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Owning to the high processing complexity, the image restoration can only be processed offline and hardly be applied in the real-
time production life.The development of edge computing provides a new solution for real-time image restoration. It can upload the
original image to the edge node toprocess in real time and then return results to users immediately.However, the processing capacity
of the edge node is still limited which requires a lightweight image restoration algorithm. A novel real-time image restoration
algorithm is proposed in edge computing. Firstly, 10 classical functions are used to determine the population size and maximum
iteration times of traction fruit fly optimization algorithm (TFOA). Secondly, TFOA is used to optimize the optimal parameters
of least squares support vector regression (LSSVR) kernel function, and the error function of image restoration is taken as an
adaptive function of TFOA. Thirdly, the LLSVR algorithm is used to restore the image. During the image restoration process, the
training process is to establish a mapping relationship between the degraded image and the adjacent pixels of the original image.
The relationship is established; the degraded image can be restored by using the mapping relationship. Through the comparison
and analysis of experiments, the proposed method can meet the requirements of real-time image restoration, and the proposed
algorithm can speed up the image restoration and improve the image quality.

1. Introduction

With the development of science and technology, more and
more users use their mobile phones for photography. During
imaging of the digital image, it is easy to produce image
blur due to jitter, light, and many other factors [1], and
this phenomenon is called image degradation. Therefore, an
effective parameter setting needs to be performed in image
restoration processing, which consumes a large amount of
resources. The current solution is to use offline servers
and other types of processing equipment, which cannot
be done in real time. The emergence of edge computing
makes real-time processing of such applications possible.
Edge computing can meet the user’s real-time computing
service requests and provides users with low-latency image
processing services. The local image is uploaded to edge
nodes for real-time processing. We can deploy the Traction
Fruit fly Optimization Algorithm (TFOA) and Least Squares
Support Vector Regression (LLSVR) to edge nodes. However,

the processing capacity of the edge node is limited, so
it is necessary to propose a lightweight image restoration
algorithm. In this way, the photos taken by the mobile phone
can be processed in real time in the edge node.

Image restoration is the reverse process of image degra-
dation. And its ultimate goal is to remove blur and inter-
ference, so that the image is restored as close as possible
to the original one [2]. One of the most typical image blur
models is Gaussian blur. Gaussian point spread functions
are common in many image acquisition, measurement, and
transmission systems. So, many degradation processes can
be approximated by Gaussian blur models. The study of
Gaussian blurred image restoration is of great significance to
other types of degraded image restoration [3]. Most of the
traditional restoration methods are deconvolution processes,
such as inverse filtering, wiener filtering, least squaremethod,
and Lucy-Richardson (LR), which are commonly referred to
as nonblind restoration methods [4, 5]. These methods all
need to know the point spread function of imaging system,
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Figure 1: Population iterative search for food in fruit fly.

which is very difficult in practical application. In contrast,
blind restoration method uses the information carried by the
image itself or the degradation model estimation under the
condition that the point spread function is unknown and
combines the additional conditions to solve the problem [6].
This kind of method is widely used at present, but the result
is not stable, and the calculation is large and the convergence
is slow.

With the rise of in-depth learning in recent years, various
machine intelligence models, such as BP neural network
and support vector machine, have been widely used in the
field of image restoration. In 2011, Mukherjee et al. used
a Multilayered Quantum Backpropagation Neural Network
for Image Restoration [7]; Sethy et al. proposed an image
restoration method based on BP neural network, which has
achieved good results, but there is still room for improvement
[8]. References [9, 10] use fuzzy neural network model for
image restoration and the image quality has been improved
to some extent, but there is still room for optimization.
Reference [11] proposes image restoration based on support
vector regression (SVR), which improve convergence accu-
racy and achieves better restoration effect. However, in the
optimization process of SVM parameters using FOA, the two
internal parameters are not optimized, and only empirical
values are given. Based on the existing work, this paper pro-
poses an image restoration method based on TFOA-LSSVR.
Through the comparison and analysis of experiments, the
proposed method can meet the requirements of real-time
image restoration.

2. Background Materials

2.1. Fruit Fly Optimization Algorithm (FOA). FOA is an
algorithm for finding food sources based on fruit fly, which is
a globally optimized algorithm [12]. The olfactory and visual

organs of fruit fly are very developed. It first collects the
smell of food while foraging, the position where food and
others companions congregate can also be visually detected
after approaching the food location and fly in this direction.
A schematic diagram of the iterative foraging process for
fruit fly populations is shown in Figure 1. The algorithm
combines the global search of population with individual
information exchange. On that basis of a global search, global
optimal solution is updated through individual information
exchange. And finally the algorithm is terminated under the
condition that either the maximum iteration number or the
convergence target precision is met. The steps of FOA are as
follows.

Step 1. The population size is expressed by 𝑠𝑖𝑧𝑒𝑝𝑜𝑝 and
the maximum iteration number is expressed by max𝑔𝑒𝑛.
The random initial position of fruit fly is expressed by𝑋 𝑎𝑥𝑖𝑠, 𝑌 𝑎𝑥𝑖𝑠.
Step 2. Give fruit fly individuals a random direction and
distance to use their sense of smell to search for food;𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ is the search distance, namely, the iterative step
value; that is,

𝑋 (𝑖) = 𝑋 𝑎𝑥𝑖𝑠 + 𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ (1)

𝑌 (𝑖) = 𝑌 𝑎𝑥𝑖𝑠 + 𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ (2)
Step 3. Since the initial position of the food is unknown, we
first estimate the distance 𝐷𝑖𝑠𝑡𝑖 between individual and the
origin and then set the smell concentration 𝑆𝑖 of individual,
which we define here as the reciprocal of the distance.

𝐷𝑖𝑠𝑡𝑖 = √𝑋2𝑖 + 𝑌2𝑖 (3)

𝑆𝑖 = 1𝐷𝑖𝑠𝑡𝑖 (4)
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Step 4. The smell concentration value 𝑆𝑖 brought into the
smell concentration determination function to calculate the
smell concentration 𝑆𝑚𝑒𝑙𝑙𝑖;

𝑆𝑚𝑒𝑙𝑙𝑖 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑆𝑖) (5)

Step 5. Find the individual with the best odor concentration
in the population;

[𝑏𝑒𝑠𝑡𝑠𝑚𝑒𝑙𝑙, 𝑏𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥] = min (𝑏𝑒𝑠𝑡𝑠𝑚𝑒𝑙𝑙) (6)

Step 6. The optimum smell concentration value of 𝑏𝑒𝑠𝑡𝑠𝑚𝑒𝑙𝑙
and coordinates𝑋,𝑌 are recorded and retained; this time, the
fruit fly population uses vision to fly to that location;

𝑋 𝑎𝑥𝑖𝑠 = 𝑋 (𝑏𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥) (7)

𝑌 𝑎𝑥𝑖𝑠 = 𝑌 (𝑏𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥) (8)

𝑠𝑚𝑒𝑙𝑙𝑏𝑒𝑠𝑡 = 𝑏𝑒𝑠𝑡𝑠𝑚𝑒𝑙𝑙 (9)

Step 7. Enter iteration optimization, repeatedly execute Steps
2 to 5, and judge whether the optimal taste concentration is
better than the optimal smell concentration of the previous
iteration or not and the current iteration number is less than
the maximum iteration number max𝑔𝑒𝑛; if yes, Step 6 is
executed.

This paper introduces a new FOA, which is TFOA [13].
The optimization algorithm has no change on the two main
parameters. Instead, the direction of iteration is strategically
optimized, and it solves the problem of falling into a local
optimal solution in the solving process. The results of each
iteration are recorded. When the algorithm is locally opti-
mal, 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑝𝑜𝑝 represents the best individual [13, 14], and𝑏𝑎𝑑𝑃𝑜𝑝 represents the worst individual in each iteration. The
size of the Drosophila population is represented by 𝑠𝑖𝑧𝑒𝑝𝑜𝑝.
The final direction of the iteration is represented by the
following formula:

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

=
{{{{{{{{{

1 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑝𝑜𝑝𝑗 > 𝑏𝑎𝑑𝑃𝑜𝑝𝑗𝑖
−1 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑝𝑜𝑝𝑗 < 𝑏𝑎𝑑𝑃𝑜𝑝𝑗𝑖
𝑅𝑎𝑛𝑑𝑜𝑚𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑝𝑜𝑝𝑗 = 𝑏𝑎𝑑𝑃𝑜𝑝𝑗𝑖

(10)

Thenew individual generation method is as shown in (11).

𝑖𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑚𝑖 = 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑝𝑜𝑝𝑚
+ (𝑟𝑎𝑛𝑑𝑖𝑢𝑠 ∗ 𝑅𝑎𝑛𝑑𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) (11)

𝑖𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙0 = 𝑟𝑎𝑛𝑑 (1, dim 𝑒𝑛𝑠𝑖𝑜𝑛)
𝑖𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑖 = 𝑖𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑖−1 ∗ (𝐸 − 𝑖𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑖−1)

∗ 4
(12)

In (12), the entire vector is 1.
The main steps of the TFOA [13] are as follows.

Step 1. The Drosophila population is produced according
to (11), that adaptability of the Drosophila individual is
calculated, and the worst individual is recorded.

Step 2. The optimal smell concentration and initial position
of the population were changed. In this process, if the smell
concentration is consistent, the iteration is continued and the
count is increased.

Step 3. During the iteration, if the algorithm ends prema-
turely, (11) is executed to jump out of local optimization.
When a better fruit fly is discovered, the population’s location
is updated and the search continues around it. If it ends
too quickly, expand the search radius and continue iterative
optimization. When the traction operation is complete, the
worst person is rerecorded in each iteration process.

Step 4. Steps 1 to 3 are repeatedly executed, and whether
the optimal taste concentration is better than the optimal
taste concentration of the previous iteration is judged, until
meeting the requirements of the algorithm.

2.2. Support Vector Machine (SVM). SVM is developed from
statistical theory [15]. LSSVR is developed fromSVMthrough
special treatment [11]; LSSVR is suitable for regression model
of static nonlinear function estimation. SVM algorithm has
been applied to classification problems since it was proposed;
now in the classification direction is very mature, the clas-
sification method is effectively extended, and the current
extension is also very effective in fitting curves and nonlinear
regression estimation.

Trained array {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑙}, the 𝑖𝑡ℎ value in this
array combination, is representing 𝑥𝑖 ∈ 𝑅𝑑, it is known that
there are vectors 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋅ ⋅ ⋅ , 𝑥𝑖𝑑) of 𝑑 dimensions at
the same time, and that output result is set to 𝑦𝑖 ∈ 𝑅. The
missing parameter 𝜀 is

𝑦 − 𝑓 (𝑥)𝜀 = {{{
0 𝑦 − 𝑓 (𝑥) ≤ 𝜀𝑦 − 𝑓 (𝑥) − 𝜀 𝑦 − 𝑓 (𝑥) > 𝜀 (13)

When the loss parameter is 0, assuming that the difference
between the estimated value and the actual value of the final
result obtained by training the 𝑓(𝑥) into the support vector
machine is smaller than the lost parameter, finding a proper
kernel function 𝑘(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖) ⋅ 𝜑(𝑥𝑗) and mapping the
kernel function 𝑘(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖) ⋅ 𝜑(𝑥𝑗) to a linear high-
dimensional space for regression prediction, assumehere that
the function is

𝑓 (𝑥) = 𝜔 ⋅ 𝜑 (𝑥) + 𝑏 (14)

In formula (14), 𝜔 ∈ 𝑅𝑑 is expressed as the weight value
of the vector, 𝑏 ∈ 𝑅 represents the threshold calculated for
the data, and (⋅) is expressed as the inner product operation
of the data. The value of 𝑏 and 𝜔 is finally obtained. Error
function under the premise that meets 𝜔𝑇𝜔/2 minimizes 𝜀,𝜉𝑖, 𝜉𝑖∗ are added to the optimization calculation, and the final
expression is
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min
𝑤,𝑏,𝜉𝑖,𝜉𝑖

∗

‖𝑤‖22 + 𝐶 𝑙∑
𝑖=1

(𝜉𝑖 + 𝜉𝑖∗) (15)

s.t. 𝑦𝑖 − (𝑤 ⋅ 𝜑 (𝑥𝑖) + 𝑏) ≤ 𝜀 + 𝜉𝑖 (16)

(𝑤 ⋅ 𝜑 (𝑥𝑖) + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖∗ (17)

𝜉𝑖, 𝜉𝑖∗ ≥ 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑙 (18)

max [
[
−12
𝑙∑
𝑖=1

𝑙∑
𝑗=1

(𝑎𝑖 − 𝑎𝑖∗) (𝑎𝑗 − 𝑎𝑗∗) 𝑘 (𝑥𝑖, 𝑥𝑗) − 𝜀 𝑙∑
𝑖=1

(𝑎𝑖 + 𝑎𝑖∗) + 𝑙∑
𝑖=1

𝑦𝑖 (𝑎𝑖 − 𝑎𝑖∗)]]
(19)

s.t.
𝑙∑
𝑖=1

(𝑎𝑖 − 𝑎𝑖∗) = 0 (20)

0 ≤ 𝑎𝑖, 𝑎𝑖∗ ≤ 𝐶 (21)

It is assumed here that the penalty parameter 𝐶 is a
normal number. The above problems are solved optimally,
support vector (𝑎𝑖 − 𝑎𝑖∗) ̸= 0, and 𝑤 = ∑𝑙𝑖=1(𝑎𝑖 − 𝑎𝑖∗)𝜑(𝑥𝑖)
Then, there is

𝑏 = 1𝑁𝑁𝑠V
{{{
∑
0≤𝑎𝑖≤𝐶

[
[
𝑦𝑖 − ∑
𝑥𝑗⊂𝑠V

(𝑎𝑗 − 𝑎𝑗∗) 𝑘 (𝑥𝑗, 𝑥𝑖)

− 𝜀]
]
+ ∑
0≤𝑎∗𝑖≤𝐶

[
[
𝑦𝑖 − ∑
𝑥𝑗⊂𝑠V

(𝑎𝑗 − 𝑎𝑗∗) 𝑘 (𝑥𝑗, 𝑥𝑖)

+ 𝜀]
]
}}}

(22)

The numb of standard support vectors in (22) is 𝑁𝑁𝑠V;
obtain a 𝑏 threshold and a regression function:

𝑓 (𝑥) = ∑
𝑥𝑖∈𝑠V

(𝑎𝑖 − 𝑎𝑖∗) 𝑘 (𝑥𝑖, 𝑥) + 𝑏 (23)

There are three kernel functions commonly used in
support vector machines:

First: kernel function polynomial

𝐾(𝑥𝑖, 𝑥𝑗) = [(𝑥𝑖 ⋅ 𝑥𝑗) + 1]𝑞 (24)

The coefficient of the polynomial in (24) is 𝑞, the value
is determined by the application itself, and the parameter is
adjusted according to the actual situation.

Second, the radial basis function (RBF kernel function)

𝐾(𝑥𝑖, 𝑥𝑗) = exp
{{{−
𝑥𝑖 − 𝑥𝑗22𝜎2

}}}
(25)

The core parameter in (25) is 𝜎; it uses Gaussian kernel
function of mean square error; the larger the value of 𝜎, the
wider the width of the Gaussian function.

Third, Sigmoid kernel function is as follows:

𝐾(𝑥𝑖, 𝑥𝑗) = 1
(1 + exp (− 𝑥𝑖 − 𝑥𝑗)) (26)

The LSSVR represents the following:

𝑓 (𝑋) = 𝑛∑
𝑖=1

𝑎𝑖𝐾(𝑥, 𝑥) + 𝑏 (27)

𝐾(𝑥𝑖, 𝑥𝑗) = exp
{{{−
𝑥𝑖 − 𝑥𝑗22𝜎2

}}}
(28)

We need to optimize the selection of parameter 𝐶 and 𝛿
before conducting sample training.

3. The Proposed Methodology

3.1. Process of Image Restoration Processing. Assuming that
the original image is 𝑓(𝑥, 𝑦), the degraded image may be
expressed as

𝑔 (𝑥, 𝑦) = 𝐻 [𝑓 (𝑥, 𝑦)] + 𝜂 (𝑥, 𝑦) (29)

In (29),𝐻 denotes a degraded image, and 𝜂(𝑥, 𝑦) denotes
additive noise.

If 𝐻 is a linear, spatially invariant process, the degraded
image may be represented in the spatial frequency domain as

𝑔 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) ∗ ℎ (𝑥, 𝑦) + 𝜂 (𝑥, 𝑦) (30)

In (30), ∗ is a convolution operation, 𝑓(𝑥, 𝑦), ℎ(𝑥, 𝑦),𝜂(𝑥, 𝑦) are original image, degraded image, and additive
noise. Image restoration is a parameter estimation process.
When the fuzzy kernel function is Gaussian, the degeneration
process is called Gaussian blur. This type of blurred image
can be seen as a result of convolution operation between
the convolution kernel of Gaussian distribution and the clear
image. Namely, that pixel value of a certain point of the image
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and the surrounding pixel value are weighted and averaged
according to the weight of the Gaussian distribution to obtain
the pixel value after the position is degraded.

3.2. Optimization Algorithm of TFOA Based on LSSVR. In
this paper, TFOA-LSSVR is introduced into the mapping
relationship model between images. In the process of image
restoration, the selection criteria of the original image and
the blurred image are consistent. Assuming that the size of
the image is 𝑚 × 𝑛, a 𝑖 − 1 window of an original image
corresponds to the corresponding center pixel in the process
of constructing a training sample. If there is a degraded image
completely recorded by the near window, we can get (𝑚 − 𝑖 +1) × (𝑛 − 𝑖 + 1) support vectors in the process of degradation,
and vector dimension is 𝑖2 ×1. We represents this vector with𝑋𝑖 and the pixel 𝑖 with 𝑌𝑖, then image restoration steps are as
follows [12].

Step 1. We initialize the TFOA.

Step 2. We set up a two-dimensional space. According to
Section 2.1, we have the following formula:

𝐷 (𝑖, 1) = √𝑋 (𝑖, 1)2 + 𝑌 (𝑖, 1)2
𝐷 (𝑖, 2) = √𝑋 (𝑖, 2)2 + 𝑌 (𝑖, 2)2

(31)

𝑆 (𝑖, 1) = 1𝐷 (𝑖, 1)
𝑆 (𝑖, 2) = 1𝐷 (𝑖, 2)

(32)

Step 3. The mean square error (MSE) function is used as
the odor concentration function of TFOA when a mapping
relationship is established between the original image and the
degraded image.

𝑀𝑆𝐸 = ∑𝑚𝑛𝑖=1 (�̂� − 𝑡)2𝑚𝑛 (33)

In (33), �̂� represents the original image, 𝑡 represents a
restored image, the size of the image is 𝑚 × 𝑛, and the
parameter [𝐶, 𝛿] in the least squares support vector machine
is represented by the parameter [𝑆, (𝑖, 1), 𝑆(𝑖, 2)].
Step 4. The odor concentration value is calculated by com-
paring the calculated minimum odor concentration and
bringing this value into the LSSVR model, while preserving
the optimal location.

Step 5. Carrying out iteration optimization, repeating
Steps 2-4, and stopping iteration optimization when the
iteration number reaches the maximum, the parameters[𝑆, (𝑖, 1), 𝑆(𝑖, 2)] are obtained, and then [𝐶, 𝛿] are obtained.

After the training sample is completed, the corresponding
picture attribute is created by using the same picture size
when a new degraded image needs to be restored. Through
the LSSVR model, the pixel value of the image is predicted,
and finally the pixel value of the image is displayed by pixels.

4. Experiments and Applications

4.1. Parameter Optimization Analysis of TFOA. The server
was simulated in Windows 7 operating system (i5-3210M,
2.5 GHz CPU, 8.00 GB), and the TFOA algorithm was
implemented using Matlab2014a. The simulation experiment
is carried out by taking the minimum value of 10 benchmark
functions [14, 16] as an example. The effects of parameters
on the convergence accuracy and speed of the algorithm
were analyzed and compared. Finally, the appropriate 𝑠𝑖𝑧𝑒𝑝𝑜𝑝
and max 𝑔𝑒𝑛 were determined. Name, function form, search
interval, and function optimal value of 10 benchmark func-
tions are in Table 1. The picture material used in this paper
comes from [17].

4.1.1. Effect of Population Size on Algorithm Performance. In
the experiment, we use progressive approaches to population
size 𝑠𝑖𝑧𝑒𝑝𝑜𝑝. The final experimental results were analyzed
to find out the relationship among the population size, the
convergence accuracy, and time complexity of the algorithm.
The parameters were set as follows: population size separate
values (5,10,15,20); max𝑔𝑒𝑛 is 150 times; optimization itera-
tive step is valued by TFOA algorithm. The search interval is
shown in Table 1. The optimal mean value, average running
time, and relative change rate of convergence accuracy of
TFOA global optimization function are taken as evaluation
indexes. The experimental results of 10 test functions after 50
consecutive runs are shown in Table 2.

In Table 2, optimized mean represents the arithmetic
mean of the minimum value of the global optimization func-
tion; it reflects the convergence accuracy of the algorithm: the
smaller the value, the higher the convergence accuracy of the
algorithm. Average operation time is the arithmetic average
of the algorithm’s run time,which is the average time required
for the algorithm to run once. Convergence condition refers
to optimal mean corresponding to low population size-
optimal mean corresponding to high population size/optimal
mean corresponding to low population size. It shows that
the convergence accuracy of the algorithm increases with
the increase of population size, and the larger the value, the
greater the convergence accuracy of the algorithm. At the
same time, as we can see from Table 2, with the increase
of 𝑠𝑖𝑧𝑒𝑝𝑜𝑝, the convergence accuracy of the algorithm is
improved, and the average running time is proportional to
the increase; however, with the increase of population size,
the relative rate of change of convergence accuracy shows
a downward trend. The trend line of optimized mean of 10
test functions with increasing population size is shown in
Figure 2. In the figure, the ordinate is expressed by optimized
mean and the abscissa is population size.

As we can see from Figure 2, at the initial stage of
population size increase, the optimized mean decreases
monotonically with the increase of population size, and the
relative rate of change is the largest; that is, the convergence
accuracy of the algorithm is the largest. In the middle stage
of population size increase, the optimized mean continues
to decrease monotonically with increasing population size,
but the relative rate of change decreases; at the later stage of
population increase, on functions F4, F5, and F8, optimized
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Table 1: The classical test functions.

Function ID Function Name Equation Function Type Dimension Bounds of 𝑋

F1 Classic 𝑓1 (𝑥, 𝑦) = −𝑥 cos (2𝑝𝑦) − 𝑦 sin(2𝑝𝑥) Multimodal 2 UB(2)
LB(-2)

F2 Bohachevsky 𝑓2 (𝑥, 𝑦) =𝑥2+𝑦2−0.3∗cos(3𝜋𝑥)+0.3∗cos(4𝜋𝑦)+0.3 Multimodal 2 UB(10)
LB(-10)

F3 Step 𝑓3 (𝑥) = 𝑛∑
𝑖=1
(⌊𝑥𝑖 + 0.5⌋)2 Unimodal 30 UB(100)

LB(-100)

F4 Easom 𝑓4 (𝑥) = − cos x × cos y × 𝑒−(𝑥−𝜋)2−(𝑦−𝜋)2 Multimodal 2 UB(10)
LB(-10)

F5 Sphere 𝑓5 (𝑥) = 𝑛∑
𝑖=1
𝑥2𝑖 Unimodal 30 UB(100)

LB(-100)

F6 Rastrigin 𝑓6 (𝑥) = 𝑛∑
𝑖=1
(𝑥2𝑖 − 10 cos (2𝜋𝑥𝑖) + 10) Multimodal 30 UB(5.12)

LB(-5.12)

F7 Quartic 𝑓7 (𝑥) = 𝑛∑
𝑖=1
𝑖𝑥4𝑖 + rand ( ) Unimodal 30 UB(1.28)

LB(-1.28)

F8 Sum squares 𝑓8 (𝑥) = 𝑛∑
𝑖=1
𝑖𝑥2𝑖 Unimodal 30 UB(100)

LB(-100)

F9 Ackley
𝑓9 (𝑥) = −20 exp(−0.2√ 1𝑛

𝑛∑
𝑖=1
𝑥2𝑖)

Multimodal 30
UB(32)

− exp(1𝑛
𝑛∑
𝑖=1

cos(2𝜋𝑥𝑖)) + 20 + 𝑒 LB(-32)

F10 Griewank 𝑓10 (𝑥) = 14000
𝑛∑
𝑖=1
𝑥2𝑖 − 𝑛∏
𝑖=1

cos( 𝑥𝑖√𝑖) + 1 Multimodal 30 UB(100)
LB(-100)

mean continues to decrease with increasing population size,
but the relative rate of change is also smaller. Therefore, the
synthesis of the above analysis can draw the following two
conclusions: Firstly, with the increase of population size, the
time cost of the algorithm also increases. Secondly, with
the increase of population size, the convergence accuracy
of the algorithm is improved; however, with the increase of
population size, the convergence accuracy of the algorithm
cannot be improved significantly, because it is easy to fall
into local optimum at the later stage of algorithm iteration.
Therefore, the appropriate population size can find the best
balance between algorithm performance and running time.
In this paper, 15 is chosen as the population size of TFOA.

4.1.2. Influence of Maximum Iteration Number on Algo-
rithm Performance. In the experiment, we use progressive
approaches to population size max𝑔𝑒𝑛; the parameters were
set as follows:max 𝑔𝑒𝑛 separate values are 10, 50, 150, 500, and
1000, 𝑠𝑖𝑧𝑒𝑝𝑜𝑝 is 15, and the search interval is shown in Table 1.
The optimalmean value obtained from theminimumvalue of
the global optimization function and the running times of the
algorithm are taken as evaluation indexes. The experimental
results of 10 test functions after 50 consecutive runs are shown
in Table 3, the larger max 𝑔𝑒𝑛, the higher the accuracy of the
optimized mean and the higher the average running time.
The trend line of the optimized mean values of the 10 test

functions as max 𝑔𝑒𝑛 increases is shown in Figure 3, with
the ordinate indicated by optimized mean, and the abscissa
is maximum iteration number.

In Figure 3, we can draw the following two conclusions:
Firstly, increasing the max𝑔𝑒𝑛 will inevitably increase the
computation time consumed by the algorithm. Secondly, the
convergence accuracy of the algorithm can be improved by
increasing the max𝑔𝑒𝑛, but that continuous increase of the
maximum iteration numb does not lead to the continuous
and obvious improvement of the convergence precision of
the algorithm; this is because it is easy to fall into local
optimum at the later stage of algorithm iteration. Therefore,
the appropriate maximum number of iterations can find the
best balance between algorithm performance and runtime.
The max 𝑔𝑒𝑛 used in this paper is 500.

4.2. Image Restoration Analysis of LSSVM- TFOA. The server
was simulated in edge computing. In order to make the
algorithm convincing, we add different types of blur and
noise to the standard image for testing. In the experiment,
we use the size 512 × 512 for both the training image and
the test image through normalization processing. Use the
optimization results in the previous section that 𝑠𝑖𝑧𝑒𝑝𝑜𝑝 is
15 and max 𝑔𝑒𝑛 is 500. The initial position of Drosophila
is random. In order to evaluate the image restoration effect
quantitatively, the peak signal-to-noise ratio (PSNR) and
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Table 2: Effect of population size on algorithm performance.

Function Evaluation index 𝑠𝑖𝑧𝑒𝑝𝑜𝑝
5 10 15 20

F1
Optimized mean 4.450 4.398 4.381 4.380

Average operating time (s) 0.617 0.953 1.385 1.671
Convergence condition - 1.1709 0.3843 0.0137

F2
Optimized mean 8.6098 8.6059 8.6046 8.6045

Average operating time (s) 0.543 0.969 1.421 1.606
Convergence condition - 0.0453 0.0151 0.0012

F3
Optimized mean 0.002541 0.002436 0.002412 0.002408

Average operating time (s) 0.586 0.849 1.287 1.599
Convergence condition - 4.1322 0.9852 0.1658

F4
Optimized mean 1.34003E-05 1.29E-05 1.28E-05 1.26E-05

Average operating time (s) 0.614 1.265 1.68 1.55
Convergence condition - 3.5632 2.1095 0.8419

F5
Optimized mean 0.0733 0.0409 0.03784 0.0301

Average operating time (s) 0.726 1.1 1.233 1.807
Convergence condition - 44.2019 7.4817 20.4545

F6
Optimized mean 8.8113 6.5458 5.44 4.728

Average operating time (s) 0.76 0.985 1.233 1.586
Convergence condition - 25.7113 16.8933 13.0882

F7
Optimized mean 15.6435 15.1187 14.2415 14.1232

Average operating time (s) 0.579 0.863 1.321 1.592
Convergence condition - 3.3547 5.8021 0.8307

F8
Optimized mean 2.5632 2.1998 1.6826 1.4576

Average operating time (s) 0.564 0.886 1.253 1.605
Convergence condition - 14.1776 23.5112 13.3722

F9
Optimized mean 0.2044 0.2028 0.1475 0.1382

Average operating time (s) 0.603 1.061 1.302 1.793
Convergence condition - 0.7828 27.2682 6.3051

F10
Optimized mean 1.008 1.004 1.002 1

Average operating time (s) 0.652 1.705 1.72 2.95
Convergence condition 0.3968 0.1992 0.1996

normalized mean square error (NMSE) are used to evaluate
the image restoration performance.

Experiment 1 (establishing a mapping relation of image
restoration). In order to establish the mapping relationship
between original image and blurred image, we add Gaussian
blur (5 × 5, 𝛿 = 0.8) and Gaussian random noise (vari-
ance=0.01) to Barbara image. Blurred image is generated by
convolution of original image and Gaussian filter. Barbara’s
image restoration model is constructed from degraded and
original Barbara images. After 500 iterations of training, the
optimization results for parameters𝐶 and 𝛿 are 5.2 and 0.6231.
In order to verify the image restoration effect of the algorithm
in this paper, the support vector regression [15] and BPneural
network algorithm [10] are selected to compare, and the final
image restoration effect is shown in Figure 4 and Table 4.

From the final training results, we can know that the
mapping approach can heighten the image quality of blurred
image. The PSNR of BP neural network algorithm is low,
while the NMSE is higher, which is because its initial
parameters need to be selected and corrected. SVR method
is better than BP neural network in image restoration, but it
takes more time in cross-validation of parameters. However,
this method takes less time and has higher PSNR and lower
NMSE, which shows better image restoration performance.

Experiment 2 (comparison of degraded image restoration
using the trained mapping). The TFOA-LSSVR mapping
model proposed in this paper is applied to different blurred
images. In order to make the algorithm convincing, there
are three blurred ways, namely, motion blur (𝐿 = 20, 𝛿 =30), disk blur (𝑅 = 10), and passivation blur. They are,
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Figure 2: The relationship between population size and optimized mean of F1-F10.
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Figure 3: The relationship between max𝑔𝑒𝑛 and optimized mean of F1-F10.
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Table 3: Effect of maximum iteration number on algorithm performance.

Function Evaluation index max𝑔𝑒𝑛
10 50 150 500 1000

F1 Optimized mean 4.4052 4.3775 4.3584 4.3456 4.3448
Average operating time (s) 0.311 0.943 1.771 6.14 11.16

F2 Optimized mean 8.6921 8.6172 8.602 8.6002 8.6001
Average operating time (s) 0.275 0.658 1.751 5.871 10.983

F3 Optimized mean 0.002637 0.002511 0.002412 0.002409 0.002406
Average operating time (s) 0.283 1.078 1.805 5.399 11.393

F4 Optimized mean 1.88E-05 1.35E-05 1.24E-05 1.20E-05 1.18E-05
Average operating time (s) 0.246 0.662 1.861 5.345 11.085

F5 Optimized mean 0.5993 0.0533 0.022 0.002 0.000858
Average operating time (s) 0.366 0.872 1.755 5.382 11.543

F6 Optimized mean 8.3914 8.0295 7.1533 7.12 7.1
Average operating time (s) 0.351 0.704 1.733 5.417 11.641

F7 Optimized mean 15.9877 15.7825 15.2618 14.9422 14.6644
Average operating time (s) 0.317 0.741 2.386 5.962 11.726

F8 Optimized mean 2.304 2.0313 1.1926 1.0082 1.002
Average operating time (s) 0.248 0.684 1.798 5.516 11.231

F9 Optimized mean 1.2648 0.2589 0.1368 0.04961 0.0209
Average operating time (s) 0.237 0.734 1.74 5.982 11.317

F10 Optimized mean 1.013 1.011 1.008 1.0025 1.0022
Average operating time (s) 0.314 1.384 2.837 8.16 17.394

Table 4: Experimental results of different approach.

Approach PSNR NMSE Time Cost
Blur image 18.1292 0.1495 -
BP neural network 23.3441 0.0914 13.2354
Support vector regression 26.9224 0.0758 20.1126
TFOA-LLSVR 28.6251 0.0652 9.1128

respectively, applied to three original standard images for blur
processing simulation, and Gaussian noise is added to the
motion blur images and disk blur images. In order to further
explain the image restoration effect, Lucy-Richardson (LR)
algorithm [18] is used to restore the different degraded image.
The specific results are shown in Figure 5 and Table 5.

In this experiment, TFOA-LSSVR can improve image
quality in PSNR and NMSE. But LR algorithm’s recovery
result is not very satisfactory. For motion blurred images
added with Gaussian noise and disk blurred images added
with Gaussian noise, the final image clarity of LR algorithm
is not improved, and a large number of spots appear. For
passivation blurred images, LR results showed some blurring
and a large number of spots too. All TFOA-LSSVR algorithms
recover images that are clearer than blurred images, andmost
of the noise is reduced. Therefore, the TFOA-LSSVR model
in this paper has better application effect in image restora-
tion.

5. Conclusion

This paper proposes an image restoration method in edge
computing environment which achieves good image real-
time restoration results. In this paper, TFOA and LSSVR are
combined to establish a nonlinear mapping model for image
restoration. Firstly, the population size and the maximum
iteration number of TFOA are determined by using 10 test
functions. Then, the LSSVR error function is optimized as
an adaptive function of TFOA. The LSSVR with optimized
parameters is used to establish the degradation relationship
between the original image and the blurred image. Finally,
the image restoration effect is verified. In order to verify
the validity of the mapping method, the BP network and
the SVR algorithm were compared, and the feasibility of
the combination of TFOA and LSSVR was verified. At
the same time, the nonlinear mapping model constructed
by this algorithm can be used to recover the degenerate
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Table 5: Comparison of different restored methods.

Blurs & Noise Blur image LR TFOA-LLSVR
PSNR NMSE PSNR NMSE PSNR NMSE

Motion Blur 19.2455 0.1489 19.3155 0.1326 24.3776 0.0689
Disk blur 17.9981 0.0986 18.3864 0.0997 22.1244 0.0891
Passivation blur 18.9987 0.0834 21.9166 0.0792 25.7311 0.0667

(a) Original Barbara image (b) Blurred Barbara image (c) Restored by BP neural network

(d) Restored by SVR (e) Restored by TFOA-LLSVR

Figure 4: The final image restoration effect.

images in the training set and have better image restora-
tion than the LR algorithm. The experimental results show
that the combination of TFOA and LSSVR can achieve a
satisfactory recovery effect. This method has advantages in
other areas of competition, especially in terms of CPU time
cost.
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(a) Motion blurred images (b) Disk blurred images (c) Passivation blurred images

(d) Restored by LR

(e) Restored by the method proposed in this paper

Figure 5: The specific results.
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