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Radar and communication (RadCom) systems have received increasing attention due to their high energy efficiency and spectral
efficiency. They have been identified as green communications. This paper is concerned with a joint estimation of range-Doppler-
angle parameters for an orthogonal frequency division multiplexing (OFDM) based RadCom system. The key idea of the proposed
method is to derive different factor matrices by the tensor decomposition method and then extract parameters of the targets
from these factor matrices. Different from the classical tensor decomposition method via alternating least squares or higher-order
singular value decomposition, we adopt a greedy based method with each step constituted by a rank-1 approximation subproblem.
To avoid local extremum, the rank-1 approximation is solved by using a multiple random initialized tensor power method with a
comparison procedure followed. A parameterized rectification method is also proposed to incorporate the inherent structures of
the factor matrices. The proposed algorithm can estimate all the parameters simultaneously without parameter pairing requirement.

The numerical experiments demonstrate superior performance of the proposed algorithm compared with the existing methods.

1. Introduction

The integrated radar and communication (RadCom) system
has received much attention in recent years. By using a joint
waveform, the occupied spectrum can be used efficiently and
both radar and communication functions can be operated
simultaneously. Due to the fact that the signal energy and
frequency spectrum can be used efficiency and cognitively,
the RadCom system is considered as a green communication
system, which is a relatively new research discipline [1-4].
Such a RadCom system has been reported in many references
[5-8]. Specifically, to embed the communication information
into the radar waveforms efficiently, the performance of
typical orthogonal frequency division multiplexing (OFDM)
waveforms was analyzed [5]. Then, the single-input multiple-
output (SIMO) and multiple-input multiple-output (MIMO)
scenarios were extended in the RadCom system in order to
estimate the directions of arrival (DOAs) of the targets [9, 10].
In general, the estimation methods can be classified into

sequential methods and simultaneous methods. The existing
radar systems usually employ the sequential methods for
computation cost reduction. However, estimation in separate
dimensions encounters the pair-matching problem for differ-
ent parameters, as well as signal-to-noise ratio (SNR) loss.
With the rapid development of computing power, the simul-
taneous methods receive more attention. Since the simulta-
neous method can recover multidimensional parameters at
the same time, how to avoid the pair-matching procedure and
improve the performance is of great importance.

The existing joint estimation methods mainly focus on
the problems in Doppler and angle domains. The algorithms
can be mainly divided into two groups: subspace-based
algorithms and sparse representation (SR) based algorithms.
In general, the subspace-based methods need a reasonably
large number of snapshots and high enough SNR to imple-
ment the eigenvalue decomposition (EVD) with a desirable
performance. In recent years, the SR-based techniques exploit
the sparsity of the radar target scenarios. However, most
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of the SR-based techniques encounter the grid mismatch
problem, which is caused by the solutions on discrete grids.
The performance of such algorithms is directly affected by the
grid resolution. On the other hand, these SR-based methods
mainly focus on a one-dimensional problem and are usually
extended to multidimensional cases by stacking operation [11,
12]. Nevertheless, the stacking operation ignores the inherent
multidimensional structure of the received data.

Tensor based methods have been applied in radar appli-
cations [13]. With the benefits of multidimensional modeling
and algorithms, the dimension of radar parameter estimation
problem can be reduced and solved easily. The mainstream
method is to convert the multidimensional problem into
multiple one-dimensional problems with a low computa-
tional complexity. High-order singular value decomposition
(HOSVD) algorithm and canonical polyadic (CP) decompo-
sition algorithm, also known as CANDECOMP/PARAFAC
decomposition, play an important role in processing multidi-
mensional data. The alternating least squares (ALS) algorithm
is still a workhorse for solving the CP decomposition problem
[14,15]. However, the ALS algorithm is faced with the troubles
oflocal minimum and disappointing convergence properties.
Another kind of algorithms is greedy algorithms, which is
also known as rank-1 deflation. It is known that the greedy
algorithms cannot generalize to tensor fields straightly [16].
In [17], the authors proposed a deflation method with a con-
straining procedure after each step. In [18], a similar method
was proposed based on successive rank-1 approximations and
an iterative process followed for eliminating the residue. The
rank-1 approximation subproblem is usually computed by
means of noniterative methods, including truncated high-
order singular value decomposition (T-HOSVD) and sequen-
tial rank-one approximation and projection (SeROAP) [19].
However, they can only provide suboptimal solutions in spite
of the low computational complexity.

In this paper, we introduce the tensor modeling for
monostatic OFDM-SIMO based RadCom system. A data
tensor is constructed from the demodulated OFDM sym-
bols. Assuming a scenario with point scattering targets,
the CP decomposition model is used to decompose the
data tensor. Greedy CP decomposition (GCPD) algorithm
combined with multiple random initialized tensor power
method (TPM) is proposed for CP decomposition. Capi-
talizing on the inherent structure of the factor matrices,
we present a parameterized rectification (PR) method to
improve the target detection performance. The proposed
algorithm deals with the received signals directly without
multidimensional peak searching, covariance matrix estima-
tion, or eigen-decomposition procedures which may bring
error accumulation. Multidimensional parameter pairing is
fulfilled automatically, avoiding the performance degradation
caused by wrong pairing. The contributions of this paper can
be summarized as follows:

(i) A tensor model for OFDM-SIMO based RadCom
system is proposed in order to jointly estimate target
parameters in the range-Doppler-angle domain.

(ii) A GCPD algorithm combined with multiple random
initialized TPM is proposed for tensor decompo-
sition. A globalization procedure is introduced to
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avoid the locally optimal solutions. This algorithm
can achieve much better performance compared with
the traditional algorithms.

(iii) A PR method is proposed to take advantage of the
inherent structures of the factor matrices. The PR
method can significantly improve the target detection
performance, even when there are coherent targets.

The rest of the paper is organized as follows. In Section 2,
the system model for OFDM-SIMO based RadCom system
and the problem formulation are introduced. A novel GCPD
algorithm with multiple random initialized TPM and the PR
method is presented in Section 3. In Section 4, the results
of simulation in a typical multitargets scene are given to
verify the performance of the proposed method. Finally, in
Section 5, a conclusion is drawn.

Notation: We denote the scalars and vectors with lower-
case letters (a, b, . ..) and bold lowercase letters (a, b, ...). The
matrices are written as bold uppercase letters (A, B, ...) and
the symbol for tensors are calligraphic letters (¢/, 9%, .. .). The
symbols o, * denote the outer and Hadamard (element-wise)
products. The transpose, conjugate, and conjugate-transpose
are denoted by oI o* and o, respectively. || « || denotes the
Euclidean (/,) norm of a vector. || « ||z denotes the Frobenius
norm of a tensor.

With respect to tensor & € and vectors u € CK,
veCNandw e CH, operator A(u,v,w) is defined as

CKXNXM

K N M

A(w,v,w) = Z Z Zu:v;wl*d(i, j,1) e C. (1)

i=1 j=11=1

In particular, when one of these vectors is absent, we have

N M
ALv,w) =Y Y viw o (. jl) e C~. )
j=11=1

It is similar for the definitions of A(u,I,w) and A(u,v,I).
Some preliminaries about tensor and its corresponding
decomposition are given in the appendix.

2. System Model and Problem Formulation

Consider a monostatic OFDM-SIMO based RadCom system
equipped with a single antenna for transmitter and a uniform
linear array for receiver, as shown in Figure 1. The receiver
array consists of Ny antennas uniformly spaced with the half
wavelength separation, denoted by A, = A/2, where A is the
wavelength of the transmitted signal.

The steering vector of the array is represented as
T

a 0) = [a} (0) af(©) -+ ax*' (O)] G)

where ay' (0) = gl2mmAgsin(@)/A

The transmitted waveform is modulated by Cyclic-Prefix
OFDM (CP-OFDM) with the Quadrature Amplitude Mod-
ulation (QAM) or phase-shift keying (PSK) constellation
mapping. The transmitted signal is given by

x(t) = Z Z d (1] ejw"(t_"T)pT (t -nT), (4)

n=-00 keK
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FIGURE 1: Block diagram of processing for RadCom system.

where d;[n] denotes the transmitted data over the kth
subcarrier of the nth symbol with k € K. wy is the angular
frequency of the kth subcarrier. T' is the symbol period.
pr(t — nT) is the shaping filter of the transmitter, which
is usually a time-domain rectangular filter for the general
OFDM realization.

Suppose that there are H nonfluctuating (according to
the Swerling-0 model) far-field point targets. The parameters
of a target relative to the RadCom system are given by the
quadruple {ey,, 13, v}, 0}, where oy, 13,, v, and 6, repre-
sent the complex amplitude, the range, the radial velocity,
and the angle of arrival of the hth target, respectively. It
is more convenient to equivalently consider the quadru-
ple {«y, 13, fi,, sin(6;,)} of complex amplitude, time delay,
Doppler shift, and normalized angle parameters, where 7, =
2r,/c and f;, = 2v,/A. The delay, Doppler shift, and angle
information can always be transformed back into the physical
coordinates. In this paper, we consider the gridless scenario.
That is, the true targets are likely to locate at any position in
the delay-Doppler-angle domain.

The received continuous signals y,,(¢) at antennas m =
0,..., Ny — 1 consist of the superposition of the reflections
from the targets of the transmitted probing signals, as well as
the additive noise (includes the thermal noise, jamming and
clutter), which are given by

H
Vn (f) _ Z(xheﬂnmAR sin(Gh)/Aeﬂnfhtx (t _ Th) +w,, (f) , (5)
h=1
where w,,(t) is additive white Gaussian noise (AWGN)
with zero-mean and variance o> corresponding to the mth
receiving antenna. oy, is the complex amplitude of the hth
target affected by path loss, scattering, and processing gains.
Since the information is modulated in frequency domain
with OFDM, the demodulated data corresponds to the mth
receive antenna that is given by

H
d” [n] = Y di [n] v+, [n], (6)
h=1

where v = e]anAR sm(@h)/)te—]wk‘rhe]271fhnT‘

By implementing the CP decomposition model in Defi-
nition 4, the demodulated data in (6) can be formatted as a
third-order tensor:

D=D«V+U, (7)

where @ € CFN*M g js a tensor from the transmitted
data that is duplicated in the third mode. 7 represents the
response of the targets, expressed as

H
7 =Y a,ob,oq, (8)
h=1

where

a, = [e—jw1‘fh . e_ijTh]T

by = [¢2U0T ... eJ'anh(N—l)T]T’

)

[ 0B Rsn@)A | j2m(M-DAR sin(@h)/A]T ,

¢, =

and 7 is the rearranged noise.

The objective is to estimate the target parameters
(&, Typ> fir sin(6),)} from the demodulated data 9. Tradition-
ally, the targets are firstly detected in the delay-Doppler plane
with the matched filter, and then the angle estimation is
performed. However, the sequential technique needs the pair-
matching procedures to obtain the one-to-one relationship
among the delay, Doppler shift, and angle.

Due to the sparse nature of the radar scene, the number
of targets, H, is usually small relative to the dimensions of
the tensor. Hence the response of the targets has an intrinsic
low-rank structure. Different from the traditional sequential
estimation methods, we hope to achieve a joint estimation
procedure with the low-rank structure of the target response.



3. Parameter Estimation via
Low-Rank Tensor Approximation

In this section, we present the joint parameter estimation
algorithm using tensor decomposition. The estimation pro-
cedure includes two basic stages: (1) target separation, and (2)
parameter estimation. The former is achieved by CP decom-
position and the latter by a correlation-based estimation with
the decomposed factor matrices.

In order to eliminate the influences of the transmitted
user information in the RadCom system, we normalize the
received data tensor with the transmitted data tensor by
element-wise product as follows:

. @ * @* .
D=—">—=7+Y, (10)
D x D*
where W = (7 + 2*)/(D * D%) is an i.i.d. white Gaussian
noise with the same distribution with w,,,(t).

Since the number of targets is usually small relative to

the dimensions of the data tensor, & is low-rank but con-
taminated by additive noise. Therefore the target separation
can be obtained by performing a CP decomposition of the
normalized data tensor .

Here we assume that the number of targets H is known
or estimated in advance. Then, the CP decomposition can be
accomplished by solving

2

, (1)

H
mi Hg - Z&hﬁh o bh ° Eh
F

&AB,C ]

st @] =6 = el =1 vh=1,...H, (12

where & = [&,8p....8y], A = [apdy...,A4), B =

[b,,b,,...,by], C = [€,,C,..., 4l

Remark 1. The uniqueness under mild conditions is a key
feature of CP decomposition. The CP decomposition of the
tensor P is essentially unique when the following sufficient
condition is satisfied ([21], Theorem 10)

k(A)+k(B)+k(C)=2H +2, (13)

where k(M) is the Kruskal rank of the matrix M and is
defined as the largest integer k such that any k columns of M
are linearly independent. When multiple noncoherent targets
exist, i.e., different ranges, velocities, and angles, those three
factor matrices are always full column rank so that (13) always
satisfies.

Remark 2. Tt is clear that when there exists coherent targets,
e.g., targets with the same range but different velocities
and angles, (13) will not satisfy any more. In fact, the CP
decomposition cannot ensure uniqueness and correctness in
this case with third-order tensors even under a much milder
condition ([21], Theorem 9). To improve the percentage of
successful decomposition, we utilize inherent structures of
the factor matrices. Refer to Section 3.3 for detail.
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The most commonly used algorithm for solving the CP
decomposition is ALS [22], which is quite simple and can
be executed by updating each factor matrix alternately in
each iteration. The ALS algorithm is extremely fast but not
stable, and the global optimal solution is hard to obtain. It has
been shown that tensors of order 3 or higher fail to have best
rank-r approximation for » > 2 [23]. Fortunately, the rank-1
tensor approximation always exists and can be calculated by
the high-order power method (HOPM), also known as tensor
power method (TPM) [24].

Our proposed tensor decomposition method includes
two main parts: (1) rank-1 tensor decomposition based on
multiple random initialized TPM and (2) greedy iterations for
removing the estimated components as well as residual error.

3.1. Tensor Rank-1 Approximation. There are several rank-
1 tensor approximation algorithms, such as T-HOSVD and
SeROAP. However, they are all suboptimal algorithms in
spite of the low computational complexity. In this paper,
we employ the TPM algorithm for the quasi-optimal rank-1
tensor approximation.

The problem of best rank-1 approximation of tensor &
can be formulated as

. . 12
;r;%ne “(%—ocaoboch,, (14)
st [al = |b] = el = 1. 15)

This can be efficiently solved by TPM iterations in the
complex domain, given as

R(1,b", ")
(1) _
) [R (1,50, N
_ R(a,1,e")
(t+1) _ m’ (17)
ey RETVBEVT) 19

B ||R (5(t+1)’ B(t+1)’ I)H :

(

The initialization vectors (a®, b, ¢®) are usually ran-

domly selected, where the values of a® and b"® are uniformly
chosen in the complex domain and vector ¢ is calculated
by (18). Also, they can be given by any other algorithms,
such as HOSVD and SeROAP. The iterations with (16)-
(18) will repeat until ¢ is larger than the maximum number
of iterations t,,,,. In order to reduce the computational
complexity, an additional option of the algorithm is used to
stop the iterations when the following criteria satisfy

Ha(t) _ ﬁ(t_l)" . "B(t) NG

20 _ E(f—l)" <ts, (19)

where tg is the stopping threshold.

On account that the rank-1 approximation is a nonconvex
problem and many local optima exist, careful initialization
is required for TPM iterations to ensure the convergence
to the true rank-1 tensor components. Here we consider
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Input: Tensor P e CONM g ¢ CENM 1 aximum
number of iterations t,,,, ., number of initializations L
l: for t=1to L do
2: Initialize unit vectors ':iio) e CK, bio) e CY, and E(TO) € CMas
* Option 1: random initialization.
% Option 2: Preset values or the last estimated results.
3: fort=1tot,,, do
NGORG]
4 5(t+1) _ R(I’ b‘rt ’C‘rt )
T rap?E)|
. _ R(ﬁS—HI)’I’Eg—t))
T [r@EY LE)|”
s _ R(§§t+l),b§t+l),1)
T |r@EE D)
5:  end for
6: end for
7: Choose (a,b,¢) in {@**", b, e, 7 = 1,.., L}
that correspond to the largest |ID@,b,3)|.
8: Amplitude estimation: @ = R(a, b, )
9: return (®,a,b,<)
ALrGorIiTHM 1: Tensor rank-1 approximation via TPM.
an approximate globalization procedure. Multiple randomly e decomposition of tensor 7 can be formulated as
te globalizat d Multipl doml The d t ft D be fa lated
enerated initializations are used for the iterations. In
generated initializati d for the TPM iterations. I
order to identify the best one among these initializations, Ll
fy g . 9=thhah0bhoch+%, (22)
we need a projection procedure to obtain the final estimates

of the vectors. This procedure is performed with the esti-
mated vectors that is projected to the original data tensor.
The vectors corresponding to the largest absolute value of
these projections are selected as the final results. It can be
formulated as

(E,B,E) = arg min 'D (ET,B ,ET)
a.b,¢

Eadties

5 T=1,...,L, (20)

where L is the number of initializations.
Because the vectors (@, b, €) are unit norm, the amplitude
is estimated as

&=R(abe). (21)

Note that, in order to obtain the approximate global
optimal solution, the operator in (20) is different from that
in (21). Tensor rank-1 approximation via TPM algorithm is
summarised in Algorithm 1.

3.2. Greedy CPD. In this section, we present the GCPD
algorithm, which solves the problem of tensor decomposition
in a greedy manner. The GCPD algorithm calculates the
best rank-1 approximation and then removes the extracted
component at each step. Since the best rank-1 approximation
may not be the actual component of the tensor decomposition
[16], additional iterations for refinement are employed. The
idea of refinement is common for the greedy-like algorithms
in the compressive sensing community.

h=1

where «,a;, 0 by, o ¢;, corresponds to the hth rank-1 component
with 1 < h < H, and & is the residual error tensor, e.g., the
additive noise. In the first round iterations, we compute the
H rank-1 components one by one and remove the extracted
. I ! !
components after each computation. Let a,a, o b, o ¢; be
the extracted hth rank-1 component and the iterations can be

formulated as

! ! ! ! . 2
(och, a,, b, ch) = arg glbnc ||%h_1 —oaobo c||F ,

where &), = 9 - 22:1 oc;a; ° b;, ° c;,.

On account that the extracted rank-1 components may
not be the actual component of the tensor decomposition, the
residual error &;; usually contains the decomposition error
and is not identical to the original residual error, ie., & in
(22)

As a result, the refinement iterations are formulated as

. 2
st o g 5 waevedh,
1<h<H,

where &), is the extracted rank-1 component in the last round
iterations as well as the residual error given by &), = & +
aga; o by o c;. The refinement iterations will be implemented
multiple rounds. Clearly, the refinement iterations play a role
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TaBLE 1: Computational complexity of different algorithms.

Algorithms Complexity

FB-RootMUSIC O{KNM (K + H (K + N) (K + M))} [20]

ALS 6 {3t,, HKNM}

GCPD (SeROAP init) O01{2(k+1)HKN’M* +3(t, . +1)t,,,, HKNM} [19]

GCPD (random init) o3t +1)t,..HKNM}

Input: Tensor & € CXONM

LR — D

2:for h=1to H do

3:  Calculate (&, 2, Bh, ¢,,) via Algorithm 1 (option 1).
4 R e— R-&a,0b,0%,

, number of targets H

5: end for

6: repeat

7: forh=1to H do

8 R R+&ya,o0b,00,

9: Update (&, @y, by, ¢,) via Algorithm 1 (option 2).
10 R e— R-&a,b,0¢,

11:  end for

12: until a stopping criterion is met

13: return (&,,3,,b,,¢,), h=1,...,H.

ALGORITHM 2: Greedy CPD.

on correction of the extracted components. Note that the
estimated results in the last round are used as initialization
for the next round iterations.

The refinement iterations will repeat until a stopping
criterion is met. In this paper, we use the following criteria:

|0 - &4, < te (25)

where &;; and &}, are the residual errors corresponding
to the current and the last round of refinement iterations,
respectively. ¢ is the stopping threshold.

The GCPD algorithm is summarised in Algorithm 2.

3.3. Target Parameter Estimation and Parameterized Rectifica-
tion. We now discuss how to estimate the target parameters
based on the estimated vectors from Algorithm 2. According
to the definitions of these vectors in (8), each vector is
characterized by the associated delay, Doppler shift, or angle
of one target.

Hence, the delay of the hth target 7, can be estimated via
a correlation-based method given by

- |5hHah (Th)' (26)

Ty = arg max————-

v [[aul ay (=)l
With the additive white Gaussian noise, the correlation-

based method is indeed a maximum likelihood (ML) estima-

tor and provides the optimal solution.

The Doppler shift and angle of each target can be obtained
similarly as

- B3 (i)
= T (27)
S T [T
~H
6, = arg max |ch o (eh)| (28)

6 [l e (6]

The maximization problems in (26)-(28) involve one-
dimensional search and can be performed by zero-padded
FFT efficiently combining the inherent structures of these
vectors.

Vectors ay,, b, and ¢, are inherently determined by a
few parameters. However, Algorithms 1 and 2 do not take
this into account. In order to make use of this structural
information, we propose a method named parameterized
rectification (PR). The PR method is based on parameter
estimation and structure reconstruction. That is, an estima-
tion process performed by (26)-(28) is inserted at the end
of Algorithm 1. The returned vectors are regenerated with
the desired structures and the estimated parameters. The PR
method is summarised in Algorithm 3. The GCPD algorithm
combined with PR is abbreviated as PR-GCPD.

Note that the PR method generally increases the rank,
especially in the noisy case, and several initializations and
iterations are necessary to obtain the global optimal solutions.

3.4. Computational Complexity Analysis. We use the number
of complex multiplications (operations) as the complexity
metric. Since GCPD is an iterative algorithm, the total
complexity is unbounded. The complexity is mainly dom-
inated by the rank-1 approximation, which is repeatedly
computed several times. The major computing task of the
rank-1 approximation is the TPM iteration. The computation
of vectors 2V, b** 1 and b**Y in (16)-(18) needs 3KNM +
KN + KM + NM operations. The TPM iterations are repeated
with the maximum ¢,,,, times. Thus, the complexity of the
rank-1 approximation is given by 0{3t,,, KNM}, where O{-}
is the big-O notation. Since the iterations with multiple
initializations can be performed in parallel, the number
of initializations is not considered in the computational
complexity. Assume that the maximum number of iterations
for refinement in the GCPD agorithm is t:mx, the total
complexity of GCPD is given by O{3(¢/, _+ 1)t,,., HKNM}.
Note that the stopping criteria in (19) and (25) are usually
applied, the actual number of operations is much smaller.

In Table 1, we summarize the computational complexity
of the algorithms presented in the next section, where k is a
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Procedure PR(a,, by, ¢,)

estimated parameters.
return (a,,b,,<c,)

Estimate parameters 7,, f, and 8, via Eq. (26)-(28).
Regenerate a,, b, and ¢, with the structures in Eq. (8) and

ALGORITHM 3: Parameterized rectification.

TaBLE 2: OFDM waveform parameters.

Parameters Values
Carrier frequency 5.9 GHz
Subcarrier spacing 90.909 kHz
OFDM symbol length 11 us
Cyclic prefix length 1.375 us
Bandwidth 93.1 MHz
Constellation Mapping 4 QAM

user-defined parameter. Since the PR method is performed
on vectors, the number of operations per iteration needed
by the PR method is negligible compared with the TPM
iterations. However, on account that the PR method generally
increases the rank, it usually slows down the convergence and
may lead to more run time. The computational complexity is
evaluated via simulation in the next section.

4. Numerical Results

In this section, some numerical results are used to illustrate
the performance of the proposed method. Different from the
related literature [18], the dimensions of the data are much
larger and the simulated performance characteristics may be
obviously distinct.

4.1. RadCom Parameters and Performance Metrics. The trans-
mitted signal is modulated with CP-OFDM. The parameters
for OFDM waveform generation are listed in Table 2. The
receiver of the RadCom system is equipped with a uniform
linear array with M, = 15 receive antennas spaced at a
distance A = 0.51,. The surveillance field is in the far
field of the RadCom system. In each experiment, targets
are placed randomly on the predefined unambiguous range-
Doppler-angle parameter space. The target amplitudes are
chosen with constant absolute value and random phase.
White Gaussian noise is added to the data tensor with
variance o> corresponding to the specified output SNR. The
SNR is changed from -40 dB to -20 dB in step of 1 dB.

In all simulations, the maximum number of iterations
tax for the TPM method is set to be 1000. Also, the stopping
threshold ¢4 in (19) is assigned to be 107'°. For the GCPD
algorithm, the stopping threshold t5 in (25) is set to be
107%. In order to avoid the lengthy refinement iterations in
the GCPD algorithm, we restrict the number of refinement
rounds no greater than 10. In each experiment, 64 OFDM
symbols are collected for signal processing. A total number
0f 1000 experiments are conducted.

Here we use the following performance metrics:

(1) Root mean-square errors (RMSE) in the delay,
Doppler, and angle estimation are given by

1
HL

M=

=
—_

H 1/2
Z (?h,l - Th,l)2> > (29)

RMSE, = (

I=1

1/2

(G —fh,l)2> Lo

M=
Mz

RMSE; = <_L

=1

T
)

|-
M=
Mz

1/2
RMSE, = ( (B - eh,l)2> NG

1=1 h=1

where H is the number of targets and L is the total
number of experiments.

(2) Detection probability (P,): the fraction of the total
number of targets that are correctly detected in an
ellipsoid area. A target is correctly detected when the
estimated location of the target in the delay-Doppler-
angle space falls within the ellipsoid with axes equiva-
lent to +3 times the classical delay, Doppler, and angle
resolution bins, A, A ¢, and A, respectively.

Py = é '{?h,l’ﬁt,lyéh,l | @y < €5 H, (32)

where

R ~ 2
O, = (Th,l_Th,l)z Jni = Tn
W=\ \—) t| =7
: A, A,
- 2 1/2
Oy = Ony
+ 22— .
Ag

H and L are the same as those in (29)-(31). ¢,
is the normalized tolerance factor, determined by
application. We chose €,;, = 3, which is three times
the resolution bins.

(33)

When calculating (29)-(32) in the multiple target scenar-

ios, 7y, fh,l, and éh,l are selected as the ones closest to 7;,;, f;, ),
and 0y, , respectively, among all the estimated parameters of

H targets, i.e., {Tj,, fh,l, éh,l |h=1,2,...,H}.
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FIGURE 2: Performance comparison of different rank-1 approxima-
tion algorithms.

4.2. Performance with Single Target. In this case, the problem
corresponds to the rank-1 situation. Figure 2 compares
different rank-1 approximation methods as well as different
number random initializations for TPM method. Because
the dimensions of the tensor are high in this paper, we do
not compare the results with the best rank-1 approximation
described in [25].

In Figure 2, the number of random initializations
for TPM method is selected in the collection & =
{1,30,100}. The methods for comparison include T-HOSVD
and SeROAP. The former is a classical approach for tensor
decomposition and the latter was recently proposed by Alex
P da Silva et al. in [19]. TPM initialized by the results of
SeROAP is also considered. In addition, the subspace-based
forward-backward root-MUSIC (FB-RootMUSIC) method
[20] incorporating the inherent signal structures is selected
for comparison.

The target detection probability versus SNRs for different
methods is shown in Figure 2. This simulation shows that
the TPM method with 100 random initializations performs
much better than the others. TPM with 30 random initial-
izations performs very close to the case with 100 random
initializations. The TPM method with multiple random
initializations is better than that with initialization generated
by the SeROAP method.

In order to further analyze the impact of the number of
random initializations, another experiment is performed. The
number of random initializations is selected in the collection
J = {1,5,10,15,20,25, 30, 35, 40,45, 50, 75, 100}. Figure 3
shows the detection probability versus the number of random
initializations for SNR = -30, -31, and -32 dB, respectively. The
detection probability tends to a fixed value with the increasing
number of initializations. When the initialization number is
sufficiently large, the output is close to the global optimal
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FIGURE 3: Impact of initial number of TPM.

solution. However, in view of the computational burden, we
choose the number of initializations to be 30 as an acceptable
suboptimal solution. It is worth noting that the TPM solving
processes with multiple initializations can be easily realized
by parallel computing, so that this is not a limiting factor for
practical applications.

To simplify the analysis, the number of random initializa-
tions of TPM is fixed to be 30 in the subsequent analyses.

4.3. Performance with Multiple Noncoherent Targets. Con-
sider five targets selected uniformly at random in the
RadCom’s unambiguous region. The delay, Doppler shift,
and angle of each target do not overlap with others. The
spacings between different targets in each dimension are
larger than three times of the corresponding resolution bin.
The amplitude of the targets are chosen such that they are with
the same magnitude and random phases.

Figure 4 depicts the RMSE performance of the aforemen-
tioned methods in the range, Doppler and angle domains.
When the SNR is low, the proposed GCPD and PR-GCPD
methods with 30 random initializations have much better
performance than the other methods. As the SNR increases,
GCPD can achieve similar performance compared to PR-
GCPD. The FB-RootMUSIC method cannot achieve sim-
ilar performance compared to the GCPD and PR-GCPD
methods, even at high SNRs. The ALS method performs the
worst due to its instability. Figure 6 presents the detection
probability of multiple targets. It can be seen that our
proposed GCPD and PR-GCPD methods have better detec-
tion probability than the classical ALS and FB-RootMUSIC
methods. Also, the PR-GCPD method initialized by SeROAP
has an acceptable detection probability but is slightly lower
than the multiple random initialized ones. The facts show that
the globalization procedure with multiple random initializa-
tions, as well as the PR method, can improve performance
significantly.
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4.4. Influence of Coherent Targets. Consider scenarios with
five targets and two of them are coherent targets in the range
dimension. The coherence indicates that the parameters of
different targets in one dimension are the same, e.g., the same
delay, Doppler shift, or angle. The coherence destroys the
uniqueness conditions of CP decomposition and significantly
influences the performance of parameter estimation and
target detection.

From Figure 5, we can see that, in this condition, the pro-
posed PR-GCPD method combined with multiple random

initialized TPM provides the best performance. Methods
except for the PR-GCPD have much worse performance
on account that they cannot resolve the coherent targets
robustly. Figure 7 shows the detection probability of all
the methods. It is observed that the classical ALS and FB-
RootMUSIC methods all have miss detection even when the
SNR is high. This is primarily because these methods cannot
distinguish the coherent targets. The GCPD with 30 random
initializations performs better, though it cannot achieve the
best performance at high SNRs. The proposed PR-GCPD
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FIGURE 6: Detection probability performance of different methods
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FIGURE 7: Detection probability performance of different methods
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method performs much better than all the other methods,
and the detection probability is 1 at high SNRs.

Figure 8 is given to evaluate the run times of different
algorithms relative to the scenario existing five targets and
two of them are coherent. The scenarios with noncoherent
targets have similar results and will not be shown here.
The run times are obtained by using a computer with
Intel(R) Xeon(R) CPU E5-2682 v4 CPU, 16 GB RAM. As
has been mentioned before, the proposed GCPD algorithm
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with multiple random initializations has the ability to run
in parallel. Here we calculate the equivalent run time of
GCPD by selecting the largest run time among all these
initializations.

From Figure 8 we can see that the required run time of
FB-RootMUSIC is constant as it is a finite algorithm. The
required run times of GCPD (SeROAP init) and GCPD (1
rand-init) are both smaller than that of the ALS algorithm,
especially when the SNR is low. This indicates that the
complexities of GCPD (SeROAP init) and GCPD (1 rand-
init) are lower than that of ALS. The required run time of
the GCPD (30 rand-inits) is slightly larger than that of the
ALS algorithm. The reason is that the run times with different
initializations are not all equal and the largest one determines
the required time.

When the PR method is applied, the run times of all
three PR-GCPD algorithms become larger in the low SNR
region. This is mainly because that the PR method generally
increases the rank and slows down the convergence. However,
when the SNR is high, the PR-GCPD algorithm performs
much faster. As has been mentioned, the PR method increases
the detection and estimation performance of the GCPD
algorithm both in low and in high SNR regions, although it
may result in a higher computational cost.

5. Conclusion

In this article, we investigated joint range-Doppler-angle
estimation in an OFDM-SIMO based RadCom system using
CP decomposition. The signal model with tensor algebra was
developed and a novel algorithm for CP decomposition was
presented. Different from the classical ALS algorithm, the
proposed one adopts a greedy strategy with each step solved
by TPM with multiple random generated initializations
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and a globalization procedure. This globalization procedure
alleviates the local optimal problem to some extent. A PR
method was proposed to make use of the inherent structures
of the factor matrices. We demonstrated that our methods can
estimate parameters for multiple targets, both in noncoherent
and in coherent cases, and require no pair matching. The mul-
tiple random initialized TPM can be easily realized by parallel
computing and it is beneficial for realistic applications.

Appendix

Definition 3 (rank-1tensor). A third-order tensor 7 has rank
Lif it can be expressed by the following form:

I =aobog, (A1)

where a, b, and c are three vectors, with a € C™!, b € C/*!,
ce C®¥ and 7 e K,

Definition 4 (CP decomposition). The CP decomposition of
the third-order tensor 7 € C”/*K is a decomposition of 7
with a summation of minimal number of rank-1 tensors:

R
T =Ya,ob,oc, (A2)
r=1

where a,, b,, ¢, are the rth columns of factor matrices A €
C*®, B e C* and C € C*%.
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