model.
In addition, we plan to extend our algorithm to a general
multiparty privacy-preserving framework suitable for other
useful schemes, such as random decision tree, Bayes, SVM,
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Table 1: Time cost of the SCP protocol.

AND XOR OR Input size
(bits)

Output size
(bits)

CSS1/CSS2
(ms)

𝐶𝐶𝑆
(ms)

5090 4034 2016 129 65 26 47

and other data mining methods, and can be extended for use
in the wireless sensor-networks [36, 37].
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