
Research Article
Dynamic Pricing for Resource Consumption in Cloud Service

Bin Cao ,1 Kai Wang,1 Jinting Xu,1 Chenyu Hou,1 Jing Fan ,1 and Hangning Que2

1College of Computer Science & Technology, Zhejiang University of Technology, Hangzhou, China
2NetEase, Inc., Hangzhou, China

Correspondence should be addressed to Jing Fan; fanjing@zjut.edu.cn

Received 24 February 2018; Accepted 19 April 2018; Published 24 May 2018

Academic Editor: Shangguang Wang

Copyright © 2018 Bin Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper studies dynamic pricing for cloud service where different resources are consumed by different users. The traditional
cloud resource pricing models can be divided into two categories: on-demand service and reserved service. The former only takes
the using time into account and is unfair for the users with long using time and little concurrency.The latter charges the same price
to all the users and does not consider the resource consumption of users. Therefore, in this paper, we propose a flexible dynamic
pricing model for cloud resources, which not only takes into account the occupying time and resource consumption of different
users but also considers the maximal concurrency of resource consumption. As a result, on the one hand, this dynamic pricing
model can help users save the cost of cloud resources. On the other hand, the profits of service providers are guaranteed. The key
of the pricing model is how to efficiently calculate the maximal concurrency of resource consumption since the cost of providers is
dynamically varied based on the maximal concurrency. To support this function in real time, we propose a data structure based on
the classical B+ tree and the implementation for its corresponding basic operations like insertion, deletion, split, and query. Finally,
the experiment results show that we can complete the dynamic pricing query on 10 million cloud resource usage records within 0.2
seconds on average.

1. Introduction

In recent years, the development of cloud computing is
extremely rapid [1].With the cloud computing, we can deploy
different kinds of computing resources in the cloud, rather
than a specified server [2]. In other words, there is no
need to use hardware equipment, which is very convenient
for the companies or organizations so they can focus on
their core businesses rather than expending resources on
computer infrastructure and maintenance [3–7]. Therefore,
more and more users are looking for the cloud computing,
whichmakes the cloud resource providers emerge. Due to the
reason that the service deployed in the cloud may migrate
between different resources, and in the meantime mobile
users such as smart devices cause the dynamic change in
resource consumption, hence, a dynamic pricing scheme is
needed for both service providers and consumers.

The traditional cloud resource pricing models can gener-
ally be divided into two categories.Thefirst one is on-demand
service; i.e., the users should pay for the fee, which is based

on the using time and the actual resource consumption. This
pricing model is suitable for the short-term users.The second
one is reserved service; i.e., each user pays a fixed fee for a
month or year and could use the cloud resource during this
period of time without limitation.

However, both of the two pricing models have disad-
vantages. For the first one, users are required to pay a huge
fee if they use the cloud resource for a long time. But in
this case, the concurrency for these users maybe little; e.g.,
only one computer is online, and compared with users who
have multiple computers online simultaneously, it is unfair to
charge users with little concurrency. As for the second one,
it is unfair for the users who use the cloud service for little
time monthly. They must pay for the same fee with the users
who use the cloud resource for a long time. Therefore, it is
meaningful to design amore reasonable pricingmodel for the
cloud resources service.

In this paper, for cloud resource, we propose a flexible
dynamic pricing model which takes into account occupying
time, resource consumption, and maximal concurrency. In

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 4263831, 11 pages
https://doi.org/10.1155/2018/4263831

http://orcid.org/0000-0003-1062-6309
http://orcid.org/0000-0002-0140-7043
https://doi.org/10.1155/2018/4263831

2 Wireless Communications and Mobile Computing

our pricing model, the fee of cloud service for the user is
mainly composed of three parts: the monthly rental, the fee
of his maximal concurrency, and the fee of his using time and
resource consumption. As we all know, it is inevitable that
many users use the cloud resources at the same time, which
may cause a great concurrency of resource consumption on
the cloud servers. The greater number of concurrency is,
the higher load is on the cloud servers, which results in
the higher cost for the cloud resource providers. In other
words, the cost of the cloud resource providers is mainly
determined by the maximal concurrency of all the users. In
fact, many service providers also price their service based on
the maximal concurrency of resource consumption that the
user needs, which also motivates our work.

However, the dynamic of service migration and user
mobility causes a large number of records for the resource
consumption, whichmakes it challenging to find themaximal
concurrency of resource consumption in real time when we
calculate the fee of the cloud servers for users in our dynamic
pricing model.

Suppose that there are 100,000 users using the cloud
resources with their usage records. In order to calculate the
cost, the cloud resource provider needs to query their usage
records and work out the maximal concurrency. However,
it is difficult to find the maximal concurrency of resource
consumption since itmay occur at an arbitrary instant time. It
would be extremely inefficient if we calculate the concurrency
for each timestamp when data amount is large. Therefore, we
should design a new efficient algorithm to find the maximal
concurrency. As we know, this problem is similar to the
aggregation query [8] since both of them calculate the overall
information at a given time. However, different from the
aggregation which has a time interval as a given condition,
our problem needs to calculate the maximal concurrency
without a time interval. Therefore, there is no existing algo-
rithm that can solve this problemdirectly as far aswe know. In
order to solve the problem, we propose a data structure called
B++-tree and corresponding operations including insertion,
deletion, and split. Additionally, query processing algorithm
based on B++-tree is also presented. Basically, we solve
the efficiency issue by storing all users records into B++-
tree and calculating the maximal concurrency of resource
consumption by traversing all leaf nodes of B++-tree.

The contribution in this paper can be summarized as
follows:

(1) We propose a more reasonable pricing model of cloud
resource, which takes into account occupying time, resource
consumption, and maximal concurrency.

(2) We propose a data structure called B++-tree and the
operational algorithm based on B++-tree to calculate the
maximal concurrency which is the fundamental of the cost
for the cloud resource providers.

(3) We performed extensive experiments to test our
algorithm.The experiment results show that we can complete
the maximal concurrency query on 10million data within 0.2
seconds.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 introduces the pricing
models we proposed. Section 4 introduces the B++-tree and

the implementation details for its corresponding operations.
Section 5 presents the experiment. Section 6 is our conclu-
sion.

2. Related Work

Our problem can be divided into two major subproblems:
(1) how to design a reasonable pricing model and (2) how
to find the maximal concurrency of resource consumption.
Therefore, we investigate related work from these two parts,
respectively.

For the first part, cloud computing is different from the
classic distributed system. The pricing model of the cloud
service should take the pricing fairness, evolving system
dynamics, and cost of failures into account [9]. The existing
pricing schemes in the cloud market can be summarized into
three types: trading on-demand service, reserved service, and
spot service, respectively [10]. Trading on-demand service
means that the cost of a user is based on the time he used for
cloud resources. But users pay a fixed fare for cloud resources
in the reserved service. These two static pricing schemes are
the main pricing models in the current cloud market [11, 12].
Different from them, the spot service is a dynamic pricing
scheme where users’ payments depend on the relation of
their demand and the available cloud resource. Based on the
main idea of the spot model, many kinds of dynamic pricing
model have been proposed in recent literature, like auction
mechanisms [13–16]. Zheng et al. [17] developed a predator-
prey model which can simulate the interactions between
demand and resource and compute the fare of cloud service.
Zhang et al. [18] proposed a joint pricing and scheduling
strategy and proved the worst-case competitive ratios of the
pricing functions. However, none of above works consider
the dynamic pricing for cloud service that we do since the
algorithm proposed in this paper can efficiently report the
total cost for the providers nomatter how the servicemigrates
or user behaves.

For the second part, as far as we know, there are few
algorithms that can find themaximal concurrency of resource
consumption to solve our problem directly. But we find a
closed problem called temporal aggregations, in which there
are some temporal aggregations operators such as count, sum,
and average. These operators are similar to the method of
calculating the maximal concurrency. There are also many
algorithms to solve temporal aggregations problem. Kline
and Snodgrass [19] proposed aggregation tree, which is a data
structure, to support incremental computation for temporal
aggregation. However, the aggregation tree is unbalanced
whose time complexity is𝑂(𝑛2) for constructing a tree, where
𝑛 is the number of intervals. Moon et al. [20] presented a
balanced tree algorithm whose time complexity is𝑂(𝑛 log 𝑛),
where 𝑛 is the number of intervals. Besides, Moon et al. [21]
also proposed a bucket algorithm and parallelized it on a
shared-nothing architecture. Yang andWidom [22] presented
a data structure called SB-Tree which combines B-tree [23,
24] and segment tree [25]. SB-Tree can feedback a query
in 𝑂(𝑛 log 𝑛) and an update in 𝑂(𝑛 log 𝑛), where 𝑛 is the
number of intervals. However, there is a difference between
our problem and temporal aggregation. The time interval is

Wireless Communications and Mobile Computing 3

Table 1: User records.

User Time interval Concurrency
A [5–10] 2
B [10–20] 4
C [0, 15] 6
D [5, 15] 1

Table 2: Intervals after splitting from Figure 1.

Users Time interval Concurrency
C [0–5] 6
A, C, D [5–10] 9
B, C, D [10, 15] 11
B [15, 20] 4

a condition given in the temporal aggregation. But in our
problem, we do not know when the concurrency of resource
consumption is maximal. In other words, we do not have
a certain time interval in our problem which needs to be
calculated by our algorithm. Therefore, the algorithms for
temporal aggregation cannot solve our problem directly.

3. Pricing Model

As mentioned in Section 1, the maximal concurrency of
resource consumption plays an important role in pricing the
cloud service. In other words, the price is mainly decided
based on the maximal concurrency on cloud servers at the
same time.

To further illustrate the meaning of the maximal concur-
rency, we give an example as follows. Table 1 and Figure 1
show the using time and usage records of four users, A, B,
C, and D. Each user record consists of a time interval and its
concurrency. The time interval represents the time range of
users using the cloud resources. We can easily see that user
A uses the cloud resources in time interval [5, 10] and his
concurrency is 2.

According toTable 1 and Figure 1, we can split the original
interval again, which is shown in Table 2. In Table 2, obvi-
ously we can see that 11 is all the users’ maximal concurrency
of resource consumption. So we find out the cost of the cloud
resource provider. After that, we can calculate the user’s price
based on his usage data and the profit for the cloud resource
provider.

Next, based on the maximal concurrency of resource
consumption, we can design the following price model.

3.1. Pricing Model

Modeling the Concurrency. Suppose that there is a rate 𝑞,
which means the cost of each concurrency for the cloud
service provider. In addition, in a certain month, the total
number of users is 𝑛 and the maximum concurrency of
resource consumption is 𝑚. Therefore, the cost of the cloud
service provider is 𝐶 = 𝑞 × 𝑚. As for users, we propose a
new pricing model. Firstly, each user needs to pay for 𝐵 as
the monthly rental. In addition, the provider will charge a fee

0 5 10 15 20 25

A,2
B,4

C,6
D,1

Figure 1: Graphical representation of user records.

1 2 3 4 5 6 7 t

4 3

7
5 2

User Ｏ1

User Ｏ2

User Ｏ3

Figure 2:The consumption of the cloud server.

for each user based on his maximal concurrency. Therefore,
a user 𝑢𝑖 should pay price(𝑢𝑖) = max𝑖 × 𝑞 + 𝐵 for his resource
consumption. Finally, the profit of the cloud service provider
is

profit =
𝑛

∑
𝑖=1

(max𝑖 × 𝑞 + 𝐵) − 𝑚 × 𝑞. (1)

Example. As shown in Figure 2, assume that the user’s
monthly fare 𝑏 = 1, the rate 𝑞 = 2. From time 1 to 7 is amonth.
Themaximum concurrency of each user 𝑢1, 𝑢2, and 𝑢3 is 4, 7,
and 5, respectively. The cloud service fare of users 𝑢1, 𝑢2, and
𝑢3 is price(𝑢1) = 4 × 2 + 1 = 9, price(𝑢2) = 7 × 2 + 1 = 15,
and price(𝑢3) = 5 × 2 + 1 = 11. The maximum concurrency
of resource consumption is the dotted line part in the figure,
which is𝑚 = 4+ 7+ 5 = 16. Therefore, the profit of the cloud
service provider is profit = 9 + 15 + 11 − 16 × 2 = 3.

However, this pricing model has some drawbacks. For
example, the user 𝑢3 uses the cloud server for a little time.
But he needs to pay for more fare than user 𝑢1 because of his
higher concurrency.Therefore, the merely using concurrency
model is not reasonable in some special cases, and we further
improve this model by taking resource consumption into
account.

Combining Resource Consumption. Assume that a user 𝑢𝑖 has
𝑥 records of cloud resource consumption on the current
month and each record starts at 𝑡𝑖 and ends at 𝑡

󸀠
𝑖 . The concur-

rency of the record is 𝑚𝑡𝑖 . Therefore, the cloud consumption
of 𝑢𝑖 is 𝑈𝑖 = ∑𝑥𝑖=1(𝑡

󸀠
𝑖 − 𝑡𝑖)𝑚𝑡𝑖 . In addition, the maximal

concurrency of user 𝑢𝑖 is max𝑖. The final cloud service fare
of 𝑢𝑖 can be calculated by following equation:

price (𝑖) = 𝛼𝑈𝑖𝑝 + (1 − 𝛼)max𝑖 𝑞 + 𝐵, (2)

where 0 < 𝛼 < 1 is a factor that adjusts the using time
and the maximum concurrency of users. 𝑝 is the resource
consumption rate which means the cost of each resource
consumption. 𝑞 is the maximum concurrency rate. 𝑏 is the
monthly rental of cloud service. The values of 𝛼, 𝑝, 𝑞, and 𝑏
can be adjusted according to actual needs.

4 Wireless Communications and Mobile Computing

10 15 20

64 12 17 25 30
N4N3N2N1

N0

Figure 3: An example of B+tree.

Example. Still using Figure 2 as an example, assume that the
user’s monthly rental 𝑏 = 1, the maximum concurrency
rate 𝑞 = 2, the usage rate 𝑝 = 1, and 𝛼 is 0.5. Then the
consumption of users 𝑢1, 𝑢2, and 𝑢3 is 𝑈1 = 4 × 3 + 3 × 1 =
15, 𝑈2 = 7 × 3 = 21, 𝑈3 = 5 × 1 + 2 × 1 = 7. The
maximum concurrency of each user 𝑢1, 𝑢2, and 𝑢3 is 4, 7, and
5, respectively. Therefore, the cloud service pare of users 𝑢1,
𝑢2, and 𝑢3 is price(𝑢1) = 0.5 × 15 × 1 + 0.5 × 4 × 2 + 1 = 12.5,
price(𝑢2) = 0.5 × 21 × 1 + 0.5 × 7 × 2 + 1 = 18.5, and
price(𝑢3) = 0.5×7×1+0.5×5×2+1 = 9.5.The profit of cloud
service providers is profit = 12.5 + 18.5 + 9.5 − 2 × 16 = 8.5.

This pricing model compensates for the defect of the
former price model which only takes the maximum concur-
rency of resource consumption into account. This pricing
model adds the factor of users’ resource consumption, which
makes the model more reasonable. Besides, we can adjust the
coefficient 𝛼 to adapt to different cloud resources and make
the model more flexible.

4. Algorithm Description

In Section 3, we propose a flexible dynamic pricing model
for cloud resources. As the maximal concurrency of resource
consumption plays an important role in the pricing model,
how to efficiently calculate the maximal concurrency of
resource consumption is a difficulty in our problem. Because
when we calculate the price for resource consumption in
cloud service, we should calculate the maximal concurrency
of resource consumption first. Therefore, we propose a new
data structure and the operational algorithms based on it to
solve this problem.

In this part, we will introduce the new data structure
called B++-tree which extends from B+ tree. We first intro-
duce the structure of the B+ tree and then introduce the
structure of the B++-tree. Finally, we introduce the insertion,
deletion, and split operations of B++-tree, which can calculate
the maximal concurrency of resource consumption.

Thenodes of B+ tree can store a lot of index entries, which
helps reduce the height of the tree. Besides, the leaf nodes of
B+ tree are connected by pointers. It is very suitable for the
query. The following is a brief introduction for the B+ tree.

Each B+ tree has a parameter called capacity 𝑐, which
determines the maximal capacity for each node. For each
interior node, it contains 𝑘 (𝑘 < 𝑐) elements and points to
𝑘 + 1 child nodes. For each leaf node, it contains 𝑙 (𝑙 < 𝑐)
elements and have a pointer to its right sibling node as shown
in Figure 3. In this way, it is efficient to traverse all leaf nodes
by utilizing their pointers rather than traversing from the
root.

But a simple B+ tree cannot solve our problem, because
we need to store the concurrency of resource consumption

...

N

… …N.C1 N.C2 N.C3 N.Cj

N.t1 N.t2 N.tj-1

Figure 4: An interior node of B++-tree.

...
F

…

F.t1 F.t2 F.tj-1

F.1F.1F.1 F.j

Figure 5: A leaf node of B++-tree.

into the tree. So we propose a new data structure called B++-
tree, which extends from B+ tree.

4.1. Structure of B++-Tree. Different from B+ tree, we add
an addition attribute for each leaf node of B++-tree, which
is used to store the concurrency of each interval. Note that
the interior nodes keep the same structure as the B+ tree
and do not have the additional attribute. In this way, the
concurrency of all intervals is stored in leaf nodes, and we
can only traverse leaf nodes to obtain the final result, which
improve the performance of our algorithm efficiently.

In the B++-tree, each node can hold up to 𝑐 timestamps.
If the number of timestamps stored in the node exceeds 𝑐, we
should call split (Section 4.4) process to split the overflowed
node into two new nodes. Actually, two adjacent timestamps
in a node represent an interval. The interval is a criterion
which can help us determine the child node that we need
to traverse when we need to insert or delete a new record.
The detailed structures of interior nodes and leaf nodes are as
follows.

Interior Node. The structure of an interior node is shown in
Figure 4. Each interior node contains 𝑗 (𝑗 ≤ 𝑐) intervals, 𝑁 ⋅
𝐼1, . . . ,𝑁 ⋅ 𝐼𝑖, . . . , 𝑁 ⋅ 𝐼𝑗.𝑁⋅𝐶1 to𝑁⋅𝐶𝑗 are the corresponding
pointer to the child nodes. 𝑁 ⋅ 𝐼𝑖 is associated with 𝑁 ⋅ 𝐶𝑖.

𝑁 ⋅ 𝐼𝑖 = [𝑁 ⋅ 𝑡𝑖−1, 𝑁 ⋅ 𝑡𝑖] is the 𝑖th interval. There are two
special conditions:

(1) The start time of 𝑁 ⋅ 𝐼1 is −∞, if node 𝑁 is the root
node or it is the first child. Otherwise, the start time of 𝑁 ⋅ 𝐼1
is𝑁󸀠 ⋅𝑡𝑘−1, where𝑁

󸀠 is the parent node of𝑁 and𝑁󸀠 ⋅𝐶𝑘 points
to𝑁.

(2) The end time of 𝑁 ⋅ 𝐼𝑗 is +∞, if this node is the root
node or it is the last child. Otherwise, the end time of𝑁⋅ 𝐼𝑗 is
𝑁󸀠 ⋅ 𝑡𝑘, where 𝑁󸀠 is the parent node of 𝑁 and 𝑁󸀠 ⋅ 𝐶𝑘 points
to𝑁.

Leaf Node. Figure 5 shows the structure of a leaf node.
Compared with interior nodes, leaf nodes have additional
attributes which store the concurrencies of intervals. The
definition of leaf nodes’ intervals is the same as interior nodes.
Moreover, each leaf node has a pointerwhich points to its next

Wireless Communications and Mobile Computing 5

Input: Interval 𝐼.
Output: B++-tree after inserting 𝐼.
(1) Start from the root node𝑁
(2) for each interval𝑁 ⋅ 𝐼 in 𝑁. do
(3) if interval𝑁 ⋅ 𝐼 intersects with 𝐼
(4) if 𝑁 is the leaf node
(5) Set the common interval of 𝑁 ⋅ 𝐼 and 𝐼 as the new

interval, add V of 𝑁 ⋅ 𝐼 and V of 𝐼 to the new
interval

(6) else
(7) search into the child node 𝑁󸀠 of 𝑁, insert 𝐼 to

𝑁󸀠, back to step (2).
(8) end if
(9) end if
(10) end for

Algorithm 1: Insert operation.

7

2 3

5 10 15

2 4

0 2 1

20

2 0

12

5 4

N4N3N2
N1

N0

Figure 6: An example of B++-tree.

sibling leaf node. Specially, the last leaf node has no pointer.
In addition, there is a header pointer pointing to the first leaf
node.

For example, Figure 6 plots the example of B++-tree. The
first interval of 𝑁0 is [−∞, 5] and the last interval of 𝑁0 is
[15, +∞], because it is a root node. The first interval of 𝑁1
is [−∞, 2], because it is the first child of its parent, and the
concurrency of the interval is 0. The first interval of 𝑁2 is
[5, 7], and the concurrency of the interval is 2.

4.2. Insertion

Main Idea. In this section, we introduce the insert opera-
tion. We define the procedure insert (⟨𝐼, V⟩,𝑁) as an insert
operation, where 𝐼 indicates the user’s usage interval, such as
[5, 10], V indicates the user’s concurrency, and𝑁 indicates the
node that to insert. Insertionwill be firstly processed from the
root node𝑁root. We firstly traverse the root node and find the
intervals which intersect with 𝐼. If 𝑁root ⋅ 𝐼𝑖 intersects with
𝐼, we search in the 𝑁root ⋅ 𝐶𝑖 and traverse it in the same way
until the leaf nodes. When we traverse to a leaf node 𝑁𝑙, we
find the intervals which intersect with 𝐼 and add the V to its
corresponding concurrency.

Description. Algorithm 1 shows the pseudo code of insertion.
The input is the interval 𝐼, and the output is the B++-tree after
insert 𝐼. Suppose that now we want to insert the record ⟨𝐼, V⟩
into the tree. Start from the root node 𝑁 (line (1)), for each
interval 𝑁 ⋅ 𝐼𝑖 of 𝑁:

7
2 3

5 10 15

2 4
0 3 1

20
2 0

12
5 4

N4N3N2N1

N0

Figure 7: The B++-tree after inserting ⟨[2, 4], 1⟩.

(1) If 𝑁 ⋅ 𝐼𝑖 intersects with the time interval 𝐼 and 𝑁 is
a leaf node, and if interval 𝐼 contains 𝑁 ⋅ 𝐼𝑖, then add V to
𝑁⋅𝐼𝑖 directly (line (5)). If interval 𝐼 does not contain𝑁⋅𝐼𝑖 but
only intersects with it, then we take their intersecting interval
as a new interval and add V to the new interval. The original
interval keeps unchanged (line (2)∼(5)).

(2) If 𝑁 ⋅ 𝐼𝑖 intersects with the time interval 𝐼 but𝑁 is an
interior node, then call insert (⟨𝐼, V⟩,𝑁 ⋅ 𝐶𝑖), i.e., regarding
𝑁 ⋅ 𝐶𝑖 asN, executed the algorithm start from the second step
(line (6)∼(7)).

Example. For example, we want to insert ⟨[2, 4], 1⟩ to the tree
in Figure 6. As for 𝑁0, only interval (−∞, 5] intersects with
interval [2, 4], so we insert ⟨[2, 4], 1⟩ to its child node. Then
we find the second interval of𝑁1[2, 4], which is contained by
the interval thatwewant to insert. Sowe add V to𝑁⋅𝐼𝑖 directly,
as shown in Figure 7.

As a slightly more complicated example, suppose that we
want to insert ⟨[5, 8], 4⟩ to the tree in Figure 6. Firstly we
start from the root node 𝑁0. We can see that only interval
[5, 10] intersects with the interval [5, 8], so we should still
call insert (⟨[5, 8], 4⟩,𝑁2). Now 𝑁2 is the leaf node and the
interval [5, 7] and [7, 10] both intersect with the interval
[5, 8]. As for [5, 7], it is contained by [5, 8], so add V directly.
As for [7, 10], [5, 8], they have an intersecting interval [7, 8].
Sowe create a new interval [7, 8] and its concurrency is 3+4 =
7. Other intervals keep unchanged. Then we complete the
insertion of ⟨[5, 8], 4⟩, as shown in Figure 8.

6 Wireless Communications and Mobile Computing

Input: Node 𝑁 which is overflowed;
Output: Node 𝑁1 and𝑁2 which are split from𝑁.
(1) create new node𝑁1 and 𝑁2
(2) 𝑁1 retains the first half intervals of the original node

𝑁; 𝑁2 retains the rest of intervals
(3) if 𝑁 is the interior node
(4) 𝑁1 retains the first half pointers,𝑁2 retains the

rest of pointers
(5) if 𝑁 is the leaf node
(6) 𝑁1 retains the first ⌈𝑛/2⌉ values, 𝑁2 retains the rest values
(7) if 𝑁 is the root node
(8) create a new root node𝑁󸀠, make it be the

parent node of 𝑁1 and𝑁2. Make𝑁󸀠 be the new
root node

(9) else if 𝑁 is not the root node
(10) suppose 𝑁󸀠 is the parent node of 𝑁, make

𝑁󸀠 be the parent of𝑁1 and𝑁2
(11) end if
(12) If 𝑁󸀠 is overflowed
(13) Split𝑁󸀠
(14) end if
(15) end
(16) end

Algorithm 2: Split operation.

7
6 7

5 10 15

2 4
0 2 1

20
2 0

12
5 4

8
3

N4N3N2N1

N0

Figure 8: The B++-tree after inserting ⟨[5, 8], 4⟩.

4.3. Deletion. The deletion operation is similar to the inser-
tion operation. We can regard the deletion operation as an
opposing operation to the insertion. Specifically, if we want
to delete the record ⟨𝐼, V⟩, we can insert a record ⟨𝐼, −V⟩.
Therefore, deletion operation can be easily understood with-
out extra explanation.

4.4. Split

Main Idea. As records are inserted, the number of leaf nodes’
intervals gradually increases. Asmentioned above, each node
can hold up to 𝑐 intervals. Therefore, when a node𝑁 becomes
overflowed, i.e., its number of intervals exceeds 𝑐, we should
split 𝑁 into two nodes 𝑁1 and 𝑁2. The first half intervals of
𝑁 are assigned to 𝑁1 and the remaining intervals of 𝑁 are
assigned to𝑁2. Suppose𝑁󸀠 is the parent node of 𝑁. Because
of the split of 𝑁, the numbers of interval in𝑁󸀠 will be added
1. If 𝑁󸀠 also become overflowed, split𝑁󸀠.

Description. Algorithm 2 shows the pseudo code of split. The
input is the node 𝑁 which is overflowed and the output is
nodes 𝑁1 and 𝑁2 which are split from 𝑁. Suppose that node

𝑁 is overflowed and currently stores 𝑛 intervals. We define
the procedure as split (𝑁). Specific operations are as follows:

(1) Node 𝑁 splits into 𝑁1 and 𝑁2. Node 𝑁1 retains the
first half intervals of the original node 𝑁; i.e., 𝑁1 retains the
first ⌈𝑛/2 − 1⌉ time points. If 𝑁 is an interior node, 𝑁1 also
retains the pointer from𝑁⋅𝐶1 to𝑁⋅𝐶⌈𝑛/2⌉. If𝑁 is a leaf node,
𝑁1 also retains the first ⌈𝑛/2⌉ values from𝑁 ⋅ V1 to𝑁 ⋅ V⌈𝑛/2⌉.
Node𝑁2 retains the rest of intervals, which means𝑁2 retains
the time points from𝑁⋅ 𝑡⌈𝑛/2⌉+1 to𝑁⋅ 𝑡𝑛−1. If𝑁 is the interior
node,𝑁2 also retains the pointer from𝑁⋅𝐶⌈𝑛/2⌉+1 to𝑁⋅𝐶𝑛. If
𝑁 is the leaf node, 𝑁2 also retains the value from𝑁 ⋅ V⌈𝑛/2⌉+1
to𝑁 ⋅ V𝑛 (lines (1)∼(6)).

(2) If node𝑁 is the root node, then create a new root node
𝑁󸀠, which is the parent node of 𝑁1 and 𝑁2. Make 𝑁󸀠 ⋅ 𝑡1 =
𝑁 ⋅ 𝑡⌈𝑛/2⌉, 𝑁

󸀠 ⋅ 𝐶1 = 𝑁1, and 𝑁󸀠 ⋅ 𝐶2 = 𝑁2 (line (7)∼(8)).
(3) If node 𝑁 is not the root node, suppose that 𝑁󸀠 is the

parent node of𝑁, and𝑁󸀠 ⋅𝐶𝑗 = 𝑁. Keep the first 𝑗−1 intervals
of 𝑁󸀠 unchanged. Then starting from the 𝑗 + 1th interval to
the end, move them to the right one. Make𝑁󸀠 ⋅ 𝑡𝑗 = 𝑁 ⋅ 𝑡⌈𝑛/2⌉,
𝑁󸀠 ⋅ 𝐶𝑗 = 𝑁1, and 𝑁󸀠 ⋅ 𝐶𝑗+1 = 𝑁2. If node 𝑁󸀠 is overflowed,
call split (𝑁󸀠) (lines (9)∼(13)).

Example. For example, Figures 9-10 show us how the nodes
split. Suppose that the capacity of the tree is 4. This means
if the number of node’s intervals exceeds 4, the node needs
to be split. The node 𝑁3 in Figure 9 has 5 intervals, [30, 35],
[35, 40], [40, 45], [45, 50], and [50, +∞], whose intervals are
bigger than 4, so the node𝑁3 should be split.

According to the split rules, node𝑁3 split into𝑁4 and𝑁5.
𝑁4 keeps the first 3 intervals: [30, 35], [35, 40], and [40, 45].
𝑁5 keeps the remaining intervals: [45, 50], [50, +∞]. Because

Wireless Communications and Mobile Computing 7

7
20

6

15

8 4
35

8

30

10
2

5
0

40
5

45
1

50
0

N3N2
N1

N0

Figure 9: The B++-tree before splitting operation.

15 30

8
10

2
5

0 7
20

6 4
35

8
40

5

45

1
50

0

N4
N5N2

N1

N0

Figure 10: The B++-tree after splitting operation.

the node𝑁3 is leaf node, so𝑁4 keeps the first 3 values and𝑁5
keeps last 2 values. Move 𝑁3 ⋅ 𝑡⌈𝑛/2⌉ to 𝑁0. The result of the
split is shown in Figure 10.

4.5. Query for the Maximal Concurrency. When the index
building is complete, we can traverse all leaf nodes to acquire
each interval and corresponding concurrency. Since all leaf
nodes are connected by pointers, we can easily traverse these
leaf nodes sequentially without traversing any interior node.

For example, in Figure 6, traversing the leaf node we
can get the result: ⟨[2, 4], 2⟩, ⟨[4, 5], 1⟩, ⟨[5, 7], 6⟩, ⟨[7, 8], 7⟩,
⟨[8, 10], 3⟩, ⟨[10, 12], 5⟩, ⟨[12, 15], 4⟩, ⟨[15, 20], 2⟩. It is easy
to see that the maximum number of concurrent users is 7.

When we get the maximal concurrency, we get the cost of
cloud resource provider. Then we can use our pricing model
to charge each user.

5. Experiment

In this section, we provide experimental evaluation of our
algorithm. We simulate five datasets which contain 10,000,
100,000, 500,000, 1 million, and 2 million records, respec-
tively. Each record in the dataset contains the user’s name,
time interval, and the concurrency. For example, “𝑢1-->
[2017-07-31 11:46:15, 2017-07-31 21:02:56], 4” is a record. “𝑢1”
is the user’s name, and his time interval is from “2017-07-
31 11:46:15” to “2017-07-31 21:02:56”; the concurrency is 4.
We design a series of experiments in the construction of
the B++-tree and the performance of operations, like query,
insertion, and deletion. There are two explicit factors in our
experiments, which are the data size and the capacity 𝑐.Thus,
we conduct two sets of experiments by changing the data size
and the capacity. For the one set of experiments, we change
the data size while fixing the value of capacity. For the other
set of experiments, we change the capacity while fixing the
data size.

5.1. Construction of the B++-Tree. Firstly, we test the perfor-
mance of the construction of B++-tree. In this experiment,
we change the data size and capacity to compare with the time
needed to build a B++-tree.

In Figure 11(a), we vary the data size from 10,000 to
2,000,000, while fixing the capacity to 50. We denote the
time of constructing a B++-tree as CT, which means the

construction time. As we can see, when the data size is
small, for example 10,000 and 100,000, their CTs are very
small and similar. But with the growing of data size, CT
is also increasing. The greater the size of data is, the more
CT consumed. Because with the increment of data size, the
structure of B++-tree will be more complicated. Therefore,
the construction operation consumes more time.

In Figure 11(b), we vary the capacity of B++-tree from 10
to 100, while fixing the data size to 1,000,000. It is easy to
find that CT is the shortest when the capacity 𝑐 = 35. If the
capacity is too small, the tree will be very high. If the capacity
𝑐 is too big, the node will store too many intervals. Neither of
these conditions contributes to the construction of the B++-
tree.Therefore, the capacity 𝑐 = 35 is the most suitable for the
construction of B++-tree, while the data size is 1,000,000.

5.2. Performance of Operations. In this subsection, we test
the performance of operations, which includes the query
performance, the insertion performance, and the deletion
performance.Then we analyze the reason of the performance
and give the conclusion of experiments.

Query. Firstly we test the performance of query. Figure 12
gives the result of the experiment. We change 𝑐 and the
data size separately to conduct comparative experiments. We
denote the time of traversing the leaf nodes as TT, which
means the traversal time.

In Figure 12(a), we vary the data size from 10,000 to
2,000,000 while fixing the capacity to 50. From the figure, we
can see that the greater the data size is, the bigger the TT is.
Because the larger the data size is, the more leaf nodes the
B++-tree has. Therefore, it takes more time to traverse the
B++-tree.

In Figure 12(b), we vary the capacity 𝑐 from 10 to 100while
fixing the data size to 1,000,000.The trend of TT is decreasing
first but increasing again. Because when the capacity 𝑐 is
small, there will be too many leaf nodes in B++-tree, which
cost much more time to traverse the B++-tree. When the
capacity 𝑐 is too big, the B++-tree will has too many leaf
nodes. So when 𝑐 = 35, the query performance is the best,
while the data size is 1,000,000.

But the most important is that TT is very small all the
time, whichmeans query speed is very fast. Even the data size
is 2 million; the query time is less than a second. This shows
that the B++-tree we proposed is very suitable for the query
operation.

Insertion. Secondly we investigate the insertion performance
of B++-tree. Data insertion is the most common operation
in constructing a B++-tree. We still test the insertion perfor-
mance by changing the data size and capacity. We compare
the time of inserting a bunch of data and the time of inserting
a piece of data. The time of inserting data is called IT, which
means the insertion time.

In Figure 13, we compare the time of inserting a bunch
of data. In Figure 13(a), we vary the data size from 10,000 to
2,000,000 while fixing the capacity to 50 and the inserting
data size to 5000. From the figure, we can see that with
the data size increasing, the IT increases as well. Because

8 Wireless Communications and Mobile Computing

0

100000

200000

300000

400000

500000
CT

 (m
s)

100 500 1000 200010
data size / 103

(a) Varying data size

0

20000

40000

60000

80000

CT
 (m

s)

20 35 50 10010
c

(b) Varying 𝑐

Figure 11: Experimental results of CT.

100 500 1000 200010
data size / 103

0

50

100

150

200

TT
 (m

s)

(a) Varying data size

85

90

95

100

105

110

115

TT
 (m

s)

20 35 50 10010
c

(b) Varying 𝑐

Figure 12: Experimental results of TT.

0

2000

4000

6000

8000

10000

12000

14000

IT
 (m

s)

100 500 1000 200010
data size / 103

(a) Varying data size

20 35 50 10010
c

0

2000

4000

6000

8000

IT
 (m

s)

(b) Varying 𝑐

Figure 13: Experimental results of IT.

with the data size increasing, the B++-tree becomes more
complicated. We need traverse more nodes to insert a record.

In Figure 13(b), we vary the capacity from 10 to 100 while
fixing the data size to 1,000,000 and the inserting data size
to 5000. Same as the previous experiment of query, IT is the
shortest when 𝑐 = 35, because the structure of the B++-tree is
the best at this capacity. When the capacity 𝑐 = 35, B++-tree
will not have too many nodes or too many intervals in a leaf
node.

In Figure 14, we compare the time of inserting a piece of
data. In Figure 14(a), we vary the data size from 10,000 to
2,000,000 while fixing the capacity to 50. We can see that the
trend of Figure 14(a) is similar to Figure 13(a). It only takes
2ms to insert a piece of data when the data size is 2,000,000.

In Figure 14(b), we vary the capacity from 10 to 100 while
fixing the data size to 1,000,000.The time of inserting a piece
of data is only about 1ms. It is obvious that B++-tree is very
efficient in data insertion.

Wireless Communications and Mobile Computing 9

0

0.5

1

1.5

2

2.5

3
tim

e (
m

s)

100 500 1000 200010
data size / 103

(a) Varying data size

10 20 35 50 100
c

0

0.5

1

1.5

tim
e (

m
s)

(b) Varying 𝑐

Figure 14: Experimental results of inserting a piece of data.

100 500 1000 200010
data size / 103

0

2000

4000

6000

8000

10000

12000

14000

D
T

(m
s)

(a) Varying data size

20 35 50 10010
c

4500

5000

5500

6000

D
T

(m
s)

(b) Varying 𝑐

Figure 15: Experimental results of DT.

0

0.5

1

1.5

2

2.5

3

tim
e (

m
s)

100 500 1000 200010
data size / 103

(a) Varying data size

0.9

0.95

1

1.05

1.1

1.15

1.2

tim
e (

m
s)

20 35 50 10010
c

(b) Varying 𝑐

Figure 16: Experimental results of deleting a piece of data.

Deletion. Thirdly we investigate the deletion performance of
B++-tree. Actually the principle of deletion is the same as the
principle of insertion. Like the data insertion, we also test the
deletion performance by changing the data size and capacity.
We compare the time of deleting a bunch of data and the time
of deleting a piece of data. The time of deleting data is called
DT, which means the deletion time.

In Figure 15, we compare the time of deleting a bunch
of data. In Figure 15(a), we vary the data size from 10,000 to
2,000,000while fixing the capacity to 50 and the deleting data
size to 5000. The result of Figure 15 is similar to Figure 13.
With the increment of data size, the time of deletion increases
as well, because of traversing more nodes.

In Figure 15(b), we vary the capacity from 10 to 100 while
fixing the data size to 1,000,000 and the deleting data size to
5000. Same as Figure 13(b), DT is the shortest when 𝑐 = 35.
And the reason is the same as in Figure 13(b).

In Figure 16, we compare the time of deleting a piece
of data. Figure 16 shows the same result as Figure 14. In
Figure 16(a), we vary the data size from 10,000 to 2,000,000
while fixing the capacity to 50.The time of deleting a piece of
data is very similar to the time of inserting a piece of data.

In Figure 16(b), we vary the capacity from 10 to 100 while
fixing the data size to 1,000,000. The time of deleting a piece
of data is only about 1ms. The result shows that B++-tree is
suitable for data deletion.

10 Wireless Communications and Mobile Computing

10 100 500 1000 2000

CT
TT

IT
DT

data size / 103

1

10

100

1000

10000

100000

1000000

tim
e (

m
s)

Figure 17: The trend of CT, TT, IT, and DT when varying the data
sizes.

Finally we give the conclusion of experiment. We com-
bine the results of the previous experiments and put them into
Figure 17.

For ease of viewing, we set the ordinate of Figure 17 to
a logarithmic scale of 10. From the figure we can see IT is
almost the same as DT, because those two operations are
the same in principle. With the increment of data size, TT,
CT, IT, and DT increase at the same time. But the growth
rate of the TT is not very big. Because according to the
description, the query operation only needs to traverse leaf
nodes, which is very fast and efficient. Besides, we can see
from Figure 17 that the time of query is very short and less
than a second.

As we can see from our experiments, the B++-tree we
proposed in this paper is well suited for calculating the
maximal concurrency for our pricing model.

6. Conclusion

In this paper, we propose a dynamic pricing model, which
takes into account using time, resource consumption, and
maximum concurrency to make the price of cloud resources
more reasonable for both users and providers. In order to
calculate the maximal concurrency of all the users, we pro-
pose a new data structure, named B++-tree, which extends
from B+tree and has additional information in leaf nodes.
Besides, we introduce the insertion, deletion, split, and query
operation of B++-tree, which can calculate the maximal
concurrency.

Finally, we performed extensive experiments to study
the performance of the construction, query, insertion, and
deletion operations with different data sizes and capacities of
B++-tree. The result of the experiments shows that the B++-
tree we proposed in this paper is well suited for calculating
the maximal concurrency for our pricing model. We can
complete the query operation on 10 million data in only 0.2
seconds. For the future work, we plan to find a much more
reasonable pricing model which can take more factors into
account.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was partially supported by the National Natural
Science Foundation of China (nos. 61602411 and 61572437)
and Key Research and Development Project of Zhejiang
Province (no. 2015C01034).

References

[1] J. Lee, “A viewof cloud computing,”Communications of the Acm,
vol. 53, no. 4, pp. 50–58, 2013.

[2] K. Sowmya and R. P. Sundarraj, “Strategic bidding for cloud
resources under dynamic pricing schemes,” in Proceedings of
the International Symposium on Cloud and Services Computing
(ISCOS ’12), pp. 25–30, IEEE,Mangalore, India, December 2012.

[3] A. Zhou, S. Wang, Q. Sun, H. Zou, and F. Yang, “Dynamic
virtual resource renting method for maximizing the profits
of a cloud service provider in a dynamic pricing model,” in
Proceedings of the 2013 International Conference on Parallel and
Distributed Systems (ICPADS ’13), pp. 118–125, Seoul, Korea
(South), December 2013.

[4] S. Wang, T. Lei, L. Zhang, C.-H. Hsu, and F. Yang, “Offloading
mobile data traffic for QoS-aware service provision in vehicular
cyber-physical systems,” Future Generation Computer Systems,
vol. 61, pp. 118–127, 2016.

[5] S. Wang, A. Zhou, C.-H. Hsu, X. Xiao, and F. Yang, “Provision
of data-intensive services through energy-and QoS-aware vir-
tual machine placement in national cloud data centers,” IEEE
Transactions on Emerging Topics in Computing, vol. 4, no. 2, pp.
290–300, 2016.

[6] Y. Ma, S. Wang, P. C. Hung, C. H. Hsu, Q. Sun, and F. Yang, “A
highly accurate prediction algorithm for unknown web service
QoS value,” IEEE Transactions on Services Computing, vol. 9, no.
4, pp. 511–523, 2016.

[7] A. Zhou, S. Wang, Z. Zheng, C.-H. Hsu, M. R. Lyu, and F.
Yang, “On cloud service reliability enhancement with optimal
resource usage,” IEEE Transactions on Cloud Computing, vol. 4,
no. 4, pp. 452–466, 2016.

[8] E. Mykletun and G. Tsudik, “Aggregation queries in the
database-as-a-servicemodel,” in Proceedings of the IFIP Confer-
ence on Data and Applications Security and Privacy, vol. 4127,
pp. 89–103, Springer Berlin Heidelberg, 2006.

[9] H. Wang, Q. Jing, and R. Chen, “Distributed systems meet
economics: pricing in the cloud,” in Proceedings of the USENIX
Conference on Hot Topics in Cloud Computing, 2010.

[10] C. Kilcioglu and J.M. Rao, “Competition on price and quality in
cloud computing,” inProceedings of the International Conference
on World Wide Web, pp. 1123–1132, April 2016.

[11] M. Al-Roomi, S. Al-Ebrahim, S. Buqrais et al., “Cloud comput-
ing pricing models: a survey,” International Journal of Grid &
Distributed Computing, vol. 6, no. 5, pp. 93–106, 2013.

Wireless Communications and Mobile Computing 11

[12] H. Xu and B. Li, “Dynamic cloud pricing for revenuemaximiza-
tion,” IEEE Transactions on Cloud Computing, vol. 1, no. 2, pp.
158–171, 2013.

[13] S. Gu, Z. Li, C. Wu, and C. Huang, “An efficient auction mech-
anism for service chains in the NFV market,” in Proceedings
of the IEEE INFOCOM 2016—IEEE Conference on Computer
Communications, pp. 1–9, San Francisco, Calif, USA, April 2016.

[14] W.-Y. Lin, G.-Y. Lin, and H.-Y. Wei, “Dynamic auction mecha-
nism for cloud resource allocation,” in Proceedings of the 10th
IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing (CCGrid ’10), pp. 591-592, May 2010.

[15] R. Zhou, Z. Li, C. Wu, and Z. Huang, “An Efficient Cloud
Market Mechanism for Computing Jobs with Soft Deadlines,”
IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp. 793–
805, 2017.

[16] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. M. Lau, “An online
auction framework for dynamic resource provisioning in cloud
computing,” in Proceedings of the 2014 ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’14), pp. 71–83, June 2014.

[17] L. Zheng, W. Tarneberg, and K. Maria, “Using a Predator-Prey
Model to Explain Variations of Cloud Spot Price,” Journal of
Intelligent & Fuzzy Systems: Applications in Engineering and
Technology, vol. 28, no. 6, pp. 2679–2689, 2017.

[18] Z. Zhang, Z. Li, and C. Wu, “Optimal posted prices for online
cloud resource allocation,” ACM SIGMETRICS Performance
Evaluation Review, vol. 44, no. 1, pp. 60-60, 2017.

[19] N.Kline andR. T. Snodgrass, “Computing temporal aggregates,”
in Proceedings of the 1995 IEEE 11th International Conference on
Data Engineering, pp. 222–231, March 1995.

[20] B. Moon, I. F. V. Lopez, and V. Immanuel, “Scalable algorithms
for large temporal aggregation,” in Proceedings of the 2000 IEEE
16th International Conference on Data Engineering (ICDE’00),
pp. 145–154, March 2000.

[21] B. Moon, I. F. V. Lopez, and V. Immanuel, “Efficient algorithms
for large-scale temporal aggregation,” IEEE Transactions on
Knowledge and Data Engineering, vol. 15, no. 3, pp. 744–759,
2003.

[22] J. Yang and J. Widom, “Incremental computation and mainte-
nance of temporal aggregates,”The VLDB Journal, vol. 12, no. 3,
pp. 262–283, 2003.

[23] R. Bayer and E. McCreight, “Organization and maintenance of
large ordered indices,” in Proceedings of the 1970 ACM SIGMOD
Workshop on Data Description, Access and Control (SIGFIDET
’70), pp. 107–141, November 1970.

[24] G. Graefe and H. Kuno, “Modern B-tree techniques,” in Pro-
ceedings of the 2011 IEEE 27th International Conference on Data
Engineering (ICDE ’11), pp. 1370–1373, April 2011.

[25] P. Yao, H. Zhang, Y. Xue et al., “Segment-tree based cost
aggregation for stereo matching with enhanced segmentation
advantage,” in Proceedings of the 2017 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP ’17),
pp. 2027–2031, New Orleans, LA, USA, March 2017.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

