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In a more andmore urbanizedWorld, the so-called Smart Cities need to be driven by the principles of efficiency and sustainability.
Information and Communications Technologies and, in particular, the Internet of Things will play a key role on this, since they
will allow monitoring and optimizing all the municipal services that exist and shall exist. People flow monitoring stands out in this
context due to its wide range of applications, spanning from monitoring transport infrastructure to physical security applications.
There are different techniques to perform people flow monitoring, presenting pros and cons, as in any other engineering problem.
Typically, the options that provide themost accurate results are also themost expensive ones, whereas there are caseswhere presence
detection in given areas is enough and cost is a limiting factor.Themain goal of this paper is to prove that a minimal deployment of
sensors, combined with the adequate analysis and visualization algorithms, can render useful results. In order to achieve this goal, a
dataset is usedwith 1-year data froma real infrastructure composed of 9Wi-Fi tracking sensors deployed in the Telecommunications
Engineering School of Universidad Politécnica de Madrid, which is visited by 4000 people daily and covers 1.8 hectares. The data
analysis includes time and occupancy, position of people, and identification of common behaviors, as well as a comparison of
the accuracy of the considered solution with actual data and a video monitoring system available at the library of the school. The
obtained insights can be used for optimizing themanagement and operation of the school, aswell as for other similar infrastructures
and, in general, for other kind of applications which require not very accurate people flow monitoring at low cost.

1. Introduction

The World is going tremendously urbanized. Based on the
latest revision on the World urbanization prospects from
the United Nations (UN) [1], nowadays 55% of the global
population live in urban areas and such a percentage is
expected to increase up to 68% by 2050. In addition, the
number of so-called megacities (cities with more than 10
million inhabitants) around the World has gone from 10, in
1990, to 28, in 2014, and it is estimated that there will be 43 in
2030.

As a result, efficiency and sustainability become the key
principles for the so-called Smart Cities, so that they can
accommodate such an amount of inhabitants guaranteeing
high levels of comfort. Information and Communication
Technologies (ICT) and, in particular, the new paradigm of

the Internet of Things (IoT) are key for Smart Cities in that
they will allow monitoring city services, ranging from traffic
management to waste collection, and running optimizations
based on the huge amount of gathered data.

One of the main challenges when considering deploying
new Smart City services is that there are many platforms,
technologies, and protocols available and that they typically
involve a huge number of devices, so the associated invest-
ment is remarkable. Therefore, it is especially interesting to
have testbeds available for experimentation, but they need
to be representative enough so that the conclusions obtained
from them are significant. In this context, university cam-
puses appear as ideal places for experimenting and evaluating
innovative proposals that can later be scaled to the cities
where they are typically integrated, thus arising the concept
of living lab [2, 3], which is already a reality in Universities
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Figure 1: Summary of the sensors deployed in Smart CEI Moncloa (at July 2018). Figure 1 is reproduced from [8] (2017).

around the World, such as Delft University [4], University of
British Columbia [5], or Harvard University [6].

Universidad Politécnica de Madrid and, in particular,
the Campus of International Excellence (CEI) of Moncloa
presents such a great potential in this sense. This campus
is integrated in the metropolitan area of Madrid, spreads
across 5.5 Km2, and counts on a daily flow that goes up to
120,000 people (which is comparable or even greater than
many Spanish provincial capitals).

In order to make the most out of this potential, within
the UPMCity of the Future initiative [7] the IoT platform for
Smart City services experimentation Smart CEIMoncloa was
deployed [8].This platform offers currently two pilot services,
namely, environmental monitoring and people flow moni-
toring. The devices used for the environmental monitoring
service are based on Arduino and collect measurements of
temperature, humidity, luminosity, noise, CO, and NO2. The
devices used for the people flowmonitoring service are based
on Raspberry Pi and perform Wi-Fi tracking. As Figure 1
shows, for the time being there are 77 devices deployed across
the 13 engineering schools of the CEI Moncloa, 52 for the
people flowmonitoring service, and 25 for the environmental
monitoring service. The platform is up and running since
2016, so there is plenty of data available to be analyzed.

This paper focuses indeed on analyzing the people
flow monitoring data gathered in the Telecommunications
Engineering School (ETSIT) of UPM during 2016. People
flow monitoring represents a hot topic nowadays because it
presents such a wide range of applications in Smart Cities,
spanning from monitoring public transport infrastructure
(e.g., metro, airports), private transport infrastructure (e.g.,
highways), overcrowded scenarios (e.g., demonstrations,
concerts), or customer behaviors (e.g., malls), to physical
security applications (e.g., presence of unauthorized people
in restricted areas). For these purposes, in many cases it is
enough with providing presence detection in given areas,

instead of more sophisticated and costly solutions to perform
very accurate location, which require fingerprinting and very
dense sensor deployments gathering data at very high fre-
quencies. This is the case indeed of the people flow monitor-
ing service considered in this paper, which is based on a few
low-cost devices that upload data every 15 minutes and that
are independent from the institutional network, which allows
tracking the users connected to different Wi-Fi networks, if
they spatially coexist, or even not connected to any.

Hence, as Figure 1 shows, in the ETSIT, which is one of the
biggest schools in the CEI Moncloa, visited by 4000 people
daily (3000 students, 500 professors and researchers, and 500
admin andmaintenance staff, approximately), there are 9Wi-
Fi sensors covering 1.8 hectares of indoor areas. Figure 2
shows the location of these sensors. Dark areas correspond
to the floor of the buildings of the ETSIT (buildings A, B,
C, and D). There is a Wi-Fi sensor at the entry of each
building. In addition, there are also sensors in the library
(4) and student tables (3), as they are large spaces usually
crowded by students. As it can be also seen, the area covered
by each sensor varies, some of them covering especially large
areas, such as the ones in the library (1300m2) or in the main
entrance (1270m2).

This paper aims to explore the useful insights that can
be obtained from such a cost-effective solution for people
flowmonitoring.Thus, the paper performs a detailed analysis
of the people flow monitoring data, including a temporal
analysis, a spatial analysis, and an activity pattern analysis,
as well as a comparison of the performance of this solution
with a much more expensive one based on video monitoring
at the library of the ETSIT. These analyses can be used for
optimizing the management and operation of the school,
from the work shifts to the proper operation of the lighting
to reduce energy consumption and so the carbon footprint.
The conclusions can be valid for similar infrastructures, but
are also relevant in general for municipalities which will not
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Figure 2: Summary of the Wi-Fi sensors deployed in the Telecommunication Engineering School.The map on the left-hand side also shows
the location of (𝛼) offices and labs; (𝛽) classrooms; (𝛾) cantina.

typically be able to afford accurate and costly location systems
all over the city.

The rest of the paper is structured as follows. Section 2
presents an exhaustive analysis of techniques currently used
for monitoring people flows and identifying behaviors. Sec-
tion 3 outlines the main characteristics of the sensor infras-
tructure and the IoT platform that collects the data analyzed
in this paper. After a brief sketch of the methodology used
in this work, Section 4 presents the analysis performed on
data with respect to time and occupancy, position of people,
and identification of common behaviors or activity patterns.
Then, Section 5 describes the data available as ground truth
and the validation of the analyzed system. Finally, Section 6
summarizes the main findings of the analysis and presents
some ideas for building similar systems.

2. Related Work

People flow monitoring has always been a useful piece
of information. Knowing a person’s or a mass of people’s
position or trajectory allows for the creation of a wide range
of different applications, such as crowd monitoring in events
or concerts, the discovery of the most common routes in
shopping malls, analysis of space usage in public or private
infrastructures or security against unusual activities (e.g.,
presence of unauthorized people in restricted areas). In the
last decades, the spread of communication technologies (e.g.,
the popularization of Wi-Fi networks or the use of smart-
phones) has become a vast source of data which allows for
the improvement or even the automatization of techniques to
monitor people.

In most of the cases, positioning in outdoors scenarios
can be solved using Global Positioning System (GPS), but it
typically presents limitations in terms of accuracy in indoor

scenarios [9]. Thus, indoor location or pedestrian location
has been a key research topic in the last years. Some works
aim to discover, with a high precision, how people move
inside buildings by using the mobile network or personal
area networks, e.g., [10]. These systems try to help users
to discover their path in a building, measure the length
of their stay in a mall for commercial purposes, or simply
ease people movements by removing obstacles. The most
common technologies used in recent years to achieve this
kind of pedestrian tracking have been video camera systems,
radiofrequency signals, Bluetooth, smartphones sensors, and
Wi-Fi networks. These tracking methods can be classified
based on two aspects:

(i) Whether they need user intervention, like the usage
of a smartphone application or a specific hardware,
which would be classified as active, or do not need the
cooperation of the users to work, i.e., passive systems.

(ii) Whether or not a sensor network deployment is
needed (e.g., by using the existing Wi-Fi access points
network).

The usage of video camera systems and computer vision
presents some advantages, such as the fact that it is a passive
system, which can use existing camera network deployments
or provides almost real time feedback. However, it also
presents many drawbacks, although there are works that
propose ways to mitigate these effects [11, 12], such as its
dependency on visual aspects (e.g., poor lighting, obstacles),
its low scalability due to deployment complexity and costs,
the difficulty of fusing multiple video streams to provide
automatic monitoring, or the difficulty of tracking users
individually. Reference [13] provides a survey on computer
vision techniques for the specific case of crowd scene analysis,
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Table 1: Summary of the state of the art of people flow monitoring techniques which are not based on Wi-Fi tracking (P/A stands for
Passive/Active).

Technology Ref Year Scenario Application P/A Own
deployment

Video camera &
Computer Vision [13] 2015 Indoor

Outdoor Crowd scene analysis P No

RF [14–16]
2013
2014
2015

Indoor Short range movements (1-10 m) with high
accuracy (e.g., elderly care, baby care) P Yes

Cellular networks [18] 2011 Indoor
Outdoor

Analyze people flow in a suburban area new
NYC with accuracy around hundreds of
meters

P No

GPS [19] 2015 Outdoor Prevent critical situations in overcrowded
scenarios (e.g., concerts) A No

Smartphone sensors
(e.g., accelerometer) [20] 2018 Indoor PDR. Track individual pedestrian A Depends

Bluetooth [21] 2017 Indoor Monitor people flow (comparing Wi-Fi with
Bluetooth) A Yes

covering from existing models and popular algorithms to
current research problems and trends.

People localization and tracking based on radiofrequency
(RF) measurements has been also widely addressed in liter-
ature. References [14–16] represent some recent remarkable
research work on this topic. These solutions are based on
antennas that transmit RF signals and are able to locate and
track people based on body radio reflections. In consequence,
they can be classified as passive systems. They provide very
accurate results, allowing tracking forward and backward
movements or body part movements (including breathing),
and are able to even track several people under certain
configurations. However, it is also difficult to track a fairly
high number of users individually based on this kind of
techniques (even if we assume that a person may have a
certain type of body radio reflection signature, it would
not be different enough between similar people and might
change depending on the distance between the person and
the vantage points). They are mainly applied in short range
movements (1-10 meters), so they could only be applied in
small rooms, at the cost of a large and specific deployment.

People flowmonitoring can be also performed exploiting
the ubiquity, communications capabilities, and integrated
sensors of smartphones [17]. In [18], for instance, Call Data
Records (CDR) are used to locate the base stations the
smartphones are attached to and thus analyze people flow in
and out of a suburban city near New York City. The main
drawbacks of this way of locating and tracking people are
its low accuracy (around hundreds of meters) and that the
terminal has to be active (e.g., make or receive a call or
send or receive an SMS) in order to be monitored, although
this technique would be classified as passive given that
the needed user activity is not aimed to contribute to the
positioning.

Reference [19] proposes a solution to prevent critical
situations in overcrowded scenarios based on a smartphone
application that transmits its GPS location data. Although it
yields good results in terms of accuracy, the main drawbacks

of this approach are that it is an active technique, since
it requires the installation of the app, the impact of the
consumption of the app on the autonomy of the terminal, and
it may also present problems to work properly indoors.

Smartphone sensors can be also used to perform Pedes-
trian Dead Reckoning (PDR), which is a method that tries to
estimate a pedestrian’s position based on their past position
and the output of smartphone’s sensors, e.g., accelerometer,
gyroscope, etc. This technique is usually supported by other
positioning methods [20], but in most cases it does not need
a specific sensor network other than the smartphone itself. It
is an active system, and it is typically used to track individual
pedestrians instead of flocks, but the main drawback of this
technique is that it suffers tracking error accumulation and
needs an extra location measure frequently.

Bluetooth has also been used to monitor people flows
in indoor environments. Some works such as [21] perform
a comparison between the usage of Bluetooth and other
techniques, such as Wi-Fi, and its conclusion is that its
capabilities are belowother options, although it can be used in
combination with other positioning systems to improve their
accuracy. The main disadvantage of this tracking systems is
that most Bluetooth devices only react to Bluetooth signals
when the users make them visible to the network. Also, these
implementations require a specific deployment of Bluetooth
sensors which usually cannot be used for other tasks. Table 1
summarizes the previous research work reviewed so far,
without considering Wi-Fi tracking based works.

Lastly, people tracking systems based onWi-Fi have been
a hot topic from more than fifteen years and it is still so. This
is indeed the technique used in this paper. Thus, Table 2 is
exclusively devoted to summarizing and comparing previous
research work based on this technique.

As it is shown in Table 2, works related to Wi-Fi tracking
techniques can be focused on different objectives: some
try to obtain users’ positions as accurately as possible [22–
32], others analyze the trajectories followed by pedestrians
[33–35], or flocks [36–38], and, finally, others study the
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Table 2: Summary of the state of the art of people flow monitoring techniques based on Wi-Fi tracking (P/A stands for Passive/Active).

Ref Year Scenario Application P/A Own deployment

[22] 2003 Indoor One of the earliest approaches on precise positioning using
Wi-Fi (precision 2.6m) A Yes

[23] 2006 Indoor
Wi-Fi fingerprint to identify the general location and
applying logistic regression to distinguish between
finer-grained locations.

A Yes

[24] 2006 Indoor, office
building

Precise positioning. PDR combined with Wi-Fi to reduce the
accumulated error A Yes

[25] 2007 Outdoor and
indoor

Creation of Wi-Fi map. Positioning comparing with the
created map A Yes. Own hardware.

Offline analysis

[26] 2007 Indoor, campus Comparison of positioning and tracking methods using
Wi-Fi P No. Offline

[27] 2008 Indoor, campus Estimate the position using Wi-Fi and tracking with PDR A Yes

[28] 2009 Indoor, campus Real time Wi-Fi positioning, web portal to check user’s
positions A Yes

[39] 2009 Indoor, campus Count of users in different buildings. Analysis of users’
mobility between buildings P No. Institutional APs

[57] 2010
Indoor, campus

and office
building

Coarse position with Wi-Fi and Bluetooth. Graph of user
co-occurrence. A No. Offline

[43] 2010
Indoor, campus

and office
building

Calculate of stay length based on Wi-Fi positioning. Analysis
of favorite locations A No. Offline

[44] 2011 Indoor, campus Extension to [39]. User characterization based on their
mobility patterns P No. Institutional APs

[29] 2011 Indoor, tunnel
in construction

Precise positioning in real time of workers inside a
constructing tunnel using Wi-Fi (precision 5m) P Yes. Own AP

deployment

[30] 2012 Indoor, campus Creation of Wi-Fi fingerprint map. Map usage to positioning
with smartphone application A No

[36] 2012 Indoor, campus Study of crowd movement Wi-Fi based. Analysis of mobility
patterns, users’ arrivals and departures from campus P No. Institutional APs

[58] 2013 Indoor Wi-Fi path analysis in real time. A No. Institutional APs

[33] 2014 Indoor and
outdoor, campus

Analyze pedestrian destination frequencies in an area of 55
hectares of a university campus during 5 weekdays. P No. Institutional APs

and Radius server

[59] 2014 Indoor, campus
Localization and tracking system exploiting particle filters to
combine dead reckoning, Wi-Fi RSS-based analyzing and
knowledge of floor plan together. (precision 0.7m)

A

[60] 2015 Indoor,
shopping mall

Wi-Fi Channel State Information analysis to detect shopper
activities P Yes. Own AP

deployment

[31] 2015 Indoor
Precise positioning based on sensor fusion combining Wi-Fi,
PDR and landmarks. Smartphone application. (Positioning
1m)

A No. Smartphones

[32] 2015 Indoor, parking Precise positioning combining Wi-Fi RSS and
electromagnetic field map

[37] 2015
Outdoor,

concert. Indoor,
campus

Portable Wi-Fi based user count. Analysis of crowds in
concert and in campus P Yes. Raspberry Pi

based

[61] 2015 Outdoor Creation of Wi-Fi map using GPS A
[62] 2016 Indoor Precise positioning combining Wi-Fi and PDR A No. Smartphones

[34] 2016 Indoor, airport
User path detection. Combining Wi-Fi, GPS, PDR and
Bluetooth to create a multilevel map and study of user’s
trajectory prediction

A No. Smartphones

[45] 2016 Indoor, campus Analysis of users’ activities. User tagging based on activities
registered P No. Institutional APs

[46] 2016 Indoor and
outdoor, campus

Analysis of user movements to different food points to
predict the operation of new stores based on price and
location

P No. Institutional APs
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Table 2: Continued.

Ref Year Scenario Application P/A Own deployment
[63] 2017 Indoor Crowdsourcing positioning based on Wi-Fi fingerprint A No. Institutional APs

[41] 2018 Indoor
Coarse positioning, room level precision, based on
probabilistic Wi-Fi fingerprint. Usage of Hidden Markov
chain models to analyze user movement.

P No. Institutional APs

[35] 2016 Indoor Trajectory analysis based on Hidden Markov chain models P No. Institutional APs

[42] 2017 Indoor
Estimate the number of participants and their space and time
evolution in an area of about 167 hectares during 2016 Open
Day of the European JRC

P No. Institutional APs

[47] 2016 Indoor
Outdoor

Study mobility-related activities in a campus of 440 hectares
based on the 2700 APs of the institutional network and
additional opt-in smartphone application

A No. Institutional APs

[53] 2014 Indoor

Classify users in a hospital (e.g., patient, doctor,
administrative) by checking the number of hours and the
positions of a user over time based on the institutional Wi-Fi
network

P No. Institutional APs

[38] 2012 Indoor
Identify flocks walking in a building and their behavior based
on signal strength from the institutional Wi-Fi and using
clustering techniques

P No. Institutional APs

[45] 2016 Indoor Analyze users’ occupation (based on Markov models) as well
as regular and irregular hours in a university campus P No. Institutional APs

[40] 2016 Indoor Analyze room utilization and people tracking providing heat
maps. Analyze device statistics A No. Institutional APs

[48] 2017 Indoor
Outdoor

Analyze people mobility monitoring and tracking in Smart
Cities and traffic in a highway (e.g., driving behavior, traffic
forecasting)

P Yes. Raspberry Pi
based

[49] 2018 Indoor
Outdoor

Provide user localization, user profiling, and device
classification A Yes. Raspberry Pi

based

[54] 2005 Indoor
Outdoor

Analyze Wi-Fi tracking records gathered during more than
one year in Madeira to classify users as tourists or locals and
identify touristic spots

P
Yes. Based on

TP-Link MR3240v2
home router

[56] 2017 Indoor

Obtain semantic trajectories. Classify users based on their
locations. Analyze the probability of a user going to a specific
shop based on their history and propose the creation of a
recommender based on the whole dataset

- -

occupation of different zones [39–42] and obtain behavior
patterns [36, 43–49].

Wi-Fi tracking of a specific user is usually done by
analyzing the collected records related to a specific MAC
address, i.e., tracking users is equivalent to tracking their
MAC address. This technique, in general, presents issues
related to tracking people individually and privacy. Although
it is true that a user carrying several devices (e.g., smartphone,
tablet, laptop) with the Wi-Fi interfaces on would be at first
identified as several users, after a reasonable period of time
this information can be correlated to fix the problem [50].
In the case of the work presented in this paper, the files
associated with the measurements of different sensors of the
same building are compared in order to avoid counting the
same mobile/person several times (e.g., due to overlapping
Wi-Fi cells). The resulting file allows for the analysis of
people flow at a building level, identifying the total stay
time or the frequency of the visited places. However, as it
is explained below on the position analysis subsection, this
problem appears in the collected data and it is necessary

to perform a postprocessing of the data to deal with these
collisions. Users may also use so-called MAC spoofing (i.e.,
replacing their actual MAC address by the MAC address
of another device), what could be seen as a kind of attack.
However, this may yield connectivity problems and it is a
negligible behavior in the scenario considered in this paper.

Regarding privacy, several proposals to protect Wi-Fi
communications by means of MAC address anonymization
have arisen in recent years. First, these proposals appeared
as apps for smartphones (allowing performing kind of MAC
spoofing), but, recently, smartphone manufacturers have
started including these techniques in the latest versions of
their Operating Systems (OS) (e.g., iOS, Android, and Win-
dows). Such MAC address anonymization techniques aim to
avoid using the actual MAC address until the device gets
connected to the Wi-Fi network (i.e., they use a fake MAC
address in their probe frames). The specific solution for this
problem depends on the manufacturer and OS. In the case
of iOS, the solution involves sending locally administered
MAC addresses in the probe frames, randomly selecting the
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three less significant bytes of the MAC address. This can be
easily detected just by inspecting the first byte of the MAC
address. In the case of Android, some manufacturers have
decided to use random MAC addresses in the probe frames
from the MAC address ranges assigned by the IEEE to them.
Nevertheless, evenwith these techniques in place it is possible
to end up obtaining the actual device information [51, 52].
In addition, MAC randomization is not actually a relevant
problem in the scenario considered in this paper since most
of the devices are connected to the available Wi-Fi networks
(e.g., Eduroam) and, to connect to a Wi-Fi network, devices
must use their actual MAC addresses.

Wi-Fi tracking systems can be classified into two main
groups: those that use the enterprise Wireless Local Area
Network (WLAN) itself and those that use a dedicated
low-cost passive Wi-Fi infrastructure, which is indeed the
case of the actual deployment considered in this paper.
One of the main drawbacks of the systems that use the
enterpriseWLAN is that they can only track the users of such
networks; whereas independent dedicated low-cost passive
Wi-Fi infrastructures allow tracking the users connected to
differentWi-Fi networks, if they spatially coexist, or even not
connected to any, if MAC randomization is not used.

As examples of works that use the enterprise WLAN
or the existing infrastructure of access points (APs), [42]
presents the 2016 Open Day of the European Joint Research
Center (JRC), where 8000 people participated within an
area of about 167 hectares, as a case study where the Wi-Fi
infrastructure of the event was used to estimate the number
of participants and their space and time evolution based on
properly processed MAC addresses. Reference [47] presents
MobiCamp, a large-scale testbed, composed of around 2700
APs, to study mobility-related activities, which combines
user mobility traces based on Simple Network Management
Protocol (SNMP) data with enriched data (e.g., gender, age)
provided by an opt-in smartphone application.

Reference [53] represents yet another example of the
analysis that can be made with this kind of information. Its
scenario is a hospital, and by checking the number of hours
and the positions of a user over time they can classify that
user according to a role, e.g., patient, doctor, administrative,
etc. Reference [38] identifies flocks walking in a building and
their behaviors applying clustering techniques to the signal
strength measurements provided by the institutional WLAN.

Reference [33] presents a campus scenario where, by
using the university network infrastructure, a detailed profile
of the user’s activity can be obtained. Users tracked are
those logged into the university network, which provides
extra information about the user, such as their role, gender,
etc. Combining that information with a detailed map which
contains thousands of Point of Interest (POIs), the authors
can extract an activity log that shows the different user’s
activities with a minute precision. Themain drawback of this
work is that it totally depends on the users’ profiles database
and the POI’s map and both are resources complicated to
gain access to or create. In reference [45], employing the
university network infrastructure and the location of each
AP in the university campus, each sensor record only stores
the closest AP. With this simple information the authors

can create an activity profile similar to the one showed in
[33]. By analyzing the basic results obtained, they are able to
extract new information (e.g., a count of irregular hours) or
detect patterns of anomalous events (e.g., periods of exams or
holidays).

As last example of systems that use the institutional
WLAN, reference [40] presents a web application in which
the occupation of different rooms on a campus is shown in
real time. The number of people in the room is calculated
using the number of Wi-Fi devices detected by the APs.
Using the signal strength measurement of each of them, a
heatmap is drawn that shows the user distribution in the
room.The collected data are analyzed offline to make reports
of utilization of the different rooms and to obtain conclusions
from the detected patterns.

On the other hand, [37, 48, 49, 54] represent some
examples of works which use independent dedicated low-
cost passive Wi-Fi infrastructures, as it is the case of the
deployment considered in this paper. In the case of [48], a
network of devices called MOBYWIT, based on a Raspberry
Pi and two wireless USB dongles, are used to track people
and vehicle’s movement, sniffing not only Wi-Fi but also
Bluetooth signals emitted by smartphones and vehicle hand-
free calling systems. In the case of [49], a passive Wi-Fi
infrastructure, based on low-cost devices that combine a
Raspberry Pi and a TP-LINKWi-Fi dongle, is used to provide
user localization, user profiling and device classification
based on the properly processed MAC addresses captured
from the IEEE 802.11 probe request frames. Reference [37]
also uses this approach to count people in a concert and,
in reference [54], the considered scenario is a whole island
(Madeira, Portugal), where the records gathered all over there
are analyzed to classify users as tourists or locals, as well as to
identify touristic spots.

One of the main features that make the work presented
in this paper to stand out compared to previous work is that
one-year data from an actual Wi-Fi tracking system deployed
in a real-life environment is analyzed. Most of previous works
consider hours or a few days (e.g., weekdays) or weeks. Only
the work presented in [54] covers a similar period of time
(being even larger), but the analysis is much broader, being
far away from the level of detail provided in this paper. The
considered period of time allows analyzing seasonality effects
and other patterns that, although may be seen as common
knowledge, do bring value since they represent numerical
evidences that support decision making (e.g., someone can
think that the Wi-Fi access in a given area does not work
properly because it is always overcrowded, but numerical
evidences are needed to appropriately justify the investment
of increasing the number of AP of the corporate WLAN in
that given area to improve the service). In addition, suchwell-
known patterns, when obtained automatically by processing
the available data, become models which can be used to
detect anomalies or atypical situations, as it is common
practice in nonsupervised machine learning. It is also worth
to mention the use of clustering to improve the data analysis
and interpretation (as in previous works, e.g., [38]), as well
as the application of the semantic trajectory concept [55],
which combines positioning data with an external source of
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(a) (b) (c)

Figure 3: (a) Raspberry Pi; (b) TP-LINK USBWi-Fi dongle; (c) developed Wi-Fi listening device.

information to classify the different positions according to the
activity carried out in the area (e.g., users positioned in the
cantina will be eating), and which has not been extensively
explored in previous works (e.g., [56]).

Another strong point of the work presented in this paper
compared to previous work is the validation of the Wi-Fi
tracking technique to estimate the occupation of the library
of theTelecommunications School and the comparisonwith a
video camera system. Only a few previous works, such as [40]
or [49] perform a similar validation (in [40] the number of
people detected in the room is compared with the attendance
list of the seminar taking place there and in [49] students are
requested to turn on the Wi-Fi interfaces of their devices and
provide the MAC addresses of their smartphones and laptops
through an anonymous web form to serve as ground truth for
device classification). However, again the period considered
in this paper is much larger and it is proved that the Wi-
Fi tracking system outperforms the more expensive video
camera system. As a matter of fact, theWi-Fi tracking system
is actually used in a day-to-day basis by the library staff, which
illustrates the value that this kind of IoT infrastructure can
bring to real-life problems and services.

3. Data Acquisition Infrastructure

Figure 3 shows the Wi-Fi listening device/sensor developed
for the people flow monitoring sensor network of the Smart
CEI Moncloa. It is based on very common and cheap
hardware, namely, a Raspberry Pi board [64], one of the most
widely used hardware for IoT, and a TP-LINK USB Wi-Fi
dongle [65] configured in monitor mode. As a result, the cost
of this solution is in the order of tens of euros (around 80€
whenmanufactured on 2016), which represents a remarkable
cost reduction compared to other solutions available in the
market.

As Figure 4 illustrates, broadly speaking, these Wi-Fi
sensors scan each of the Wi-Fi channels from both the
2,4GHz and the 5GHz bands during a configurable amount
of time (currently, 250ms), read the header of the radio IEEE
802.11 packets (e.g., data packets or probe requests) in its
region of coverage, and record the sender MAC addresses.
As these MAC addresses are unique per device, counting

them is a good indicator of the number of devices available
in the surroundings of the Wi-Fi sensors (although there
may be issues related to the fact that a single user can bring
several devices, as already pointed out in Section 2), and they
allow for temporal correlation analysis, thus obtaining useful
information such as stay time, availability patterns, etc.

Regarding how this information is carried all the way up
to the backend server and processed there, Figure 5 shows
anoverview of the communications architecture and protocol
stack of the people flow monitoring service of the Smart CEI
Moncloa.

As it can be seen, theWi-Fi sensors are directly connected
to the backend via the Ethernet network of the UPM. Com-
munications are protected end-to-end by the use of Transport
Layer Security (TLS) on top of Transport Control Protocol
(TCP)/Internet Protocol (IP). Measurements are periodically
sent using Message Queue Telemetry Transport (MQTT)
[66]. The publish/subscribe mechanism provided by MQTT
allows the Wi-Fi sensors not only to sendmeasurements (i.e.,
events) periodically, but also to receive commands (e.g., to
reboot them or to perform a remote firmware update).

Taking advantage of the hierarchical structure of the
MQTT topics, all the publish events follow the structure SER-
VICE/ID/EVENT(/TIMESTAMP). Thus, the publish events
from the Wi-Fi sensors start by Wi-Fi, followed by the MAC
address of its Ethernet interface, which is used as unique ID.
The format of the content published under the different topics
is Comma Separated Value (CSV), which is a lightweight
solution especially appropriate when the data structure is
fixed, since the meaning of each field of the subsequent lines
is explained only in the header at the beginning of the file.

Privacy issues have been also considered carefully: the
developed Wi-Fi sensors apply an irreversible hash MD-5
function with salt to the MAC address, which avoids brute-
force attackswith precomputed tables. In addition, as Figure 5
shows, once anonymized, the data are carried securely up to
the platform servers where they are handled in an aggregate
manner, instead of individually.

Furthermore, the software of the developed sensors has
beenmodified in order to avoid that theMACanonymization
mechanisms presented in Section 2 affect the obtained mea-
surements. Thus, the Wi-Fi frames with locally administered
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Figure 5: Communications architecture and protocol stack for the people flow monitoring service of the Smart CEI Moncloa.

MAC addresses or including special MAC address ranges are
discarded, so these devices are not considered. Anyway, as it
has been already mentioned in Section 2, MAC randomiza-
tion is not actually such a big deal in our case, since most of
the users are connected to the Eduroam free Wi-Fi access, so
their smartphones end up using their actual MAC address.

After gathering the CSV files for a large time span, we
moved to an offline analysis platform on a private cluster.
The Apache Spark 2.2 software platform was selected as the
data processing tool due to its optimized capabilities to work
with large amounts of structured data. This drives into large
datasets which common centralized system will struggle to
process, but distributed systems, such as Spark, can handle
easily.

The private cluster mentioned is composed by eight
HP ProLiant SL250s Gen 8 machines with two Intel Xeon
e52630v2 2.6GHz (6 cores each) and RAM 32GB. In addi-
tion to Spark, this platform also runs an Apache Hadoop

Filesystem, where the dataset and the results are stored. This
is a distributed filesystem which allows that all the machines
access to the stored data in parallel. The usage of such
platform is advisable in order to speed up analysis, but not
mandatory, since the algorithms we are going to describe are
available in many other software platforms (such as those
provided with R or Python).

4. Data Analysis and Results

4.1. Data Processing. Although this work is not a proper data
mining process, given that we are not using those kinds of
algorithms and analyses, the necessary steps previous to the
actual analysis are the same that in a KDD—Knowledge Dis-
covery in Databases—process [67]. For our analysis we took
the aforementioned CSV format files, each one containing
the data collected by a single sensor during a period of 15
minutes. The observation period used in our analysis is a full
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Figure 6: Histogram user-number of registered hours: (a) raw analysis; (b) first threshold applied.

year, from January 2016 to December 2016. In a one-year time
lapse, 9 sensors, each generating a file every fifteen minutes,
would create around 315K files, a theoretically maximum
because a file is only created if the sensor is activated and
detects at least one device during the period. The sensors
were deployed at the beginning of 2016, but until March
the deployment was not totally finished. There were also
some holidays during 2016 when ETSIT was fully closed.
During those days some of the sensors (although there are
always security staff somewhere in the covered area) detected
no devices, so they did not generate a file. As a result, the
number of files, which we actually have for the analysis, is
246K.

The first step in preprocessing these data was to merge
all the files into a single one, resulting in a 2GB CSV plain
text file, where each row represents the observation of a
device during the associated time period including, among
others, the anonymized MAC address, the sensor name,
and the detection of the device for a given minute in the
observation timespan. With this transformation the resulting
dataset contains 63 million rows, each one representing the
detection of a single device in a single minute by a single
sensor.

A total of 128K unique devices were detected during
the whole year. It is known that the number of people
that regularly go to ETSIT is around 4K, so not all of the
devices detected can be considered actual users of interest,
consequently the data needed to be filtered. Only those of
people that perform activities related to the place, such as
students, professors, etc. should be taken into account. Thus,
it is necessary to filter out devices keeping only the ones

that can be labelled as users. We apply filters based on the
observations of each device.

So, for each device we count the number of minutes it
was detected in the entire dataset. A device can be seen by
more than one sensor during the same minute, so, to generate
this measure, we considered that the repeated minutes are
counted only once per device. Grouping the resulting count,
a histogram (Figure 6) is obtained, on which it is possible to
make a classification of the devices based on the total time
recorded during the whole year.

To facilitate the analysis of the chart, the horizontal
axis has been expressed in hours and the count, in the
vertical axis, is shown in logarithmic scale. Around 95%
of the devices were seen for less than 48 hours during the
whole year, in average less than four hours per month. This
group is mainly composed by people passing near the school
buildings, momentarily entering the coverage area of the
sensors, without accessing ETSIT. Figure 6(b) shows the
histogram applying a lower threshold of 48 hours and an
upper threshold of 3650, an average of 10 hours per day. In
this chart it can be observed some isolated peaks in the tail
of the graphic, starting around 1000 hours in the horizontal
axis. A detailed analysis of these peaks revealed that they were
devices that remained connected continuously for several
days, like servers. So, we applied the label “user” only to those
devices that registered a number of hours during the year
between these two thresholds. As shown in Table 3, from the
128K detected devices only 4653 were classified as users, over
which we will perform the rest of the analysis.

The last step before the proper analyses is to merge this
dataset with the information about the position and name of
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Figure 7: Daily analysis aggregated during 2016, (a) minutes accumulated; (b) unique users registered; (c) ratio between minutes and users.

Table 3: Dataset statistics after and before preprocessing.

Rows Devices
Before preprocessing 63427489 128188
After preprocessing 41294344 (65%) 4653 (3.6%)

the sensors. Additionally, only the data columns with relevant
information for the analyses are kept in order to reduce the
in-memory cost:

(1) timestamp: the detection time, measured in minutes,

(2) user: the detected MAC address device,

(3) sensor: the MAC address of the sensor which made
the detection,

(4) sensorName: the name of the sensor which made the
detection,

(5) accessPoint: the MAC address of the SSID to which
the device is connected, if any,

(6) sensorLat: latitude of the sensor’s position,

(7) sensorLng: length of the sensor’s position.

4.2. Temporal Analysis. Once the data was ready, we per-
formed a temporal study, aiming to know whether the
captured data allowed for the identification of significant
periods of activity or trends in user behavior in ETSIT. As one
year is too long for a minute-level analysis, we aggregated our
data by days and by hours.

Figures 7–10 are classified into groups of two charts. The
first one, accumulated time chart, will show the number of
activity minutes registered by each sensor during a time slice.
The second chart presents the number of unique users seen
by each sensor during the time slice. In addition, Figures 7-8
include a third chart with the ratio of accumulated time over
unique users; this provides a hint on how stationary users are.
This idea can be observed more precisely in the ratio chart:
peaks represent moments when users are still (e.g., students
in class) and dips are associated with transition times (e.g.,
students arriving at the school).

First, Figure 7 shows an overview of these metrics
throughout the year. In this figure the measurements of the
9 sensors are aggregated into a single line. In the case of
the Figure 7(a), the result is not exactly equal to the sum of
activity minutes each sensor accumulates, since a user can be
detected in the same minute by different sensors, and these
occasions are represented as single instant in this line.
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Figure 8: Daily analysis during 2016, (a) minutes accumulated by each sensor; (b) unique users registered by each sensor; (c) ratio between
minutes and users by each sensor.

The most obvious observation that can be drawn from
Figure 7 is the presence of a strange behavior during the
months of January and February. The reason is that, as
we previously discussed, the sensor network began to be
deployed in January 2016 and was not completely operative
until March. We keep this data in the analysis because it can
be used to compare an anomalous situation with a regular
one, also, it is much more intuitive to present a whole year
range instead of nine months. Nevertheless, data collected in
those months are not used to raise conclusions.

Holiday periods are clearly shown in the unique user’s
chart when the line falls, for example in March (Easter),
summer holidays or some isolated holidays. These periods
can also be seen in the ratio chart, since it increases because in
those dates many fewer users attend to the school but usually
spend long periods of time in the library. A remarkable point
is October 12nd, in which the ratio chart reaches the highest
peak and the number of users is almost zero. That day even

the library was closed, so only the security staff was in the
school. We can also observe the effect of weekends on each
chart, both the number of users and the accumulated minutes
decrease, but the ratio increases for the same reason exposed
for the holidays: users will study at the library during the
weekends. Finally, between the months of May to June, a
decreasing trend can be observed both in the unique users
and in accumulated minutes, going up in mid-June for the
examination period.

Figure 8 shows a second set of graphs that correspond
to a daily analysis of the whole year representing each
sensor. One of the first conclusions that can be drawn is the
difference between the proportions in unique user’s chart
and accumulated minutes chart. The difference between the
number of registered users per sensor is not as remarkable as
the difference between the number of accumulated minutes.
Again, this is due to the fact that users spend much longer
periods of time in the library than in other areas. Observing
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Table 4: Sensor records collisions.

Collisions Count Total Percent
9 3 27 0.00%
8 45 360 0.00%
7 421 2947 0.01%
6 5371 32226 0.08%
5 59222 296110 0.72%
4 560994 2243976 5.46%
3 2525718 7577154 18.42%
2 7268825 14537650 35.35%
1 16433862 16433862 39.96%

the line of the sensor of building C in the accumulated
minutes chart, it can be seen that themagnitude ismaintained
throughout the year. This sensor covers a building where
there are professors’ offices and research laboratories, i.e., this
sensor registers mostly users who work at school, and they
maintain a more regular schedule throughout the year than
students who go to classes or to the library.

The line charts can be difficult to interpret for periods of
time as long as a whole year. To ease the visual analysis, a new
calendar visualization is offered inwhich the samedata can be
studied in amore intuitive way. Figure 9 presents the full year
view in calendar format, each row representing one day of
the week and themonths appear delimited in black.The color
intensity of the cell is proportional to the data it represents.
Figure 9 is formed by 4 subfigures, which corresponds to the
count of users and number of minutes by the sensors “Entr. A
Sec.” and “Entr. C”. These visualizations are relative and can
be used to obtain general conclusions. For a detailed study,
both visualizations with absolute measurements and a data
examination are still necessary.

Figure 9(a) represents the number of users detected
by the sensor “Entr. A Sec.”, which covers the classrooms
of this building, and Figure 9(b) the number of minutes
accumulated by the same sensor. It is clear that the first
two months of the year this sensor was not operational, on
Saturdays and Sundays (last and first row) this sensor does not
register almost any activity, and holiday periods are clearly
identified, such as Easter inMarch or summer holidays in July
and August. But this visualization reveals other information
that is more difficult to observe in a line graph, such as that
Mondays are the days that the users spend less time in this
area. They also highlight some blank cells in the last months
of the year revealing that the sensor did notwork during those
days.

Figures 9(c) and 9(d) represent the information of the
number of users detected and accumulated minutes by the
“Entr. C” sensor. Asmentioned in the description of Figure 8,
this sensor includes very stable measures, because it covers
the research laboratories and the workers’ schedules are not
affected by the school calendar, as it is the case of the activity
seen by other sensors like “Entr. A Sec”.

Figure 10 presents a different view, plotted at the hour
level during a week inNovember.This eases the identification
of activity hours, which span from 8 in the morning to 22

in the evening. Another notorious effect is the valley in the
middle of the day, corresponding to the lunch break, when
users move to the cantina (see Figure 2) or go out from the
buildings. Finally, it is observed that the users leave the school
gradually during the afternoon.

4.3. Position Analysis. Before getting into the details and
insights obtained from the analysis of the one-year gathered
data from the spatial perspective, it is worth tomention that a
set of testswas carried out in a controlled environment during
the first stage of the deployment in order to check that the
Wi-Fi tracking system worked properly. These tests included
tracking a well-known group of MAC addresses throughout
theWi-Fi tracking sensors checking that they appeared in the
appropriate ones. It was also checked that the system correctly
located and tracked the security staff throughout their nigh
security tours.

A spatial analysis provides insight on how the users are
distributed throughout the buildings during different times
of the year. To reach these conclusions, we have improved
the method presented in [68]. The first improvement is
related to the event when a user is detected by two or more
sensors during the same minute. From now on, this event
will be identified as a collision. The number of collisions is
a significant one in the case of some sensors that are close to
each other (e.g., library and building d) or sensors that cover
transition areas (e.g., Entr. A or Std. Tables).

Table 4 shows a study of the number of collisions. The
order of collision is the number of sensors that collide for the
same minute, and the count, the number of rows in which
a collision of that order occurs. Collisions of order 2 and
3 group more than 50% of the data. The solution to this
situation was to eliminate these collisions by replacing, for
this experiment, all the rows corresponding to a collision by a
single row whose latitude and longitude data are the centroid
of the positions of the sensors participating in the collision.

The second improvement consists in the incorporation
of external information with the approximate position of
the access points to which the users are connected. This
information has been obtained from the API Mylnikov Geo
[69], getting the position of all ESSID registered throughout
the year. In the cases the user is connected and the approx-
imate position data of the access point are available, this
new position is used instead of the position of the sensor
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Figure 11: Monthly centroids heatmaps. (a) June; (b) August; (c) September.

that generates the row. This allows measuring the user’s
position in more accuracy. In addition, it allows smoothing
the effect of using only the positions of the sensors, which
causes that the resulting possible positions are always inside
the hull of the polygon formed by the positions of the
sensors.

This experiment is based on the user’s centroid concept.
This centroid is the average position of a certain user along
a certain period of time. Representation of these points over
the map reveals hints of the users’ behaviors over the studied
time slice based on the amount of people in each area.

Figure 11 shows heatmaps of three different months.
Figure 11(a) is June, amonth belonging to the second semester
of the scholar course and the month when the final terms
take place. Figure 11(b) is August, during summer holidays
when there are no classes or exams andmost of the professors,
researchers, and staff are on vacation. Figure 11(c) represents
September, start of semester.

Figure 11(b) confirms one of the facts extracted in the
temporal analysis: on holidays the number of users falls and
most of the users present in the school keep studying at the
library (the warmest point is located over the library and is
much smaller than on other months).

Both Figures 11(a) and 11(c) show that building A is the
area with the highest concentration of users. Even so there are
differences between two figures. In Figure 11(a), the warmest
area in the map is over the library. This is explained by
the final exam period of June. The same observation can
be repeated in other periods of time to discover when the
students have exams. In Figure 11(c), the hot spots are on
the classrooms. September is the beginning of the school
year and there is the greatest attendance to classes. Thus, this
observation is an indicator of the level of students’ assistance
to class.

The same type of analysis can be done with shorter time
frames to obtain more detailed behaviors. Figure 12 shows the
centroids heatmap grouped by hours on September 2nd.

A detailed analysis by hours like this allows observing the
users’ movement throughout the day. The first row of maps
in Figures 12(a), 12(b), 12(c), and 12(d), shows the evolution
of user’s centroids at lunch time, between 12:00 and 16:00. In
this transition it can be seen that there are hot spots on the
classes and library at the beginning. On the next map those
centroids move to the cantina (see Figure 2), and in the last
map they return to their original positions. The second row
of maps in Figure 12 presents the start and the end of the
activity time in the school. In Figures 12(e) and 12(f), it can be
observed how the first users in the day go directly to classes.
By contrast, Figures 12(g) and 12(h), reveal that users tend to
be at the library at the end of the day.

Finally, Table 5 presents the count of the different users
detected by each sensor throughout the year. Recalling that
the total number of users obtained in Section 4.1 is 4653,
the data in the table reveals that over the year most users
have ever been seen by each sensor at some time. The two
exceptions to this fact are the sensor of building C and the
sensor of the laboratories of building B. These sensors cover
the professor’ offices and research laboratories, so they are
unusual for students to stay in those areas.

4.4. Behavior Analysis. The third set of experiments we
performed deals with the behaviors that each user follows
throughout a single day. To obtain them, we grouped the data
using a user-day key. For each key a vector of 24 positions -
one per hour- is created. In each position of this vector, we
determine which one has been the sensor that has detected
this user most of the time. This vector represents, therefore,
the route that the user followed throughout that day, hour by
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Table 5: Sensor annual statistics.

Sensor Number of rows Number of users
Library 14166793 4674
Entr. D 6818165 4621
Std. Tables 5625974 4670
Entr. A 4736237 4620
Entr. A Sec 2352019 4579
Entr. B Sec 2258618 4530
Entr. B Lab 2229560 3630
Entr. C 1469026 3093
Entr. B 1248462 4127

12:00 to 13:00

(a) (b) (c) (d)

(e) (f) (g) (h)

13:00 to 14:00 14:00 to 15:00 15:00 to 16:00

8:00 to 9:00 9:00 to 10:00 19:00 to 20:00 20:00 to 21:00

Figure 12: Hourly centroids heatmaps of 2nd September. (a) 12:00 to 13:00; (b) 13:00 to 14:00; (c) 14:00 to 15:00; (d) 15:00 to 16:00; (e) 8:00 to
9:00; (f) 9:00 to 10:00; (g) 19:00 to 20:00; (h) 20:00 to 21:00.

hour.Once the behavior vectors are obtained, the information
of the day and the user is discarded to make a count of
the most repeated behavior vectors. The dimensionality of
theses vectors makes the number of possible behaviors huge,
theoretically 2410≈6∗1013 or 1410≈289K millions using only
the activity hours, but it is known that users behave similarly,
so a much lower number of behaviors can be expected, even
though it will still be a high number.

Table 6 presents the 20 most repeated behaviors through-
out the year. A total of 285K behaviors are detected, of which
139K are unique.The first 500 most frequent behaviors group
25% of the total behaviors. Table 6 shows only the part

corresponding to the activity hours of the school, which, as
observed in the temporal analysis, covers from 8:00 am to
10:00 pm. As it can be seen the majority of the most repeated
behaviors are periods between two and five hours of stay in
the library. It is necessary to expand the analysis to the top
20 to observe the class attendance behaviors. It is easy to
appreciate that the different behaviors are usually morning or
afternoon, with lunchtime from 1:00 p.m. to 3:00 p.m., which
means that the majority of users go either in the morning or
in the afternoon, but they do not spend all day at school.

Another quite obvious observation is that many of the
behaviors obtained are very similar among them (e.g., going
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Table 6: Top 20 most repeated behaviors.

#
8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
- - - - - - - - - - - - - -

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00
1 Lib1 Lib Lib Lib Lib
2 Lib Lib Lib Lib
3 EntA2

4 Lib Lib Lib
5 Lib Lib Lib Lib
6 Lib
7 EntA
8 Lib Lib Lib Lib Lib Lib
9 Std3 Std Std Std Std Std Std Std Std Std Std Std Std Std
10 EntA
11 EntA
12 Lib Lib Lib Lib Lib
13 Lib Lib
14 Lib Lib
15 EntA
16 EntA EntA
17 EntA
18 Lib Lib
19 SecA4 SecA SecA SecA
20 EntA
1 Lib = Library.
2 EntA = Entr. A.
3 SecA = Entr. A Sec.
4 Std = Std Tables.

to the library from 9:00 a.m. to 2:00 p.m. or going to the
library from 9:00 a.m. to 1:00 p.m.). In order to lower this
redundancy, we performed a clustering procedure on them.
Each behavior can be understood as a categorical vector of
length 24, inwhich the categories correspond to the 9 possible
sensors of the data set plus the empty category. The chosen
clustering algorithm is Proximus [70], due to its simplicity,
efficiency, scalability and results’ reliability. The algorithm
works with binary vectors, and creates clusters based on the
Hamming distance (the number of bits that differ between

two binary vectors). A vector is chosen as the center of the
cluster and other vectors, whose distance to the center is
smaller than the maximum cluster radius, are added to that
cluster.

The behaviors are expressed in categorical vectors, so it is
necessary to transform them into binary vectors to be used
in Proximus. The transformation shown in Equation (1) is
proposed. This transformation is simple and also reversible,
which allows for the recovery of the original behavior drivers
after clustering.

𝐵 = {ℎ0, . . . , ℎ23}
ℎ𝑖 ∈ {0, 𝑎1, . . . , 𝑎9}

→
𝐵 = {𝛿0,𝑎1 , . . . , 𝛿0,𝑎9 , . . . , 𝛿23,𝑎1 , . . . , 𝛿23,𝑎9}

𝛿𝑖,𝑎𝑗 =
{
{
{

0 𝑖𝑓 ℎ𝑖 ̸= 𝑎𝑗
1 𝑖𝑓 ℎ𝑖 = 𝑎𝑗

(1)

Where {𝑎1, . . . , 𝑎9} are the nine sensors, 𝐵 is the behavior
vector described above and 𝐵 is the 24∗9 long transformed
vector, made out of 9 samples subgroups, each one associated
with each hour. Every sample on each subgroup is 0, except
for the index of the active sensor on each hour, which is
marked with a 1 on its variable.

Table 7 shows the results of applying the Proximus
clustering to the found behaviors. The first column is the

center of the cluster, the second one the number of behaviors
that are grouped in that cluster, and the third, the number
of behaviors that fall within that cluster. The results are
presented ordered by the number of behaviors included in
the cluster. 45707 clusters are obtained. The first 300 group
50% of the behaviors recorded throughout the year. Themost
important cluster behaviors in Table 7 can be understood this
way:
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Table 7: Behavior clusters.

# Cluster center Cluster components Behaviors count
1 Entr. A Sec from 9:00 to 14:00 415 4963
2 Entr. B Sec from 10:00 to 13:00 458 3756
3 Entr. B Sec from 15:00 to 19:00 471 2924
4 Library from 9:00 to 13:00 256 2870
5 Library from 10:00 to 12:00 176 2396
6 Library from 18:00 to 21:00 244 2231
7 Entr. A 13:00 787 1979
8 Library 12:00 563 1894
9 Library from 18:00 to 19:00 and from 20:00 to 21:00 175 1853
10 Entr B. Lab 11:00 to 20:00 568 1831

(i) Clusters 1, 2, and 3: students attending to classes.
These sensors cover the main classes in the school,
and the intervals matches with the class schedule.

(ii) Clusters 4, 5, 6, and 9: students at the library.
(iii) Cluster 7: users which usually are outside of the

sensors coverage areas, arriving or leaving.
(iv) Cluster 10: laboratory equipment and professors.

This sensor covers some of the professors’ offices
and laboratories which usually have some laboratory
equipment connected during work hours.

5. Validation of Occupancy Estimation
Based on Wi-Fi Tracking

Although, as it has been already pointed out in Section 4.3, at
the very first stage of the deployment it was tested that the
Wi-Fi sensors properly locate and track well-known MAC
addresses, it was still needed to validate the accuracy of the
system for estimating occupancy (as it can be distorted by
the aforementioned fact that a single user can carry several
devices connected to Wi-Fi networks). As no ground-truth
data was available for the full set of buildings and only some
data was found for the library, we centered our validation
efforts in comparing our data with the available ones: if we
can trust our results in that area, then we can extend our
trust to the rest of the areas for which no well-known data
are available.

The library of ETSIT has 408 study sites and it offers a
web service to check the number of available seats at a given
moment of time [71]. This system is based on two sources
of information: a person who counts the empty seats every
opening hour from Friday to Sunday, and a video camera
located at the main entrance of the library that counts the
number of people entering or leaving at 15-minute intervals.
The human systemprovides a ground truth about the number
of occupied positions, but this measure is very different
from the actual number of people in the library, since, a
common situation, especially during examination terms, is
that students place their studymaterial at the seat to reserve it
while they are not in the library.This situation is a problem for
the library staff and therefore they installed the video camera
system to count the student’s entrances and exits.

This systemgenerates an estimation of the number of peo-
ple in the library, adding to the previous measure the number
of people which are detected entering and subtracting the
number of people which are detected leaving. The system is
not perfect and, in most cases, it carries an accumulated error
that increases in the estimation of the number of people in the
library. The total error can be calculated clearly at the end of
the day, when the library closes, and the number of people
inside is supposed to be zero. In summer there is a situation
that aggravates this error and consequently the measure
achieved by this system: due to the rise in temperature, the
back door of the library is opened to improve ventilation
and allows students to exit through it, although they must
continue entering through the main door. The camera does
not count students leaving through this back entry.

The library staff provided us with the data collected by the
two systems (human and camera) between June 5th and 30th.
These measurements can be compared by those obtained by
the Wi-Fi sensor installed at the library to validate them. For
this test, all the data collected by the sensor will be used,
without filtering the MACs of the sporadic users, as it has
been explained before.

Figure 13 shows the data collected by the three systems
on Sunday, June 5th. This is the first day with data from
the three sources. Other days in which these three sources
are present have the same trends. It is clear that there is a
divergence between the human system observation and the
rest of the data. The graph of the human system shows that
the number of occupied seats increases in the first hours up
to the maximum and remains steady until the end of the
day, without being affected by the behavior of the users at
lunchtime. However, this effect is reflected in the camera
system andWi-Fi tracking measurements. We observed that,
in general, the number of people accounted for by the camera
system is under theWi-Fi-tracking systemmeasure, although
the proportion is maintained over time. Finally, the figure
shows the cumulative error effect of the camera system,which
at the end of the day still renders 65 people in the library.

To better study the relation between the camera system
and the Wi-Fi-tracking system, we generated a detailed visu-
alization that allows us to observe the data of thewholemonth
in a single figure. Figure 14 is composed of 3 subfigures: each
of them is a matrix of colored cells, the lines represent a full
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Figure 13: Measure of library occupation using Wi-Fi, camera, and human systems.
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Figure 14: Measures each 15 minutes of library occupation during June: (a) Wi-Fi records; (b) camera records; (c) difference between Wi-Fi
and camera.

day, and the columns are divisions of 15 minutes. The color
intensity is proportional to the number of users measured
in each interval, being more intense when more users are
detected. Figure 14(a) shows the measurements of the Wi-Fi
sensor. The behavior is the one observed in previous sections

of this document. Figure 14(b) shows the measurement of the
camera system. During the first half of the day, the same trend
as in Figure 14(a) can be observed, but in the afternoon and
night the accumulated error begins to be appreciated. This
error reaches a maximum of 378 people, with an average of
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139 people at the end of the day, while the Wi-Fi-tracking
system registers a maximum of 10 and an average of 7 at the
end of the day (these are machines that are still turned on
when the library is empty of people). Finally, Figure 14(c)
shows the difference between the two previous ones, using
the green color when the error is positive (theWi-Fi-tracking
system registers a higher value than the camera system), and
red color otherwise. This figure validates the measurements
obtained by the Wi-Fi-tracking system, since the difference
with the measure of the camera system in the first half of
the day is small (an average of 27 people, counting the data
from 8:00 to 16:00); whereas, in the afternoon the error
accumulated by the camera system provokes that the average
difference grows to 83 people between 16:00 to 22:00.

TheWi-Fi sensor of the library was not placed for the spe-
cific purpose of counting the number of people in the library
and, in consequence, its coverage area can detect devices
that are outside the library. This explains why in some cases
it registers a measurement greater than that of the camera
system. In any case, the Wi-Fi sensor, with its limitations,
registers a measure very similar to the system of counting
people using a camera, even avoiding the cumulative error
of this system; being much cheaper (tens of euros against
thousands of euros) and less intrusive than a video camera.
Currently, since the camera system is already installed, the
Wi-Fi sensor measures can be used as a maximum, which
would limit the error made by this system. In summary, the
usage of Wi-Fi sensor to count people in the library provides
accurate results despite the potential errors induced by the
sensing period, collisions, ratio between users andMACseen,
and data processing performed. These results invite to trust
that the results of our analyses for the rest of the areas in
campus are also correct.

6. Discussion and Conclusions

In the execution of this case study we have learned some
lessons about the limitations we faced that are worth to be
taken into account for similar systems and analyses. First,
there is the key issue of the sensors deployment: it is not
just a question of density (number or sensors per surface),
but of adapting its design to the topology of the place to
be controlled. So, for example, it is crucial not only to have
sensors in entries and exits of buildings, but also inside them,
as in the considered deployment, where there are sensors
placed in the entrance and exists of the buildings, but also
in other especially relevant places, such as the library or the
work-in-group area.

A complete coverage of indoors devices, without colli-
sions and for the complete timespan of the stay indoors,
would require a large deployment with many sensors able to
cover all corners. This is not suitable in this context; instead
we counted with 9 sensors, some in gates, and others in large
rooms, which proved to be enough to check if a device is
in the reach of any of them. But some assumptions had to
be taken: we considered as valid behaviors only those that
spent a significant amount of time once they had been seen
(to remove transient behaviors and those of people walking
out of the buildings); also, we discarded behaviors that did

not appear enough times in the yearly timespan. On the other
hand, the topology of these buildings did not impose severe
restrictions on sensors’ coverage. In fact, we found several
devices seen by different sensors at once. As a summary,
we can conclude that the finer the spatial granularity (more
sensors), the larger the set of different behaviors; so getting
raw data from sensors would lead to an explosion of states
that would render meaningless results.

The gathered data is another key issue: some works
in literature got signal strength measurements every few
seconds, allowing them to identify indoor trajectories. This
was not our case, and in fact this revealed to be very limiting.
Thus, the precision of our analysis is limited by the regions
covered by each sensor, which hampers us from analyzing
any kind of movement within regions. Nevertheless, as it
has been seen, relevant results can still be obtained without
the increase on energy consumption and the risk of flooding
the school communications network that the other approach
would entail.

As regards the analysis of data to identify users’ behaviors,
we have to indicate that a long observation period is a must.
Obtaining data for a complete work cycle (in this case, a
full school year) helps in discovering common behaviors
that happen in a university. Using long observation times
can help detecting erroneous or atypical operations on the
sensors, as happens in the first months of the year in this case.
Getting even larger observation datasets would reinforce the
behaviors we have found (e.g., seasonality), but the chance to
discover new ones is negligible, due to the expected behaviors
in the campus will be periodic with the school year.

The usage of big data platforms for analysis, while not
mandatory, eases the management of large datasets and the
execution of iterative study on the data. The preprocessing
work carried out allowed us to clean and filter our data.
For example, some discovered behaviors are too regular and
extended over time which may correspond to servers or
machines which we could, then, filter out.

The temporal analysis has revealed some behaviors that
are maintained throughout the year and others that occur
occasionally. The work has focused on the study of behaviors
that are repeated and maintained throughout the year. A
closer view, such as the analysis per hour, shows the hours
of activity, nocturnal patterns, or movements at mealtime. In
the daily vision, the difference in activity between work days
and weekends or holidays is clearly seen. Visualization has
been a key technique in order to detect and understand these
temporal patterns.

The spatial analysis revealed that a problem of collision
happens in the user detection, but its effect was mitigated by
the use of innovative algorithms and techniques, such as the
calculation of centroids and the combination of sensors infor-
mation with external sources of information (i.e., semantic
trajectories), so a much more precise positioning of the users
is achieved than with the exclusive use of the sensors. The
visualization of centroids fostered the visual understanding
of complex data such as the position of each user over a
month, and the superposition of the centroids in a heatmap
allowed knowing the movements of the groups of people and
the occupation of the different zones.
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Furthermore, we have found dominant users’ behaviors
as the most repeated behaviors registered by the sensor
throughout the year. The number of found behaviors has
been huge, but the application of the Proximus clustering
algorithm reduced this number to a manageable amount.
Then, the study of the obtained clusters has revealed that the
most frequent behaviors coincide with what can be expected
from a college building: researchers working in laboratories
and students attending to classes or studying in the library.

Although some of the discovered behaviors and patterns
can be seen as common knowledge, it is worth to stress
that they do bring value since they represent numerical
evidences that support decision making (e.g., someone can
think that the Wi-Fi access in a given area does not work
properly because it is always overcrowded, but numerical
evidences are needed to appropriately justify the investment
of increasing the number of AP of the corporate WLAN in
that given area to improve the service). In addition, suchwell-
known patterns, when obtained automatically by processing
the available data, become baseline models which can be used
to detect anomalies or atypical situations, as it is common
practice in nonsupervised machine learning.

Lastly, we have validated the accuracy of using Wi-Fi
tracking for occupancy estimation comparing it with the
library staff manual counting (considered as ground truth)
and with a video camera system installed at the library main
entrance. As a main finding, Wi-Fi tracking has proved to
be more accurate than the video camera system, in addition
to being way cheaper. As a matter of fact, the library staff is
currently using, preferably, the occupancy estimation based
on Wi-Fi tracking rather than the one based on the video
camera system. Nevertheless, the accuracy of the Wi-Fi
tracking system can be further improved by correlating MAC
addresses detected in same places over fair enough periods
of time and considering only one, thus mitigating the issue
related to the fact that a single person can bring several
devices connected to Wi-Fi networks.

Beside this, theWi-Fi tracking system is currently used by
the library staff to perform more sophisticated studies, such
as figuring out the percentage of students from the different
schools of the university who come to study to the library
of the Telecommunications Engineering School during the
weekend. Figure 15 shows the results of such an analysis,
which represents a token of how this kind of IoT system can
help solving real-life problems and improving the operation
of already running services.

To summarize, we have studied a one-yearWi-Fi tracking
dataset obtained from a reduced set of low-cost sensors with
limited capabilities deployed on an actual university campus
that receives around 4000 people every day. We have pro-
cessed the data in order to identify traces of mobile devices
enabled with Wi-Fi, which are identified as people moving
in the campus buildings, and then we have extracted people’s
stays, movements, and common behaviors. The obtained
results represent numerical evidences that illustrate how a
low-costWi-Fi tracking system can be used in real-life condi-
tions to improve or optimize the operation of the monitored
premises.These results can allow dimensioning appropriately
the WLAN infrastructure or the canteen personnel or detect
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Figure 15: Users who only go to the library of the Telecommunica-
tion School on weekends classified by their school.

anomaly situations in real time. Furthermore, the data from
the people flow monitoring system is currently being used
together with the data from the environmental monitoring
system to try to reduce the environmental footprint of the
school [72]. In addition, the Wi-Fi tracking system is actually
used by the library staff in their day-to-day activity, which
illustrates the value that this kind of IoT infrastructure can
bring to real-life problems and services.
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