
Research Article
Hydra-Bite: Static Taint Immunity, Split, and Complot Based
Information Capture Method for Android Device

Ziru Peng ,1,2 Xiangyang Luo ,1,2 Fan Zhao ,1,2 Qingfeng Cheng,1,2 and Fenlin Liu 1,2

1State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China
2Zhengzhou Science and Technology Institute, Zhengzhou 450001, China

Correspondence should be addressed to Xiangyang Luo; luoxy ieu@sina.com

Received 8 March 2018; Revised 17 April 2018; Accepted 23 May 2018; Published 17 July 2018

Academic Editor: Kim-Kwang Raymond Choo

Copyright © 2018 Ziru Peng et al.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to attract attention to the malicious use of large-scale operation of applications, Hydra-Bite, an Android device privacy
leak path implemented by splitting traditional malicious application and restructuring to a collaborative application group, is
proposed in this paper. For Hydra-Bite, firstly, traditional privacy stealing Trojan is analyzed to obtain the permission set. And
the permission set redundancy elimination splitting algorithm is subsequently adopted to extract the simplest key permission set
and split the set by functions so as to form the collaborative application group.Then, a covert channel is adopted for the intergroup
Apps to remove the information’s taint tagged by security methods. Meanwhile, a communication medium selection algorithm
and an information normalization coding method are proposed to improve the efficiency and the concealing property for taints
removal. Finally, collaborative external transmission of information is realized on the basis of intragroup Apps’ communication.
The experimental results show that Hydra-Bite could resist the detecting and killing of about 60 security engines such as Kaspersky,
McAfee, and Qihoo-360 in VirusTotal platform and capture the privacy information of the devices of different versions from
Android 4.0 to Android 7.0. Hydra-Bite can resist the killing of the following two methods, the typical detection tool Androguard
based on “permission-API” and the typical static taint tracking tool FlowDroid. Compared with traditional privacy stealing Trojan,
Hydra-Bite has higher information capture rate and stronger antikilling performance.

1. Introduction

Android operating system is widely applied in ILDs (Intel-
ligent Devices), covering home furnishing, communication,
business and vehicle-mounted terminals, etc. As reported,
Android operating system has a global occupancy of 86.2%
in the ILD market. ILD can store massive key information of
users, e.g., location, communication records, accounts, and
movement tracks. Along with the large-scale operation of
application programs, that is, the same operational entity
operates multiple Apps, such operationmodemay be utilized
by information selling organization and the key information
of the users may be stolen by interapplication collaboration.
We explore and report such stealing mode. The first purpose
is, at the research level, attracting the attention of relevant
security researchers.The second purpose is, at the application
level, promoting the research on theApp security auditmech-
anism in the platform. Based on the above purposes, this

paper wants to prevent potential large-scale user information
collection behavior in ILDs.

Traditional information stealing Trojan is mainly imple-
mented by a single App. Those Trojans can be divided into
two categories.The first category is Root permission applying
(Root for short) and the second category is non-Root per-
mission applying (non-Root for short). Specifically, typical
Root approaches include Rootcager [1], Hellfire, Jmedia, and
Bgserv [2]. Once “Hellfire” succeeds in promoting to Root
permission through in-packet nesting, cloud matching, etc.,
it has extremely strong antikilling ability. In this condition,
common antivirus software cannot completely remove it.
However, the Root category is fragile. For example, before
installation, Root method greatly depends on user state
and system environment; after installation, it may trigger
antivirus software’s alarm immediately before promoting to
the permission, so Root category has poor operability. Typical
non-Root category includes methods which are Zsone [3],

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 2769417, 19 pages
https://doi.org/10.1155/2018/2769417

http://orcid.org/0000-0003-3710-2118
http://orcid.org/0000-0003-3225-4649
http://orcid.org/0000-0002-4691-8963
http://orcid.org/0000-0001-8019-1713
https://doi.org/10.1155/2018/2769417

2 Wireless Communications and Mobile Computing

GPSSPY and Nickyspy [4], SMS Tracker, Spitmo, and Zitmo,
and the information is stolen usually through the application
for excessive permission. Typical non-Root Trojan is the
Soundcomber [5] which steals the information through
call recording, speech recognition, and other technologies.
Compared with the method of capturing key information by
applying Root permission, other methods that do not apply
for Root permissions have low recognition degree but the
methods that do not apply for Root permission are easily
blocked or detected by the users through searching and
uploading information behaviors, especially after dynamic
permission mechanism is introduced into Android. These
Trojans can steal a lot of information, thus causing harm
to equipment privacy. For example, leakage of Wi-Fi infor-
mation and social information may cause devices’ location
information to be tracked [6–8].

For the above information stealing Trojan, researchers
have proposed multiple information protection strategies.
These strategies can be divided into “permission-API” detec-
tion and “taints tracking.” The “permission-API” detection
strategy includes the typical selectable authorization tool
Kirin [10] and its improved version Apex [11], excessive
permission detection tool Stowaway [12] and PScout [13],
etc. They judge whether App is malicious through calling
sensitive API and detecting risk permission combination, but
such mode has high false alarm rate and it is difficult to cope
with the privacy stealing method based on “collaboration.”
Therefore, the “static taint tracking” of key information has
been researched more and more since 2013. The represen-
tative tools are as follows: static analysis tool ScanDroid
[14], DroidChecker [15], Chex [16], COVERT [17], etc. These
tools carry out static analysis of App through detection of
permission, sensitive data leak path and data-flow analysis,
etc. Additionally, App data-flow analysis tool FlowDroid [9]
establishes the propagation path of the key information from
“sensitive source” (e.g., IMEI number, longitude, and lati-
tude) to “receiving node, sink” (e.g., sending short message,
uploading in Internet) through static taint tracking, thus
tracking the taint information flow. At present, the method
has been taken by several security engines as the analysis
kernel of Android application, but it is difficult to implement
“static taint tracking” on the system bottom frame. The
literatures [18–20] are other covert communication detection
methods.

In order to attract attention to the large-scale opera-
tion of Apps used maliciously, this paper researches the
Android system’s application layer and proposes Hydra-Bite.
Specifically, firstly, Hydra-Bite uses the permission split and
reconstruction module to split traditional privacy stealing
Trojan, and collaborative App group is constructed. In the
first step, the problem is the coarse permission particle size
of the collaborative application group. To solve the above
problem, the permission set redundancy elimination splitting
algorithm is proposed to extract the key permission set and
split it by functions. Secondly, the taint cleaning module and
taint tagged by the static taint tracking method on the key
information are cleaned through Android covert channel.
To solve the problem of wide varieties of communication
medium and bandwidth [23], information normalization

coding method is proposed. In the second step, to solve
the problem that communication medium is easily occupied
by irregular user operations, the communication medium
selection algorithm is proposed. The experimental results
show that, compared with traditional privacy stealing Trojan,
Hydra-Bite has higher information capture rate and stronger
antisearching and antikilling rate.

This paper’s major contributions are as follows.
(1) Static taint immunity, split, and complotted based

information capture method: Hydra-Bite is an information
capture method for Android devices. This method can get
information and avoid killing by collaborative Apps. At the
same time, Hydra-Bite cleans the mark tagged by security
methods through covert channel. This paper sends a security
alert about Hydra-Bite.

(2) Proper split method for permission sets: Hydra-Bite
proposes permission set split after removal of redundancy
algorithm. This algorithm can split the permission set of
traditional malicious applications and reconstruct the per-
mission sets after the split to be a cooperative application
group.

(3) Information and communication media adaptation:
Hydra-Bite proposes a normalized coding method. This
method solves the problem of the difficulty of covert com-
munication media and information adaptation before infor-
mation enters the covert channel.

(4) Dynamic selection of communication media: Hydra-
Bite proposes a dynamic selection algorithm for commu-
nication media. The algorithm solves the problem of how
to dynamically select the largest communication bandwidth
medium when some media are occupied.

(5) Taint cleaning: Hydra-Bite proves the shortage of
existing static taint tracking methods. Hydra-Bite can bring
coded information with taint through covert channel, so that
the taint cannot be tracked.

The remaining content of this paper is arranged as
follows: in Section 2, “Hellfire,” “Soundcomber,” and “Flow-
Droid” are taken as examples to introduce relevant work from
the two aspects of “Trojan” and “Protection”; in Section 3,
method’s principles and steps are explained in detail; in
Section 4, the proposed method is evaluated from the two
aspects of “information capture” and “antikilling perfor-
mance”; Section 5 is the conclusion.

2. Related Work

This section firstly illustrates the function basis of Hydra-Bite
by introducing traditional data capture Trojans “Hundreds,”
“Gypsymoth,” “Hellfire,” and “Soundcomber”; then, through
the introduction of the peculiarity of “Permission-API” and
“static taint tracking,” it explains the weakness of traditional
privacy-preserving methods when facing the Hydra-Bite
privacy leak path.

2.1. Traditional Key Information CaptureMethod. Traditional
key information capture methods are based on obtaining
Root permission and applying for excessive permissions.The
following part will explain both in detail.

Wireless Communications and Mobile Computing 3

Virus

CVE-
2015-3636

CVE-
2013-6282

CVE-
2014-3153

/system/bin/xsxux
/system/xbin/xsxux
/system/bin/droidamd
/system/etc/droidamd
/system/etc/install-recovery.sh

Server

System
File

contact Location Picture

A

B

C

D

E

Figure 1: The process of “Hundreds” infects equipment.

(1) The Capturing Methods Based on Root Permission Acqui-
sition. In June 2015, the virus named “Hundreds” is active.
The principle of Hundreds to capture information is shown
in Figure 1. StepsA,B, andC:TheApp carrying virus enters
the device and then releases the privilege promotion code
and core module. Steps D, E, and F: After the permission
promotion code begins to work, the information of system
version is uploaded to the server. StepG:The server identifies
the system and returns the Root scheme that is compatible
with the current system version. StepsH and0: Themodule
uses the above Root scheme to invade the system folder
for the convenience of fake itself as a system App, so that
Hundreds can self-start and cannot be deleted. Steps 1 and
2: The Hundreds collects device information and uploads it
to the server.

In December 2015, the virus named Gypsymoth is active.
The principle of Gypsymoth to capture information is shown
in Figure 2. Steps A and B: The virus has been promoted
to Root permissions, through system’s vulnerabilities. Step
C: Some system files are replaced by Gypsymoth after Root
permission was promoted so that Gypsymoth can reside in
the system by monitoring system running environment and
sniffing file change. StepsD andE: When the basic survival
requirements are satisfied, Gypsymoth starts capturing infor-
mation and uploads it to the server.

In June 2016, the virus named Hellfire is active. The
principle of Hellfire to capture information is shown in
Figure 3. Step A: The virus carrying App enters the device.
StepB:The virus carrying App releases its subpackage which
is used to obtain Root permission. Steps C and D: The
subpackage gets the SDK version of current system and sends
it to server. Steps E and F: Hellfire receives and executes
Root scheme returned from server. After Root permission
promotion, Hellfire can parasite to the underlying module
of the system and reside in equipment to collect device
information continuously.

Methods to capture key information have a significant
effect when Root permission is promoted. However, these
kinds of method have strong user and system environment
dependence. These kinds of method do not work for systems
that disable Root permission or users who pay attention to
App’s permissions.

(2) The Capturing Methods by Obtaining Excessive Permis-
sions. Excessive permissions are the permissions beyond
those which are necessary to meet the App’s function.
Method is based on excess permissions, usually applied for
a large number of permissions and disguised as a normal
application, by application repackaging.

In 2011, the Soundcomber [5] method was proposed by
Schlegel et al. applied for excessive permission, such as sound

4 Wireless Communications and Mobile Computing

System
App

Server

Key
Information

Virus App

Kernel
Module

Privilege
Escalation

Code

Server

A

B C

D

E

F G

H

0

1
2

Figure 2: The process of “Gypsymoth” infects equipment.

Virus App

Sub_Pg-Root

Server

A B

C

DE

F

Figure 3: The process of “Hellfire” infects equipment.

recording, disk access, and Internet access.Whenmonitoring
the device calls, these permissions of Soundcomber are
used to turn on the recording function. Then Soundcomber
will store the audio files recorded before. Finally, when the
condition is suitable, Soundcomber recognizes key words
from audio files and uploads them to the network.

In 2012, the Tapprints [24] method proposed by Emiliano
et al. applied permissions for accelerometer, gyroscope, and
IMEI number. Tapprints identifies the device model with
the IMEI number and then queries screen size by the

device model. After that, Tapprints silently listens to users’
clicking coordinates and clicking objects on screen. Tapprints
combines machine learning method to infer users’ input in
devices, with the previous coordinates and objects.

In 2017, with the popularity of smart wearable equipment,
Maiti et al. proposed a method of obtaining information
user inputted through the smart wearers’ sensors [25]. Their
method applies for permissions to access sensors that belong
to mobile communication equipment and wearable equip-
ment. Finally, there is observation of hand movements by
permissions applied before to improving the accuracy of
information capturing.

The above device information stealing method based
on excessive permission avoids the system environment
dependence. However, this method still has strong user
dependence. Meanwhile this kind of method can also be
blocked by the existing security means [26, 27].

2.2. Methods for Preventing Key Information Capturing. To
detect and block App’s key information obtaining, there are
mainly two methods: one based on detecting the mapping
relation of “permission-API” and the other conducting static
taint analysis on the App. The following part will introduce
both in detail.

(1) The Protecting Methods Based on Detecting “Permission-
API” Mapping. This detecting method is based on
“permission-API” mapping which can estimate whether
the Apps conduct key information capturing by analyzing
if the App applies for high-risk permissions such as Root,
or whether Apps call high-risk API combination such as
recording and uploading. The representative within this
type of protecting methods is PScout [13] which analyzes
the Android system Source code and obtains the mapping
relationship between API set and permission set, and it

Wireless Communications and Mobile Computing 5

READ_PHONE_STATE

READ_CALL_LOG

READ_MESSAGE

INTERNET

SEND_MESSAGE

App1
Permission Set

App1 API Set

getDeviceId()

Detect

Traditional Detection
Tools

Detect

Permission-API
Detection Tools

(a)

READ_PHONE_STATE

SEND_MESSAGE

getDeviceId()

Detect

sendTextMessage()

Traditional Detection
Tools

Permission-API
Detection Tools

App2
Permission Set

App2 API Set
Detect

(b)

Figure 4: The different detection results between App1 and App2. (a) The detection results of App1. (b) The detection results of App2.

can conduct the API-Level analysis of the App through the
particular mapping relationship.

As illustrated in Figure 4, App1 in Figure 4(a) is a benign
application as it applies for unused sensitive permissions
but it does not call any API to leak key information; App2
on Figure 4(b) only applies for “reading IMEI number” and
“sending text messages” two permissions, which contains key
information capturing potential. If we only analyze App1
and App2 from the permission aspect, App1 would trigger
the alert and be wrongly diagnosed as it applies for lots
of key information reading and uploading permissions and
generates high-risk combination. However, if we analyze
App1 and App2 from the more detailed API calling aspect
through “permission-API” detecting method, App2 would
trigger the alert as it calls for more dangerous API combina-
tion. Therefore, it improves the detecting accuracy through
the API-Level scanning of the App.

(2) The Protecting Methods Based on Static Taint Tracking of
the App. Static taint tracking method detects the complete
path from where the key information firstly gets captured
at the Source, to the sink point where it has leaked out
of the App by analyzing the App on the Source level. This
analysis method can monitor the data-flow path of Apps’ key
information reading and block the capture method through
Apps applying for excess permissions. The representative
work is FlowDroid [9], an AndroidApp’s high-accuracy static
taint tracking method invented by Arzt et al. By imitating the
complete Android life cycle, FlowDroid uses analysis method
according to different demands, which is highly accurate and
highly efficient comparing to other methods of this type.

Figure 5 is an illustration of taint analysis in real cir-
cumstances. This illustration contains two parts; the first one
is forward taint analysis (A, B, and G), which tracks the
flow of taint variables. The second one is backwards on-
demand analysis, which detects the aliases before they get
tagged by the taints. FlowDroid generates complete taints

Figure 5: FlowDroid taint analysis [9].

path by using the above-mentioned forward taint analysis and
backwards on-demand analysis. However, it faces APK files,
and FlowDroid method can hardly track the taints hidden
deep down in the bottom of the system.

3. Proposed Method

This section will outline the architecture of Hydra-Bite,
according to Figure 6. Firstly, some terms and concepts
which will appear in the later description are defined. Then,
according to Figure 6, the process of Hydra-Bite will be
outlined.

3.1. Terms and Definitions. Hydra-Bite will be introduced
systematically in Section 3.1. The principle of Hydra-Bite is
shown in Figure 4. And, for the convenience of the follow-
ing description, definitions of terminology, abbreviated, are
shown as follows:

(1) Traditional malicious applications: App TM, normal
applications: App Norm.

(2) Key information (K Info): The information can be
read only when privacy-related permissions applied.

(3) Permission set (PSet): All permissions applied by the
application form a set, marked as PSet, PSet can be divided

6 Wireless Communications and Mobile Computing

K_Info
Receipted

K_Info
Transferred

Key Permission
Extracted

Split on Demand

Reconstruction
by function

Install and
execute

Install

Clean the Taint
Information by

C_Chan

Normalization
K_Info Encoding

K_Info
Extracted

App_TM

KPSet

KPSet_R KPSet_S

APP_R APP_S

Target Android
Device

Key
Information

Coded K_Info
with Taint

Coded K_Info
without Taint

Receiving Device

Permission split

K
_I

nf
o

Pr
iv

at
iz

ed
C

ooperative
transm

ission

A

B

C

D E

F G

H

0 1

2

3

4

5

6

7

9

:

;

Figure 6: The general framework of Hydra-Bite.

Wireless Communications and Mobile Computing 7

into subsets PSet R and PSet S according to the process of
information reading and sending. The relations between the
above two subsets are as follows:

PSet R ∩ PSet S = 0.
PSet R ∪ PSet S ⊆ PSet.

(4) Key permission set (KPSet): Permissions in PSet only
related to the whole process of obtaining K Info are selected
to constitute a set, recorded as KPSet. The KPSet can be
further divided into read permissions’ set KPSet R and send
permissions’ set KPSet S according to API calls in process
of obtaining K Info. The relations of the above sets are as
follows:

KPSet R ⊆ PSet R.
KPSet S ⊆ PSet S.
KPSet R ∪ KPSet S ⊆ KPSet.
KPSet R ∩ KPSet S = 0.
KPSet ⊆ PSet.

(5) Key information with taint (K Info T): After K Info is
read, static taint tracing method will tag it, which is denoted
as K Info T.

(6) Normalized coded key information with taint
(K Info N T): Normalized coded K Info T is written as
K Info N T.

(7) Normalized coded key information without taint
(K Info N): After the taint cleaning process, K Info N T’s
taint tag is washed off; the result is recorded as K Info N.

(8) Covert channel: It can be expressed as a triplet
⟨𝑆𝑅𝑒𝑠, 𝐸𝑀ℎ, 𝐸𝑉𝑙⟩ [26] where SRes are shared resources in
Android system; 𝐸𝑀ℎ is a communication entity with higher
security level which canmodify SRes;𝐸𝑉𝑙 is a communication
entity with lower security level which can observe or perceive
SRes. Communication from 𝐸𝑀ℎ to 𝐸𝑉𝑙 is not allowed. Then
the channel that completes the two-entity communication is
called a covert channel.

(9) Cooperative applications group (Co Apps): Co Apps
is created by our Hydra-Bite method, which can communi-
cate with other applications which are in the group.

3.2. Process of Method. The method is composed of 3
parts: Co Apps reformed before KPSet split modular, K Info
privatized modular, and cooperate transmission modular.
The following steps will be described specifically based on
Figure 6.

(1) Co Apps Reformed before KPSet Split
(1) KPSet Extracted (A and B). Our method parses

App TM’s installation package to get the Android-
Manifest file, from which KPSet is extracted accord-
ing to API calls in process of obtaining K Info.

(2) KPSet split (C, D, and E). Hydra-Bite splits KPSet
into KPSet R and KPSet S according to the phases
which are read and send in the process of App TM
obtaining K Info;

(3) Co Apps reformed (FG, and H). The App R and
App S are structured as Co Apps, according to the
KPSet R and KPSet S they only owned.

(2) K Info Privatized

(1) K Info read (0, 1, 2, and 3). After installing and
executing on the target Android device, App R will
read the K Info which is protected by the system
security mechanism to the application layer. At this
time, K Info will be tagged by static taint method to
become K Info T.

(2) K Info T normalized (4 and 5). After read by
App R, K Info needs to be translated into a uni-
form format that supports covert channel, because
of various forms. Therefore, Hydra-Bite normalizes
K Info T to K Info N T through coding it.

(3) K Info N T cleaned (6 and 7). If K Info N T is
transferred at this time, it will be detected because
of the tagged taint. To clean the taint, C Chan is
designed in our method, so that the Hydra-Bite can
get the K Info N.

(3) Cooperative Transfer

(1) Message receive (9). App R opens the information
receiving component of App S to transfer K Info N,
after K Info privatized operation is done. Now the
K Info N is private information of App R.

(2) Information transmission (: and;). After receiving
the K Info N, App R opens the information trans-
mission component and sends the K Info N to the
receiving equipment through the KPSet S which it
owns.
In the above processes, the key steps which will
be explained separately are as follows: KPSet Split
on demand(A–E) and the taint cleaning by covert
channel(4–7).

4. Key Issues Description

This section will give a detailed description of the key
issues raised in permission split. They are key permission set
split after redundancy removal, key information normalized,
communication media selection, and taint cleaning through
covert channel.

4.1. Key Permission Set Split after Removal of Redundancy.
Permission set redundancy means that, in the process of
information capture, the required number of permissions
for App calls sensitive APIs is less than permission items in
AndroidManifest file. To solve the problem that the granular-
ity of Co App’s permissions is coarse caused by permission
redundancy, this section proposes a deduplication algorithm
for permission set before splitting it. The algorithm uses
double layer’s key-value mapping to extract key permission
set. Then algorithm sets different labels for the items in
key permission set. Algorithm 1 is the pseudo code of the
algorithm’s main loop.

8 Wireless Communications and Mobile Computing

(1) define sApiList <apiMap<api Name, perm Name >>:
List<Map<String, String>>

(2) define kPermList <permMap<perm Name, flag>>:
List<Map<String, String>>

(3) while sApiList ̸= 0 do
(4) for 𝑖 = 0 to sApiList.size()

//Traversing list of key-value mappings for sensitive APIs
(5) map sApiList.get(i).getKey() to perm via the Mapping file

provided by Pscout
//Mapping sensitive APIs to permissions corresponded

(6) sApiList.get(i).getValue()← perm
(7) if perm is the first time show then

//Remove the duplicate permissions after the mapping
(8) swich(perm)

//Classify permissions before add them into the second key-value mapping
(9) case perm is transfer class permission:
(10) permMap.getKey()← perm
(11) permMap.getValue()← trans
(12) addMap2 to kPList
(13) clearMap2
(14) case perm is information read class permission:
(15) permMap.getKey()← perm
(16) permMap.getValue()← read
(17) addMap2 to kPList
(18) clearMap2
(19) case perm is other permission:
(20) drop perm
(21) else
(22) drop perm
(23) end if
(24) end for
(25) end while

Algorithm 1: Main loop of key information split.

The purpose of the first layer’s key-value mapping is to
extract the permissions actually used by the App and then
remove the repeated entries in it.This process is implemented
as follows. Firstly, the algorithm sets the APIs that App
actually invokes as the keys. Then the algorithm maps the
APIs to the required permissions for invoking them, through
the mapping file provided by PScout [13]. The reason for the
implementation of the algorithm is that one permission can
call multiple API in some cases. For example, the permission
READ CALL LOG can invoke APIs which can read call
category and call time. This layer’s key-value mapping is
shown in (5)-(6) lines of pseudo code, in Algorithm 1.

The purpose of the second layer’s key-value mapping is
to split the permissions actually used by the App, according
to category. This process is implemented as follows. Firstly,
the algorithm refines the real permission set by extracting
permission items related to key information capture. The
product of this process is key permission set. Then, the
algorithm classifies and gives labels to the key permission set’s
items, according to reading or sending information. Finally,
the algorithm sets items of key permission set as the keys and
sets the labels for each item as values. Finally, Hydra-Bite can
split the key permission set according to the labels.This layer’s

key-value mapping is shown in (7)–(23) lines of pseudo code,
in Algorithm 1.

4.2. Key Information Normalized. There are two problems
to be solved for the pretreatment of key information. One
problem is for key information. Because of the diverse storage
types and rich contents of this information in Android
device, we counted the storage formats of some pieces of key
information stored in the device and shown in Table 1. “▲”
indicates that the key information exists in this format or
content. It can be seen that some key information stored in
Table 1 is different in type and content. The other problem is
for SRes. Different shared resources have different forms of
existence and communication bandwidth. Take the volume
of the alarm clock and the brightness of the screen as an
example; the thresholds of volume and brightness are 0–8 and
0–255 integer numbers, respectively. It can be seen that, due
to the disunity of format and content, the adaptation between
shared resources and different key information is difficult.

Shared resources are determined by the system, and it is
difficult to modify. Therefore, in this section, aiming at the
above problems, a method to normalize key information is
proposed.Themethod is divided into format unified module

Wireless Communications and Mobile Computing 9

Table 1: Storage formats of some pieces of key information and their contents.

IMEI
Number Fine Location Contacts Call Type Call Date SMS content

Information Type
String ▲ ▲ ▲

Double ▲

Int ▲

Long ▲

Information Content
Number ▲ ▲ ▲ ▲ ▲ ▲

Characters ▲ ▲ ▲ ▲

Letter ▲ ▲

Chinese ▲ ▲

Other Languages ▲ ▲

Information with Taint

Key Information
Converted to String

Key Information Coded
to Hex-Code

Hex-Code Transfer
to Binary Code

Binary Code Transfer
to Octal Code

Octal Code with Taint

Format Unified Information Coded

Figure 7: Key information normalization coding process.

and information coded module. And the flow chart is shown
in Figure 7. The steps of the method are as follows.

Step 1. The key information to be processed is converted into
string, which is convenient for subsequent coding.

Step 2. In order to unify the information format, all charac-
ters are converted into hex-code.

Step 3. Convert the hex-code into binary code and then turn
binary code into octal code

For the convenience of shared resources’ dynamic selec-
tion, each bit of coded information must be less than
the bandwidth of the shared resource’s threshold; besides
the modification and observation of shared resources are
a time-consuming process. Considering the time cost and
bandwidth utilization rate, Hydra-Bite chose to turn the hex-
code into octal code.

The number of bytes will increase after the information is
encoded. This paper calculated the number of bytes after the
information is encoded. When 𝑛 is a number, the number of

bytes before encoding and the number of bytes after encoding
is (1). When 𝑛 is a letter, the relationship is (2).
Size (𝑛) = 3𝑛 − ⌈𝑛3⌉ , 𝑛 is a positive integer (1)

Size (𝑛)

=
{{
{{
{

3𝑛 − ⌊𝑛3⌋ , (𝑛 = 3𝑖 + 1, 𝑛, 𝑖 are positive integers)
3𝑛 − ⌈𝑛3⌉ , (𝑛 ̸= 3𝑖 + 1, 𝑛, 𝑖 are positive integers) .

(2)

4.3. Communication Media Selection. Another problem
Hydra-Bite solved is the selection of shared resource. There
are many kinds of shared resources, and the communication
bandwidth between them is different.These shared resources
are easily occupied by irregular user operations, which leads
to low taint cleaning efficiency and the concealment of
methods.

In this section, to solve the above problems, a communi-
cationmedia selection algorithm is proposed. By dynamically
querying the occupancy status of shared resources, the
algorithm iterates the largest SRes whose occupancy status is
false. The result is the optimal shared resource.

The flow chart in Figure 8 and the pseudo code in
Algorithm 2describe themain loop of the algorithm. Firstly, a
set of “medium-state” key-value mappings is used to identify
the occupancy status of SRes. Hydra-Bite sets SRes as the
“key” and sets the occupancy status as the “value.” Algorithm
queries SRes in real time and dynamically identifies its status,
so as to realize the screening of available resources ((4)-(5)
lines of pseudo code).ThenHydra-Bite queries the SRes in the
“key-value” mapping table and recursively iterative “fastKey”
with higher bandwidth to deploy SRes efficiently ((6)-(7)
lines of pseudo code).The specific process of communication
media dynamical selection is as follows.

Step 1. Define the state list statList<SRes> and its internal
“key-value” map SRes< SRes, OccStat>, and set the names of
shared resources as the “key” and occupancy status as the
“value.” Then judge whether the statList is empty, if statList

10 Wireless Communications and Mobile Computing

(1) while statList ̸= 0 do
(2) declare fastKey : String
(3) for 𝑖 0 to statList.size() by incr do //Traverse the list of key-value maps
(4) while statList.get(i).getKey() is not occupied do

//Determine whether the “key” in the current key-value map is occupied or not
(5) Query bandwidth of statList.get(i).getKey()

in speedMap<res, bandwidth>
//Query unoccupied “key” bandwidth in the “SRes – Bandwidth” key table

(6) if bandwidth > value.speedMap(fastKey)
or value.speedMap(fastKey) = null then

(7) fastKey ← statList.get(i).getKey()
//Iteration shared resources which has higher bandwidth

(8) end if
(9) end while
(10) end for
(11) return fastKey //Return the result of the iteration
(12) end while

Algorithm 2: Main loop of optimal shared resource selection.

statList<SRes>

List is empty?

i = 0

Y

N

N

N

N

Y

Y

Y

i <= statList.size()

statList<i> is
occupied?

query the current
SRes’

larger than the
previous bandwidth

Assign the SRes to
fastKey

return fastKey

i++

s bandwidth

Figure 8: Main circulation flow chart of communication medium selection algorithm.

is empty, it indicates that the preset shared resources are all
occupied by the user operation, and the current device state
is not suitable for cleaning operation. If statList is not empty,
then the state list is traversed.

Step 2. The traversal begins with the zero value in the statList.
If the current state of SRes occupancy is true, the next value of
statList will be judged. If the current state of SRes occupancy
is false, then query the current SRes bandwidth.

Step 3. Compare the bandwidth of the current SRes with the
previous bandwidth. If the current SRes’s bandwidth is large,
assign the current bandwidth to the fastKey. If the current
bandwidth value is small, then the first SRes’s bandwidth is
still fastKey.

Step 4. Nomatter what SRes bandwidth value fastKey uses in
the previous step, continue traversing statList until the loop
end condition is satisfied.

Wireless Communications and Mobile Computing 11

1 procedure unClean(value a : String)
2 begin
3 declare str1 :String
4 declare cont : String
5 cont := a
6 str := cont
7 return str1
8 end

Code Segment 1 : Uncleaned stains
0 a cont str1

s unClean
ENTER unClean

n1
cont := b

n2
str1 := cont

n3
RETURN str1

Taint Flow IFDS Graph

Initialized
Variable

Uninitialized
Variable

Normal
Flow Taint Flow

(a)

1 procedure Clean(value b : String)
2 begin
3 declare str2 :String
4 declare shar_Res : Adapt_Res
5 shar_Res <- b
6 str2 <- shar_Res
7 return str2
8 end

Code Segment 2 : Cleaned stains
0 b shar_Res str2s Clean

ENTER Clean

n1
shar_Res <- b

n2
str2 <- shar_Res

n3
RETURN str2

Initialized
Variable

Uninitialized
Variable

Normal
Flow Taint Flow

RES
Manager

RES

RES

Service

System

RES
Filnger

RES
PolicyService

RES
HAL

RES
PolicyManager

AP-CP
Driver

CP
Modern

AP-CP
Controller

Data Processing
Flow

Framework Libraries Linux Kernel HardWare

Taint Flow IFDS Graph Data Cross-layer Processing

(b)

Figure 9: Taint analysis for differentmode of transmission. (a) Transfer information directly via variables. (b) Transfer information via covert
channel.

4.4. Taint Cleaning throughCovert Channel. In the discussion
of this section, readers need to know the definition of covert
channel in Section 3.1 [26] and the IFDS algorithm [28].

Data flowing to the lower system layer are hard to
be tracked by static taint tracking method (STT). Thus
taint carried by 𝐸𝑀ℎ cannot be tracked continuously by
STT in the process of flowing to SRes at the bottom of
operation system. The same reason can be obtained; Source
of information read by 𝐸𝑉𝑙 from SRes cannot be tracked
by STT. This communication is not allowed because the
two entities do not communicate via security policy. At
this point ⟨𝑆𝑅𝑒𝑠, 𝐸𝑀ℎ, 𝐸𝑉𝑙⟩ has formed a covert channel
communication triples.

Figure 5 shows the principle of 𝐸𝑀ℎ, 𝐸𝑉𝑙 to get rid of
the taint tracking by covert channel. The tainted data flow
is shown in red directed line in this figure. On the left
of Figure 9(a), the code segment 1 shows the process by
which 𝐸𝑀ℎ (a) propagates the information it carries through
variable cont to 𝐸𝑉𝑙 (str1). On the right of Figure 9(a),
the IFDS Graph is the results of data-flow analysis based
on graph reachability of cont and str1 using IFDS algo-
rithm [28]. In Figure 9(b) the code segment 2 shows the

communication entities b and str2 realize the purpose of
transmitting the key information by the covert channel
throughmodification and reading SRes synchronous. Hydra-
Bite needs to go through the framework layer, the library
layer, and the kernel layer until the hardware layer to modify
and read SRes. Take volume as an example; to change the
volume, the volume manager(AudioManger) needs to call
the system volume service(AudioService) to enter the volume
system(AudioSystem), which can operate the AP-CP driver
in the hardware abstraction layer (HAL). At this point STT is
difficult to tag shar Res(𝐸𝑀ℎ) and str2(𝐸𝑉𝑙).

5. Experimental Results

To verify the effectiveness of the Hydra-Bite method, this
paper verifies the threat posed by the Hydra-Bite method
to the privacy information itself through key information
acquisition experiment and demonstrates the functional
accessibility of Hydra-Bite. The experiment of run-time
overhead is used to verify that the Hydra-Bite method is
sufficient to transmit enough information in a limited time,
which demonstrates the practicability of the method in time

12 Wireless Communications and Mobile Computing

Table 2: Test equipment and corresponding information.

Serial Number Android Kernel Version Android API Market Share Device Model
1 Android4.0 15 0.40% Galaxy Note II
2 Android4.1 16 1.70% MI 2
3 Android4.3 18 0.70% MI 2S
4 Android4.4 19 12.00% MI 3
5 Android5.0 21 5.40% MI 4LTE-CU
6 Android5.1 22 19.20% MI 4-LTE
7 Android6.0 23 28.10% OPPO-A57
8 Android7.0 24 28.50% MI 6
Total — — 96.00% —

Table 3: The results of Co Apps read-receive-send K Info.

Permission Android
4.0

Android
4.1

Android
4.3

Android
4.4

Android
5.0

Android
5.1

Android
6.0

Android
7.0

SendInfo Read the Key Information
Location ▲ ▲ ▲ ▲ ▲ ▲ ‰ ‰

Device State ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

Contact ▲ ▲ ▲ ▲ ▲ ▲ ‰ ‰

SMS Message ▲ ▲ ▲ ▲ ▲ ▲ ‰ ‰

WiFi State ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

Call Log ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

GetInfo Receive the Key Information
Location ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

Device State ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

Contact ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

SMS Message ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

WiFi State ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

Call Log ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

GetInfo Send the Key Information
Internet ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

SMS ▲ ▲ ▲ ▲ ▲ ▲ ‰ ‰

overhead. The antikilling performance experiment is used to
verify that Hydra-Bite method can void existing mainstream
killing method, which demonstrates the tolerance of Hydra-
Bite method in the face of the killing method.

5.1. Key Information Acquisition Experiment

(1) Key Information Acquisition Experiment’s Set. In this
section, to evaluate the performance of capturing key infor-
mation, the Hydra-Bite method will be implemented in 8
different Android versions. Those versions are Android 4.0,
Android 4.1... Android 7.0. Experimental device models and
corresponding Android kernel version, Android API, and
market share are shown in Table 2, where the market share
uses the Google official website for week 1, 2018 statistics:
developer.android.com.

(2) Key Information Acquisition Experiment’s Results and
Discussion. App R and App S are constructed to evaluate the

Hydra-Bite’s ability of capturing key information. App R is
constructed to read and clean the key information. App S is
constructed to receive the cleaned information from App R
and send to receive devices. In the 8 versions of Android
listed in Table 2, this section tested the capturing ability of
Co Apps to six key information items listed in Table 3 which
are geographic location, device status, equipment state, etc.
Those key information items are marked by the Android
system as requiring dangerous permission to access. The
experimental results are shown in Table 3: “▲” and “‰ ,”
respectively, represent that this operation is successful and
this operation needs to be granted permission dynamically.

In Table 3, data, respectively, indicate the results of the
operation: App R to get key information, App S to receive
App R’s messages, and App S to send key information out-
side. Before Android 6.0, Co Apps can read key information
directly and send out. After Android 6.0, there are inquiries
when Co Apps reads and sends. The reason for the above
results is that the system after Android 6.0 adopts dynamic

Wireless Communications and Mobile Computing 13

Bytes

0

0.5

1

1.5

Ti
m

e (
s)

27164

Alarm Volume
System Log
Screen Brightness

10
1

10
2

10
3

10
0

Figure 10: Overhead of taint cleaning.

permission granting mechanism and lets the user decide
whether or not to grant app permission at run-time.

5.2. Running Time Overhead Performance Experiment

(1) Run-Time Overhead Performance Experiment’s Settings.
Right in the Hydra-Bite method 𝐸𝑀ℎ the taint cleaning
operation is carried out via covert channels, where access to
the underlying resource is required twice per byte operation,
which can be time-consuming. This paper illustrates the
practicality of the Hydra-Bite approach in terms of time cost
by examining the time overhead of the taint cleaning process.

In the experiment of running overhead performance, this
section uses the device model MI NOTE to test the time
overhead of three covert channels which are “alarm volume,”
“screen brightness,” and “system log.”The device is equipped
with Android 6.0 system and other hardware parameters
that affect performance are listed below. The experimental
device uses a 4-core CPU, whose basic frequency is 2.45GHz.
The running memory of device is 3.00GB. And the kernel’s
version is 3.4.0-gf4b741d-00639-ge918701.

(2) Run-TimeOverhead Performance Experiment’s Results and
Discussion. Run-time overhead performance experiment’s
results are shown in Figure 10. The results of each covert
channel are marked with different symbols and colors. The
green dotted line represents the amount of data that can be
cleaned within a second.

It can be seen that when coded information has the
number of bytes, system log covert channel’s time overhead
is the most expensive, because Android system processes
generate a large number of logs. Filtering out encoded infor-
mation from these logs is time-consuming. Screen brightness
covert channel time overhead is minimum, because the value
access and the brightness change are completed by different
systemmodules, and this “separation”makes it easier to avoid

Table 4: Part of antivirus engine in VirusTotal.

Serial Number Antivirus Engine Country
1 Alibaba CHN
2 Antiy-AVL CHN
3 Baidu CHN
4 BitDefender ROU
5 Arcabit POL
6 CAT-QuickHeal IND
7 Comodo USA
8 Jiangmin CHN
9 Kaspersky USA
10 Kingsoft CHN
11 McAfee USA
12 Microsoft USA
13 Qihoo-360 CHN

Table 5: Source of malicious sample.

Serial Number Origin Country Quantity
1 VirousShare USA 109
2 MalGenome USA 73
3 GitHub USA 26
4 zeltser.com USA 19
5 bbs.pediy.com CHN 17
6 bbs.kafan.cn CHN 15
7 Google Group- USA 14
9 bbs.duba.net CHN 14
10 52pojie.cn CHN 13
11 bbs.mumayi.net CHN 12
12 Others — 26
— Total — 338

waiting for hardware response. Cleaning rates of the above
three covert channels are 78B/s, 280B/s, and 5.5KB/s, which
are enough to transmit a certain amount of information.

5.3. Permission Set Split Effect Experiment

(1) Permission Set Split Effect Experiment’s Setup. In this part,
VirusTotal platform is used as an effective detection tool for
collaborative application group.Theplatform is amultiengine
file scanning tool created by Sistemas in 2004 [21]. And
VirusTotal detects uploaded files through multiple security
engines to determine whether there is malicious behavior.
Some of the antivirus engines used by VirusTotal are listed
in Table 4.

This paper chooses 10 Apps to be split from the malicious
App set from Table 5 as samples. These samples all have
redundancy of permission, and they apply multiple key
information read permissions and sending class permissions.
The sending class permissions, read class permissions, and
VirusTotal detection rates of samples are listed in Tables 6,
7, and 8, respectively. “▲” indicates the samples apply for the

14 Wireless Communications and Mobile Computing

Table 6: Malicious sample’s permission attributes for the transfer category.

Number of
Sample MD5 Value of Sample Internet SEND SMS CALL PHONE

Mal 1 744c9f9ef5a3ad2559174523f1fd664d ▲ ▲ ▲

Mal 2 844bc220827f50539c67d09c3998a0da ▲ ▲ ◼
Mal 3 899c92f0db1ec69e091795f4ddd251df ▲ ▲ ▲

Mal 4 4914c06560cdc3dfaca7c81eea9a33eb ▲ ◼ ◼
Mal 5 5192ad05597e7a148f642be43f6441f6 ▲ ◼ ▲

Mal 6 5895bcd066abf6100a37a25c0c1290a5 ▲ ▲ ◼
Mal 7 8947eae5c65df02d9c538b12ddaf636f ▲ ◼ ▲

Mal 8 2908873c8ab99faa94ffe596499bd8f9 ▲ ◼ ▲

Mal 9 4884112ac7e599bd4dc20ccc91ce870c ▲ ▲ ◼
Mal 10 375151412aff0b21d72207f08665d16d ▲ ▲ ▲

Table 7: Malicious sample’s permission attributes for the read category.

Number of
Sample MD5 Value of Sample Fine Location Device State Contacts SMS content WiFi State Call Log

Mal 1 744c9f9ef5a3ad2559174523f1fd664d ▲ ▲ ◼ ▲ ▲ ▲

Mal 2 844bc220827f50539c67d09c3998a0da ▲ ▲ ▲ ▲ ◼ ▲

Mal 3 899c92f0db1ec69e091795f4ddd251df ▲ ▲ ◼ ▲ ▲ ▲

Mal 4 4914c06560cdc3dfaca7c81eea9a33eb ◼ ▲ ▲ ▲ ▲ ▲

Mal 5 5192ad05597e7a148f642be43f6441f6 ▲ ▲ ▲ ▲ ▲ ▲

Mal 6 5895bcd066abf6100a37a25c0c1290a5 ▲ ▲ ▲ ◼ ▲ ▲

Mal 7 8947eae5c65df02d9c538b12ddaf636f ◼ ▲ ▲ ▲ ◼ ◼
Mal 8 2908873c8ab99faa94ffe596499bd8f9 ▲ ▲ ▲ ◼ ▲ ◼
Mal 9 4884112ac7e599bd4dc20ccc91ce870c ◼ ▲ ▲ ▲ ▲ ▲

Mal 10 375151412aff0b21d72207f08665d16d ▲ ▲ ▲ ▲ ◼ ▲

Table 8: Detection results of samples in VirusTotal platform.

Number of
Sample MD5 Value of Sample VirusTotal Detection Result VirusTotal Alarm Rate

Mal 1 744c9f9ef5a3ad2559174523f1fd664d 33/58 52.34%
Mal 2 844bc220827f50539c67d09c3998a0da 33/57 57.89%
Mal 3 899c92f0db1ec69e091795f4ddd251df 33/55 60.00%
Mal 4 4914c06560cdc3dfaca7c81eea9a33eb 37/57 64.91%
Mal 5 5192ad05597e7a148f642be43f6441f6 49/62 79.03%
Mal 6 5895bcd066abf6100a37a25c0c1290a5 49/62 79.03%
Mal 7 8947eae5c65df02d9c538b12ddaf636f 45/62 72.58%
Mal 8 2908873c8ab99faa94ffe596499bd8f9 32/54 59.26%
Mal 9 4884112ac7e599bd4dc20ccc91ce870c 32/57 56.14%
Mal 10 375151412aff0b21d72207f08665d16d 42/56 75.00%

permission and “◼” indicates the samples do not apply for
the permission. MD5 values for the corresponding samples
on the VirusTotal platform are also listed.

Hydra-Bite splits the permission set according to whether
there is redundancy or whether it is classified or not and uses
“ NE NTS, E NTS, NE TS, E TS” markers in the suffix.
The meaning is shown in Table 9.

(2) Permission Set Split Effect Experiment’s Results and Dis-
cussion. The experimental results of cooperative application
group’s antikilling performance evaluation are shown in
Figure 11. The detection result in Figure 11 refers to the
average alarm rate of Apps in the application group. The
results of each sample are marked with different symbols
and colors. Four types of results are separated from the

Wireless Communications and Mobile Computing 15

Table 9: The meaning of the suffix of the split result.

Serial Number Marker Meaning
1 NE NTS No Elimination of Redundancy & No Split by Taxonomy
2 E NTS Elimination of Redundancy & No Split by Taxonomy
3 NE TS No Elimination of Redundancy & Split by Taxonomy
4 E TS Elimination of Redundancy & Split by Taxonomy

_NE_NTE _E_NTS _NE_TS _E_TS
The Degree of Split

Pe
rc

en
ta

ge
 o

f A
la

rm

0.05

0.3

0.5

Mal_1
Mal_2
Mal_3
Mal_4
Mal_5

Mal_6
Mal_7
Mal_8
Mal_9
Mal_10

0

0.2

0.4

0.6

0.8

Figure 11: Alarm rate of different degree of resolution for samples.

blue vertical dotted lines. The red dotted line represents the
threshold of different split methods. The following can be
seen:

(1) The permission set is separately redundant or split by
taxonomy, which can improve the antikilling performance of
cooperative app group.

(2) The permission set is redundant and split by tax-
onomy, which can get the best antikilling performance of
cooperative app group.

(3) The permission set is separately split by taxonomy
which will enhance antikilling performance more than the
result produced by being separately redundant.

The reason is that the antivirus engines are sensitive to
potential information disclosure. Through simple elimina-
tion of permission set’s redundancy, individual App within
the cooperative application group reconstructed by Hydra-
Bite, there is still a potential risk of information disclosure
for the Apps.

5.4. Antikilling Performance Experiment

(1) Antikilling Performance Experiment’s Setup. In the
antikilling performance experiment, our experimental
samples are divided into 6 parts:

(1)Malware samples are the same as the contents of Tables
6–8.

(2) DroidBench samples are randomly selected from the
DroidBench test set, and amicrobenchmark suite is proposed
and has been described in detail in the literature [9].

(3) Samples without taint clean and transmission directly:
the sample set is shown in the 1st category, Table 10. After
reading the key information, the samples do not clean the
taint tagged by security methods. They send information
to the external device directly through the corresponding
external transmission permission. There is not collaboration
between this kind of samples, so the column IPC is filled with
“◼.”

(4) Sampleswith taint clean and transmission directly: the
sample set is shown in the 2nd category, Table 10, adding a
taint cleaning module to the previous samples. Three covert
channels of volume, system log, and screen brightness are
used to clean the taint.They send information to the external
device directly with no IPC between them.

(5) Cooperative application samples without taint clean-
ing. The sample set is shown in the 3rd category, Table 10. In
1st category, the samples’ permission sets are split and refac-
tored to this sample set. The App in the group communicates
directly with Intent. “ R” suffix represents an application that
owns information read permissions. “ S” suffix represents an
application that owns information send permissions.

(6) Cooperative application samples with taint cleaning:
the sample set is shown in the 4th category, Table 10, adding
a taint cleaning module to the previous samples.

Experimental environment is set as follows:
(1) Android 6.0 Device. The experimental sample sets are

installed in the device described in Section 5.2 (1) to test
whether the samples can be installed smoothly.

(2) VirusTotal Platform. The VirusTotal platform is men-
tioned in Table 6 and the literature [24]. This section uses
VirusTotal to test the samples’ antivirus performance.

(3) Androguard [27]. Carry out “permission-API” detec-
tion, and report dangerous samples of API calling combina-
tion. The Python version that builds Androguard is 2.7.10,
and the mapping file is provided by PScout [13]. The running
environment of Androguard: Androguard runs in Win 10
Professional Edition with the register width of 64 bits. The
necessary Python, JDK, and SDK version are 2.7.10, 1.8, and
18, respectively.

(4) FlowDroid [9]. This tool’s running environment is
listed below. The system environment for the tool is Win 10
Professional Edition, with 64 bits’ register width. In the sys-
tem, the JDK version and Android API are 1.8. Besides, some
of the official FlowDroid Support packages are unavailable

16 Wireless Communications and Mobile Computing

Table 10: 3–6 sample sets’ attribute.

Serial Number
of Type Type of Sample Name of Sample Target Information IPC Transmission

Mode Sending Mode

1
Non-Cooperative Capture1 IMEI Number ◼ SMS Message

Transfer Case without Capture2 Location ◼ Internet
Taint Cleaned Capture3 Contact ◼ SMS Message

2
Non-Cooperative SoundClean IMEI Number ◼ SMS Message
Transfer Case with LogClean Location ◼ Internet
Taint Cleaned ScreenClean Contact ◼ SMS Message

3

NSound R IMEI Number Intent ◼
Sound S ◼ ◼ SMS Message

Co Apps NLog R Location Intent ◼
without Taint Cleaned Log S ◼ ◼ Internet

NScreen R Contact Intent ◼
Screen S ◼ ◼ SMS Message

4

CSound R IMEI Number Intent ◼
Sound S ◼ ◼ SMS Message

Co Apps CLog R Location Intent ◼
with Taint Cleaned Log S ◼ ◼ Internet

CScreen R Contact Intent ◼
Screen S ◼ ◼ SMS Message

due to an update or lack of resources. This paper changes all
slf4j package provided officially into a 1.8.0 beta version.

(2) Antikilling Performance Experiment’s Results and Discus-
sions.To evaluate the surviving performance of Hydra-Bite in
the real device, antivirus engine, “permission-API” mapping
detection, and taint tracking detection, this section uses the
above settings in Section 5.4 (1) to carry out experiments, the
results are shown in Table 11. The meanings of each column
in Table 11 are as follows.

“Source” column records the number of samples’ infor-
mation read permissions and APIs.

“Sink” column records the number of samples’ transmis-
sion permissions and APIs.

“Android 6.0” column records samples and whether they
triggered alarm in the installation experiment.

“VirusTotal” column records samples’ alarm number on
the VirusTotal platform and the hole number of participating
engines.

“Androguard” and “FlowDroid” columns record exper-
iment results by the two tools. The symbols’ meanings that
appear in Table 11 are described in the following.

“▲”: Detect the insecure object and alert.
“▲”: false positive, alert for an object that meets the

security rules.
“‰”: Do not detect the insecure object.
“‰”: Detect the potential insecure object and do not alert,

because there is no object to cooperate with it.
This section analyzes the experimental results in Table 11

as follows:
(1) Malware Samples. All these samples trigger alerts in

the Android6.0 installation experiment. And their alarm rate

in the VirusTotal platform is higher than other sample sets.
Because of packers, obfuscation technology, Androguard and
FlowDroid cannot analyze them.

(2) DroidBench Samples. With the obvious action of
capturing key information, this sample set has a high alarm
rate in VirusTotal platform and low successful installation
rate in Android system.

(3) Samples without Taint Clean and Transmission
Directly.The samples do not clean the taint tagged by security
methods. And they send information to the external device
directly. The above behavior triggers more alerts on the
VirusTotal platform, with an average alarm rate of 29.70%.
“Androguard” and “FlowDroid” also generate alarms for
them.

(4) Samples with Taint Clean and Transmission Directly.
Because the taint is cleaned, FlowDroid does not produce an
alarm for it.The alarm rate triggered by this group of samples
on the VirusTotal platform has been reduced, average alarm
rate is 15.04%. And Androguard generates alarms for them
because of no collaborative application group.

(5) Cooperative Application Samples without Taint Clean-
ing. Because the taint is not cleaned, FlowDroid produce an
alarm for the information reading App.

(6) Cooperative Application Samples with Taint Cleaning.
“Androguard” and “FlowDroid” do not generate alarms for
this group of samples, because of the cooperative application
and the cleaned taint. Moreover, the alarm rate caused by
this set of samples is significantly reduced on the VirusTotal
platform, and the average alarm rate is 5.85%.

It can be seen that, in the FlowDroid, the Source point
of the send App are detected, but the FlowDroid does not
alarm it.The reason is that it receives the informationwithout

Wireless Communications and Mobile Computing 17

Table 11: Test results of anti-killing performance.

Sample Origin Test Case

Source
(Permission/
Sensitive

API)

Sink
(Permission/
Sensitive

API)

Android 6.0
Warning

(T/F)

VirusTotal
[21]

(Warnings/
Detector)

Androguard [22]
(Total

Permissions/
Sensitive APIs)

FlowDroid [9]
(Source/Sink)

Malicious Sample
(Table 5)

Mal 1 5/◼ 3/◼ T 33/58 ◼ ◼
Mal 2 5/◼ 2/◼ T 33/57 ◼ ◼
Mal 3 5/◼ 3/◼ T 33/55 ◼ ◼
Mal 4 5/◼ 1/◼ T 37/57 ◼ ◼
Mal 5 6/◼ 2/◼ T 49/62 ◼ ◼
Mal 6 5/◼ 2/◼ T 49/62 ◼ ◼
Mal 7 3/◼ 2/◼ T 45/62 ◼ ◼
Mal 8 4/◼ 2/◼ T 32/54 ◼ ◼
Mal 9 5/◼ 2/◼ T 32/57 ◼ ◼
Mal 10 5/◼ 3/◼ T 42/56 ◼ ◼

DroidBench Test
Case [9]

Merge1 1/1 1/1 T 27/54 4/▲ ▲ ▲/▲
DirectLeak1 1/1 1/1 T 27/55 4/▲ ▲ ▲, ▲/▲
ArrayAccess1 1/1 1/1 F 28/61 4/▲ ▲ ▲, ▲/▲

Button3 1/1 1/1 T 9/57 5/▲ ▲ ▲/‰
ContentProvider1 1/1 1/1 T 25/55 4/▲ ▲ ▲ ∗19, ▲/▲, ▲
FieldSensitivity1 1/1 1/1 F 23/54 4/▲ ▲ ▲, ▲/▲

Loop1 1/1 1/1 T 33/59 4/▲ ▲ ▲, ▲/▲
ImplicitFlow1 1/1 0 F 12/57 2/▲ ‰ ▲ ▲/▲

ActivityLifecycle2 1/1 1/1 T 32/62 4/▲ ▲ ▲, ▲/▲
Reflection1 1/1 1/1 T 28/55 4/▲ ▲ ▲ ∗2, ▲/▲
Echoer 1/1 1/1 T 17/62 3/▲ ‰ ▲/▲

IntentSink2 1/1 1/1 T 30/61 2/▲ ▲ ▲ ∗3, ▲/▲, ▲
EventOrdering1 1/1 1/1 F 28/59 6/▲ ▲ ▲, ▲/▲

Executor1 1/1 1/1 T 21/58 4/▲ ‰ ▲/‰
JavaThread2 1/1 1/1 F 22/60 4/▲ ▲ ▲, ▲/▲
AsyncTask1 1/1 1/1 T 18/55 3/▲ ▲ ∗2, ▲/▲

Non-Cooperative
Transfer Case
without Taint
Cleaned (Table 10)

Capture1 1/1 1/1 F 14/59 2/▲ ▲ ▲/▲
Capture2 1/1 1/1 F 21/60 2/▲ ▲ ▲/▲

Capture3 1/1 1/1 F 17/56 2/▲ ▲ ▲/▲

Non-Cooperative
Transfer Case
(Table 10)

SoundClean 1/1 1/1 F 10/62 4/▲ ▲ ‰ /‰
LogClean 1/1 1/1 F 11/61 6/▲ ▲ ‰ /‰

ScreenClean 1/1 1/1 F 13/62 5/▲ ▲ ‰ /‰

Co Apps without
Taint Cleaned
(Table 10)

NSound R 1/1 1/1 F 2/62 3/‰ ▲/▲
Sound S 1/1 1/1 F 5/60 2/‰ ‰ /‰
NLog R 1/1 1/1 F 2/59 4/‰ ▲/▲
Log S 1/1 1/1 F 3/62 2/‰ ‰ /‰

NScreen R 1/1 1/1 F 3/63 4/‰ ▲/▲
Screen S 1/1 1/1 F 6/57 2/‰ ‰ /‰

Co Apps with Taint
Cleaned (Table 10)

CSound R 1/1 1/1 F 2/62 3/‰ ‰ /‰
Sound S 1/1 1/1 F 5/60 2/‰ ‰ /‰
CLog R 1/1 1/1 F 2/59 4/‰ ‰ /‰
Log S 1/1 1/1 F 3/62 2/‰ ‰ /‰

CScreen R 1/1 1/1 F 3/63 4/‰ ‰ /‰
Screen S 1/1 1/1 F 6/57 2/‰ ‰ /‰

18 Wireless Communications and Mobile Computing

taint and sends it directly. Therefore Hydra-Bite can clean
taint which is tagged by FlowDroid, it can resist detection
tools based on “permission-API,” and it has a high successful
installation rate and a low VirusTotal alarm rate, and the
results showed that Hydra-Bite method has enough threat to
user privacy in antikilling performance.

6. Conclusion

In this paper, the key information disclosure through Hydra-
Bite privacy leak path is researched. The purpose is to alert
researchers to promote the progress of security work against
collusion attacks and taint cleaning. The Hydra-Bite method
is a malicious application variant that threatens user privacy
in the context of application-scale operations. Hydra-Bite
splits and reorganizes the traditional privacy stealing Trojans
into a collaborative application group through the permission
split module and uses the taint cleaning module to wash
the taint tagged by the static taint tracking method on the
communication entity which carrying the key information
through the Android covert channel sends the cleaned key
information to other devices through the collaborate sending
module.The principle analysis and experimental results show
that Hydra-Bite is less controlled to current security mecha-
nisms in terms of performance and antikilling performance
compared to traditional privacy stealing Trojans. Our next
study will focus on improving existing static taint tracking
mechanisms to tag key information with “more viscous”
taints.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work presented in this paper is supported by the
National Natural Science Foundation of China (nos.
U1636219, 61602508, 61772549, U1736214, and 61572052), the
National Key R&D Program of China (nos. 2016YFB0801303,
2016QY01W0105), Plan for Scientific Innovation Talent of
Henan Province (no. 2018JR0018), and the Key Technologies
R&D Program of Henan Province (no. 162102210032).

References

[1] M. Alazab, V. Monsamy, L. Batten, R. Tian, and P. Lantz,
“Analysis of malicious and benign android applications,” in
Proceedings of the 32nd IEEE International Conference on
Distributed Computing Systems Workshops (ICDCSW ’12), pp.
608–616, June 2012.

[2] H. L.Thanh, “Analysis of malware families on android mobiles:
detection characteristics recognizable by ordinary phone users
and how to fix it,” Journal of Information Security, vol. 4, no. 4,
pp. 213–224, 2013.

[3] A. J. Alzahrani and A. A. Ghorbani, “SMS mobile botnet
detection using a multi-agent system,” in Proceedings of the the
1st InternationalWorkshop onAgents andCyber Security, pp. 1–8,
Paris, France, May 2014.

[4] A. Castillo C, “Android malware past, present, and future,”
White Paper of McAfee Mobile Security Working Group, 2011.

[5] R. Schlegel, K. Zhang, X. Zhou et al., “Soundcomber: a stealthy
and context-aware sound Trojan for smartphones,” in Proceed-
ings of the Network and Distributed System Symposium (NDSS
’11), pp. 17–33, 2011.

[6] F. Zhao, W. Shi, Y. Gan, Z. Peng, and X. Luo, “A localization
and tracking scheme for target gangs based on big data ofWi-Fi
locations,” Cluster Computing, vol. 3, pp. 1–12, 2018.

[7] W. Q. Shi, X. Luo, F. Zhao, Z. Peng, Q. Cheng, and Y. Gan,
“Geolocating a WeChat user based on the relation between
reported and actual distance,” International Journal of Dis-
tributed Sensor Networks, vol. 4, no. 14, 2018.

[8] W. Y. Liu, X. Y. Luo, Y. M. Liu et al., “Localization algorithm
of indoor Wi-Fi access points based on signal strength relative
relationship and region division,” Computers, Materials & Con-
tinua, vol. 55, no. 1, pp. 71–93, 2018.

[9] S. Arzt, S. Rasthofer, C. Fritz et al., “Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 259–
269, 2014.

[10] W. Enck,M.Ongtang, and P.McDaniel, “On lightweightmobile
phone application certification,” in Proceedings of 16th ACM
Conference on Computer and Communications Security, pp.
235–245, ACM, November 2009.

[11] M. Nauman, S. Khan, and X. Zhang, “Apex: extending Android
permission model and enforcement with user-defined runtime
constraints,” in Proceedings of the 5th ACM Symposium on
Information, Computer and Communication Security (ASIACCS
’10), pp. 328–332, Beijing, China, April 2010.

[12] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D.
Wagner, “Android permissions: user attention, comprehension,
and behavior,” in Proceedings of the 8th Symposium on Usable
Privacy and Security (SOUPS ’12), Washington, DC, USA, July
2012.

[13] K.W. Y. Au, Y. F. Zhou, Z. Huang, andD. Lie, “PScout: analyzing
the Android permission specification,” in Proceedings of the
ACM Conference on Computer and Communications Security
(CCS ’12), pp. 217–228, ACM, October 2012.

[14] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in Android,” in Proceedings
of the 9th International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys ’11), pp. 239–252, July 2011.

[15] P. P. F. Chan, L. C. K. Hui, and S. M. Yiu, “DroidChecker: ana-
lyzing android applications for capability leak,” in Proceedings of
the 5th ACMConference on Security and Privacy inWireless and
Mobile Networks (WiSec ’12), pp. 125–136, April 2012.

[16] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically
vetting Android apps for component hijacking vulnerabilities,”
in Proceedings of the ACM Conference on Computer and Com-
munications Security (CCS ’12), pp. 229–240, October 2012.

[17] H. Bagheri, A. Sadeghi, J. Garcia, and S.Malek, “Covert: compo-
sitional analysis of Android inter-app permission leakage,” IEEE
Transactions on Software Engineering, vol. 41, no. 9, pp. 866–886,
2015.

[18] Y. Y. Ma, X. Y. Luo, X. Y. Li, Z. Bao, and Y. Zhang, “Selection
of rich model steganalysis features based on decision rough set

Wireless Communications and Mobile Computing 19

𝛼-positive region reduction,” IEEE Transactions on Circuits and
Systems for Video Technology, 2018.

[19] Y. Zhang, C.Qin,W.M. Zhang, F. Liu, andX. Luo, “On the fault-
tolerant performance for a class of robust image steganography,”
Signal Processing, vol. 146, pp. 99–111, 2018.

[20] X. Y. Luo, X. F. Song, X. Y. Li et al., “Steganalysis of HUGO
steganography based on parameter recognition of syndrome-
trellis-codes,”Multimedia Tools and Applications, vol. 75, no. 21,
pp. 13557–13583, 2016.

[21] V. Total, “VirusTotal-free online virus,” Malware and URL
Scanner, vol. 15, no. 2, pp. 226–241, 2012.

[22] Androguard, 2013, https://github.com/androguard/androguard.
[23] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun, “Anal-

ysis of the communication between colluding applications on
modern Smartphones,” in Proceedings of the Proceeding of
the 28th Annual Computer Security Applications Conference
(ACSAC ’12), pp. 51–60, New York, NY, USA, December 2012.

[24] E.Miluzzo,M. Jadliwala, S. Balakrishnan et al., “Tapprints: your
finger taps have fingerprints,” in Proceedings of the International
Conference on Mobile Systems, Applications, and Services, pp.
323–336, 2012.

[25] A. Maiti, M. Jadliwala, J. He et al., “Side-channel inference
attacks on mobile keypads using smartwatches,” https://arxiv
.org/abs/1710.03656.

[26] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A. Sadeghi,
and B. Shastry, “Practical and lightweight domain isolation
on Android,” in Proceedings of the the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, p. 51,
Chicago, Ill, USA, October 2011.

[27] R. A. Kemmerer, “Shared resource matrix methodology: an
approach to identifying storage and timing channels,” ACM
Transactions on Computer Systems, vol. 1, no. 3, pp. 256–277,
1983.

[28] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of the
22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 49–61, January 1995.

https://github.com/androguard/androguard
https://arxiv.org/abs/1710.03656
https://arxiv.org/abs/1710.03656

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

