
Research Article
Secure Storage and Retrieval of IoT Data Based on Private
Information Retrieval

Khaled Riad 1,2 and Lishan Ke 3

1School of Computer Science, Guangzhou University, Guangzhou 510006, China
2Mathematics Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
3College of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

Correspondence should be addressed to Khaled Riad; khaled.riad@science.zu.edu.eg and Lishan Ke; kelishan@gzhu.edu.cn

Received 25 May 2018; Accepted 29 August 2018; Published 18 November 2018

Guest Editor: Karl Andersson

Copyright © 2018 Khaled Riad and Lishan Ke. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The fast growth of Internet-of-Things (IoT) strategies has actually presented the generation of huge quantities of information.
There should exist a method to conveniently gather, save, refine, and also provide such information. On the other hand, IoT data
is sensitive and private information; it must not be available to potential attackers. We propose a robust scheme to guarantee both
secure IoT data storage and retrieval from the untrusted cloud servers. The proposed scheme is based on Private Information
Retrieval (PIR). It stores the data onto different servers and retrieves the requested data slice without disclosing its identity. In
our scheme, the information is encrypted before sending to the cloud servers. It is also divided into slices of a specific size class.
The experimental analysis on many different configurations supported efficiency and the efficacy of the proposed scheme, which
demonstrated compatibility and exceptional performance.

1. Introduction

With the huge revolution of Internet-of-Things (IoT) and
cloud computing as its storage environment, the user requests
a query to a part of information and should receive that part
without disclosing its identity. A great number of researches
have been dedicated to defend the database from curious
users.There are approaches that enable questions to be asked
by an individual into a database by reconstructing the worth
of entities in a manner that prevents him. If the user would
like to maintain his privacy (in the information-theoretic
sense), then he could request a copy of the entire database.
This can cause a huge communication overhead, making it
unacceptable.

Before going further let us make the problem more
tangible. Let a binary string 𝑥 = 𝑥1, . . . , 𝑥𝑛 of length 𝑛. 𝑘 ≥ 2
server stores copies of this binary string. The user has some
indicator 𝑖 ≤ 𝑛 and he is interested in getting this little 𝑥𝑖.
To attain this aim, the little 𝑥𝑖 could be calculated, the user
queries each of the servers and receives responses. The query
to each server is distributed separately of 𝑖 and each server

gains no information about 𝑖. A strategy with these properties
is called a Private Information Retrieval (PIR) [1, 2].

Within this paper we introduce encrypted PIR that offers
a great privacy. That is, unbounded servers should not obtain
any information about the requested piece of information.
One does require at least two servers to achieve privacy.These
servers do not need to store the whole database; they could
store portions of it. We show that when those pieces are
encrypted, instead of duplicated, the memory overhead can
be decreased.

1.1. Motivation. In addition to reducing the storage overhead
caused by replicating the data to reduce the communication
cost in the traditional PIR protocols [2] and achieving the
information-theoretic privacy, in big data, the user who
reconstructs data is distinct from the user who distributes
them. Also, the user who distributes data should encrypt it
using different keys and distribute the ciphertext.

Moreover, querying information over big data where no
one can get the identity of the parts you are querying or the
responses obtained is a big challenge and sounds like science

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 5452463, 8 pages
https://doi.org/10.1155/2018/5452463

http://orcid.org/0000-0002-8181-9573
http://orcid.org/0000-0002-5279-5795
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/5452463

2 Wireless Communications and Mobile Computing

fiction. But it is actually the PIR science. In modern data
storage systems, data are usually stored at multiple storage
nodes in the cloud. The privacy of information retrieval
has to be shielded. One naive method to attain PIR is by
simply downloading each document in the system regardless
of the user requirements. The drawback of that strategy is
the very large restoration cost, which further increases with𝑁 (the range of saved documents). Thus, there is an urgent
requirement to present a strong PIR strategy for storage and
recovery.

1.2. Contributions. One of the main contributions in this
paper is integrating PIR [1] with cloud computing, to
guarantee the efficiency and security of encrypted storage
and retrieval of information for big data queries from the
untrusted cloud servers. Our scheme first divides the data
into slices, then encrypts each of them, and stores those
encrypted slices using the Swift service on the untrusted
cloud servers. In the reconstruction stage, the requested data
slice is reconstructed without disclosing any information
about that requested slice, with retrieval cost independent of
the number of stored slices. The main contributions can be
summarized as follows:

(i) We have integrated the PIR scheme with cloud com-
puting, to secuerly store the personal information as
well as effiently and smothly reterive it.

(ii) We have implemented our scheme on the top of our
private cloud environment, by initializing a set of
virtual instances that are divided into three categories
based on their configuration and their role in the
proposed scheme.

(iii) Wehave tested the proposed schemeunder twodiffer-
ent scenarios, client situation and overlay situation.

(iv) The experimental results have suggested that the
decryption and retrieval cost are separate from the
amount of saved slices and harmonious with all rea-
sonable scenarios for applying our proposed scheme.

Ultimately, the throughput for a workload caused by
the implementation of mixing get and also put fragment

requests on Swift is sensible and accepted by the operator and
user.

1.3. Organization. The rest of this paper is organized as
follows: Section 2 presents the related work and smooth
comparison between the currently proposed information
hiding and extraction approaches while not disclosing the
queried information. Section 3 presents our proposed 𝑘-
private and 𝑡-out-of-𝑛 PIR scheme and its three stages. The
proposed scheme implementation is introduced in Section 4.
The comprehensive performance analysis is presented in
Section 5. This is followed by the conclusion in Section 6.

2. Related Work and Discussion

The notion of earning the extraction of this data content
of a huge data source should consider quite rough security
requirements to be able to do not disclose the queried data.

Reconstructing a part of discerning information from an
encrypted source is determined by the availability of the
whole source, which is introduced by Rivest [3], by proposing
all-or-nothing transform (AONT). In this scheme any modifi-
cation on the encrypted message limits the ability to decrypt
the resource. Thus, the AONT scheme works well for the
scenarios where the user who wants to decrypt the resource
has never accessed the key before.This is not realistic, because
the cloud users frequently access the resources and request to
decrypt their ciphertext. In our scheme, the user can decrypt
the resource as long as he has the appropriate key and the
sufficient data slices that can generate the requested resource.
Moreover, the requesting user can only decrypt the cipher-
text if he has successfully generated the decryption token.
Another direction for securely uploading the data to cloud is
introduced in [4], which ensures that the cloud validates the
data integrity while avoiding malicious home gateways that
monitor and modify the data. In our scheme the data is not
stored as one block, but it is sliced into several slices based
on its size. Then, it is first hidden using a permutation hash
function. After that, those data slices are encrypted using and
encryption algorithmand an access structure that is implicitly
included in the ciphertext. In this manner we are reducing
the storage time overhead. The authors in [5] formalize the
notion of verifiable database with incremental updates (Inc-
VDB). As well as in [6] pointing out to Catalano-Fiore’s VDB
framework from vector commitment is vulnerable to the so-
called forward automatic update (FAU) attack.

For informationhiding and securely extracting that infor-
mation, there are multiple contributions based on different
schemes, such as [7].The authors introduced a T-private PIR
which is a generalization of PIR to include the requirement
that even if any T of the N databases colludes, the identity of
the retrieved message remains completely unknown to them.
But in our scheme whatever was the number of colluding
databases, the user will only receive the encrypted data slices
that are only sufficient for extracting the required information
not more. Also, the authors in [8] utilized a new crypto-
graphic primitive, called conditional disclosure of secrets,
which we believe that it may be a useful building block for
the design of other cryptographic protocols. In our scheme,
we have considered slicing the data intomultiple slices before
encrypting and storing it on the cloud storage servers. The
authors in [9] proposed a new symmetric encryption for
mobile devices. The authors in [10] have introduced a new
operative scheme called RoughDorid for detecting malware
applications directly on the smartphone. A Dynamic Fully
Homomorphic Encryption-based Merkle Tree is proposed in
[11]. An outsourced revocation has been introduced in [12]
based on identity-based encryption in cloud computing. A
new privacy preserving response scheme has been proposed
in [13] based on adaptive key evolution in smart grid. A novel
dynamic structure for cloud data has been proposed in [14]
for efficient public auditing.

Other strategies for applying access control in the cloud
via encryption are developed together two research lines:
attribute-based encryption (ABE) and discerning encryption
procedures. ABE approaches (e.g., [15–18]) supply access
control authorities bymaking sure that the key used to protect

Wireless Communications and Mobile Computing 3

Data
Owner

Storage
Manager

Access
Manager

PIR
Protocol

Key

Data Slices
Encrypted

Key Query

Answers+DTK

k-answers

k-queries

+DTK

Figure 1: Integrated PIR with cloud computing system model.

a source could be derived exclusively by the consumers that
meet a specified condition in their characteristics (e.g., era,
function). An efficient and secure data outsourcing with
check-ability has been proposed in [19] for cloud computing
based on ABE. Also, a novel lightweight encryption mech-
anism for database is introduced in [20]. The authors in
[21] introduced a new identity-based signcryption on lattice
without trapdoor. For the multiple sources, the authors in
[22] proposed a new homomorphic signature scheme based
on network coding and applied it to IoT. The privacy is
preserved in IoT using centralized duplicate removal video
storage system [23]. Also, a new identity-based antiquantum
blind authentication for privacy preserving in wireless sensor
networks has been proposed in [24]. For the blind storage,
the authors in [25] have introduced efficient multikeyword
ranked search for mobile cloud data. In [26] the authors
proposed the personalized search in mobile clouds over
encrypted data with efficient updates. Reference [27] pro-
posed a new block design-based key agreement for data
sharing in cloud computing.

Procedures based on discerning encryption (e.g., [28,
29]) suppose to encrypt every single source using a secret
that only licensed users understand or may derive. Within
this situation, the information owner either manages policy
upgrades, with overhead, or is assigned to the server. Though
overencryption is shown to provide functionality that is
decent and promises a prompt authorities of policy upgrades,
it needs trust premises that are more powerful on the
machine, which has to offer support. Also, another set of
contributions [30, 31] have implemented access control for
a private cloud computing evironment, by proposing the
confidence notation for denying or granting access. In the
event the host is oblivious of its adoption our scheme may
be used. The authors in [32] proposed a flexible EHR sharing
scheme supporting offline encryption of EHR and outsourced
decryption of EHR ciphertexts in mobile cloud computing.
Reference [33] proposed the first lattice-based linearly homo-
morphic signature in the standard model, which settles this
open problem. The authors in [34] proposed a dependable
distributed WSN framework for SHM. Then the authors in
[35] proposed a new biometrics-based authentication scheme
for the multiserver environment.

3. PIR with Cloud Computing

The challenge yet is the way to look for an efficient and pro-
tected PIR scheme (regarding costs for information storage
and recovery). Our proposed scheme is 𝑘-private and 𝑡-out-
of-𝑛 PIR, which means that if only 𝑡 of 𝑛 servers is required
to respond and even though 𝑘 servers collude together,
the queried information will not be revealed. Our scheme
consists of three basic stages: Data Storage and Encryption,
User Authorization and Query, and Data Decryption and
Reconstruction. We have employed the basic PIR scheme
definition [36].

3.1. Data Storage and Encryption. The data D will be
stored on 𝑘 cloud server (SRV1,SRV2, . . . ,SRV𝑖,. . . ,SRV𝑘,) after encrypting it with our encryption algo-
rithm. We consider three types of servers in the data storage
side, as shown in our systemmodel Figure 1.The StorageMan-
ager Sever receives the encrypted data slices and distributes
them on the Data Storage Servers under its own control, and
the Key-Server is responsible for the key management that is
distributed using the PIR Protocol.

The owner encrypts all the information bits using a
content key using symmetric encryption procedures. The
content essential is then encrypted by the owner. It requires as
inputs the public key handled by the PIR Protocol, the content
key 𝑐𝑘, and an access structure A = (𝑀, 𝜌). Let𝑀 be a 𝑙 × 𝑛
matrix, where 𝑙 denotes the total number of all the attributes.
The function 𝜌 associates rows of𝑀 to attributes.

D =

[[[[[[[[[[[[[
[

𝑥1𝑥2...
𝑥𝑗...
𝑥𝑛

]]]]]]]]]]]]]
]

=

[[[[[[[[[[[[[[[[
[

𝑥11 𝑥12 ⋅ ⋅ ⋅ 𝑥1𝑖 ⋅ ⋅ ⋅ 𝑥1𝑘
𝑥21 𝑥22 ⋅ ⋅ ⋅ 𝑥2𝑖 ⋅ ⋅ ⋅ 𝑥2𝑘
... ... ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅ ...
𝑥𝑗1 𝑥𝑗2 ⋅ ⋅ ⋅ 𝑥𝑗𝑖 ⋅ ⋅ ⋅ 𝑥𝑗

𝑘... ... ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅ ...
𝑥𝑛1 𝑥𝑛2 ⋅ ⋅ ⋅ 𝑥𝑛𝑖 ⋅ ⋅ ⋅ 𝑥𝑛𝑘

]]]]]]]]]]]]]]]]
]

4 Wireless Communications and Mobile Computing

=

[[[[[[[[[[[[[[[
[

𝑥ℎ(1)1 𝑥ℎ(1)2 ⋅ ⋅ ⋅ 𝑥ℎ(1)𝑖 ⋅ ⋅ ⋅ 𝑥ℎ(1)
𝑘

𝑥ℎ(2)1 𝑥ℎ(2)2 ⋅ ⋅ ⋅ 𝑥ℎ(2)𝑖 ⋅ ⋅ ⋅ 𝑥ℎ(2)𝑘... ... ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅ ...
𝑥ℎ(𝑗)1 𝑥ℎ(𝑗)2 ⋅ ⋅ ⋅ 𝑥ℎ(𝑗)𝑖 ⋅ ⋅ ⋅ 𝑥ℎ(𝑗)𝑘... ... ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅ ...
𝑥ℎ(𝑛)1 𝑥ℎ(𝑛)2 ⋅ ⋅ ⋅ 𝑥ℎ(𝑛)𝑖 ⋅ ⋅ ⋅ 𝑥ℎ(𝑛)

𝑘

]]]]]]]]]]]]]]]
]

= [𝑠1 𝑠2 ⋅ ⋅ ⋅ 𝑠𝑖 ⋅ ⋅ ⋅ 𝑠𝑘]
(1)

where each element of the vector [𝑠1, 𝑠2, . . . , 𝑠𝑖, . . . , 𝑠𝑘]
represents the data to be stored on each server(SRV1,SRV2, . . . ,SRV𝑖, . . . ,SRV𝑘,) respectively.
Each 𝑠𝑖 is the corresponding column after applying ℎ(𝑗) on
each piece of data. ℎ(𝑗) is our hash permutation function
that is used to hide the index of each piece of the stored data.
More precisely, a hash function ℎmaps bit strings of arbitrary
finite length to strings of fixed length, say 𝑛 bits. For a domain𝐷 and range 𝑅with ℎ : 𝐷 → 𝑅 and |𝐷| > |𝑅|, the function is
many-to-one, implying that the existence of collisions (pairs
of inputs with identical output) is unavoidable.

Definition 1 (Hash Permutation Function ℎ). A hash function
is a function ℎ : 𝐷 → 𝑅 and |𝐷| > |𝑅| maps bit strings of
arbitrary finite length to strings of fixed length, which has the
following properties:

(1) Compression: ℎmaps an input 𝑥𝑖 of arbitrary finite bit
length, to an output ℎ(𝑥𝑖) of fixed bit length 𝑛.

(2) Ease of computation: given ℎ and an input 𝑥𝑖, ℎ(𝑥𝑖) is
easy to compute.

(3) Preimage resistance: for essentially all prespecified
outputs, it is computationally infeasible to find any
input which hashes to that output, i.e., to find any
preimage 𝑥𝑖 such that ℎ(𝑥𝑖) = 𝑦 when given any 𝑦
for which a corresponding input is not known.

(4) 2nd-preimage resistance: it is computationally infea-
sible to find any second input which has the same
output as any specified input, i.e., given 𝑥𝑗, to find a
2nd-preimage 𝑥𝑖 ̸= 𝑥𝑗 such that ℎ(𝑥𝑖) = ℎ(𝑥𝑗).

(5) Collision resistance: it is computationally infeasible to
find any two distinct inputs 𝑥𝑖, 𝑥𝑗 which hash to the
same output, i.e., such that ℎ(𝑥𝑖) = ℎ(𝑥𝑗).

We can find that the collision resistance implies 2nd-
preimage resistance of hash functions, but collision resistance
does not guarantee preimage resistance.

3.2. UserAuthorization andQuery. Theuser can issue a query
Q to receive a file 𝑥 which is partitioned and stored on 𝑘
different server (SRV1,SRV2, . . . ,SRV𝑖, . . . ,SRV𝑘,).
Considering that the information is hosted on both cloud
servers. Then there has to be a decryption token for every
user to have the ability to synchronize the information. The

user has to issue a query to the PIR protocol including
the user’s secret key, attributes, and certificates. The PIR
protocol will issue k-queries (one for each server) Q ={𝑞1, 𝑞2, . . . , 𝑞𝑖, . . . , 𝑞𝑘} for the access manager server, where𝑞𝑖 = Q𝑖(𝑘, 𝑛, 𝑗) and 𝑗 is a randomly chosen by flipping
coins. Each server will respond with a single encrypted
answer; the user will have an encrypted answer set 𝐸𝐴 ={𝑒𝑎1, 𝑒𝑎2 , . . . , 𝑒𝑎𝑖, . . . , 𝑒𝑎𝑘}, where 𝑒𝑎𝑖 = 𝐸𝐴 𝑖(𝑘, 𝑖, 𝑥, 𝑞𝑖). The
accessmanager server will reply with the servers’ answers and
the decryption token that is sent to the user.Then, it will have
the ability to decrypt and rebuild the requested information.

3.2.1. Decryption Token Generation. The decryption token
generation algorithm (Algorithm 2) is run by the access
manager server. It requires as inputs the ciphertext 𝐶𝑇
that implicitly includes an access structure A, user’s public
key 𝑈𝑃𝐾 generated by the PIR protocol, user’s secret key𝑈𝑆𝐾, and user’s set of attributes 𝑈𝑆𝐴. When 𝑈𝑆𝐴 suits the
accessibility constructionA, the algorithm could successfully
calculate the right decryption token 𝐷𝑇𝐾 of this ciphertext.
Thus, the PIR protocol can transform the user’s query to a set
of k-queries for the Access Manager.

3.3. Data Decryption and Reconstruction. Once the user has
received the encrypted answers set 𝐸𝐴 and its decryption
token 𝐷𝑇𝐾, he can decrypt the answers with the help of its
own secret key𝑈𝑆𝐾 and get the answer set𝐴 that will be used
for reconstruction. Since the permutation function can make
some collusions (𝑁𝐶) probability 𝑝, the success probability is1 − (1 − 𝑝)𝑘, and the reconstruction threshold 𝑡 = 𝑘 − 𝑁𝐶.
Based on the value of 𝑡 the user will be able to reconstruct
the requested slice. Once the data has been reconstructed, the
user can use its given decryption token to decrypt the data.

4. Implementation

Our model is implemented on the top of our private cloud
environment, which is based OpenStack [37]. We have
built our proposed scheme by initializing a set of virtual
instances that are divided into three categories based on their
configuration:

(i) Category 1: 𝑛 virtual instances working as storage
servers. The configuration of those 𝑛 servers is
4 VCPUS, 4GB RAM, and 80GB disk. We have
considered 𝑛 = 50; thus, the IP addresses for
those servers are 10.0.10.101 : 10.0.10.150 with sub-
net mask 255.255.255.0. Those storage servers have
two basic tasks, storing the encrypted data slices
submitted to them through the Storage Manager.
The second task is sending the encrypted data slices
back as answers to the Access Manager server to be
delivered to the requesting user.

(ii) Category 2: two virtual instances. The configuration
for each of them is 4 VCPUS, 8GB RAM, and 20GB
disk. They are working as PIR Protocol server with
IP address 10.0.10.151 and Key Manger server with
IP address 10.0.10.152. After the 𝑘 − 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 are
received by the PIR Protocol from the Access Manager

Wireless Communications and Mobile Computing 5

Input: (i) 𝑐𝑘𝑖 ⊳The content key for each 𝑥𝑖
(ii) 𝑃𝐾 ⊳The dataD public key managed by Shamir secret sharing
(iii)A = (𝑀, 𝜌) ⊳The dataD access structure, which will be

implicitly included in the ciphertext(1) Choose 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 ∈ Z∗𝑞 ⊳The random secrets of each data slice 𝑥𝑖
(2) Choose 𝑓 ∈ Z∗𝑞 ⊳ A random encryption exponent
(3) Choose →V = [𝑓, 𝑦2, . . . , 𝑦𝑛]𝑇 ∈ Z∗𝑛𝑞 ⊳ A random vector, where [𝑦2, . . . , 𝑦𝑛]

are used to share the random encryption exponent 𝑓
(4) for 𝑗 = 1 to 𝑙 do
(5) Compute 𝜆𝑗 = →V .𝑀𝑗 ⊳ 𝑀𝑗 is the vector corresponding to the j-th row of

the matrix𝑀
(6) end for
(7) Randomly choose 𝑟1, . . . , 𝑟𝑙 ∈ Z∗𝑞
(8) Compute: 𝐶 = 𝑔𝑓 and 𝐶 = 𝑔𝑓/𝛽𝑖
(9) for 𝑖 = 1 to 𝑙 do
(10) Compute 𝐶𝑗 = 𝑔𝑎𝜆𝑗 .((𝑔→V (𝑗)𝜌(𝑗)𝐻(𝜌(𝑗))𝛾𝑖)−𝑟𝑗
(11) Compute𝐷1,𝑗 = 𝑔𝑟𝑗/𝛽𝑖 and𝐷2,𝑗 = 𝑔−(𝛾𝑖/𝛽𝑖)𝑟𝑖
(12) end for
(13) Compute the ciphertext:

𝐶𝑇𝑖 = [
[
𝑐𝑘𝑖. (𝑙∏

𝑗

𝑒 (𝑔, 𝑔)𝛼𝑖)
𝑓

, 𝐶, 𝐶, 𝐶𝑗, 𝐷1,𝑗, 𝐷2,𝑗, 𝜌 (𝑗)]]
Output: The ciphertext 𝐶𝑇

Algorithm 1: Encryption.

server, the user must not be given so much data slices
to guarantee the data secrecy. Also, the user should
not be given less data slices than the required slices
that can generate the requested data. Thus, the PIR
Protocol server runs the PIR protocol to ensure hiding
the requested data slices identity from the cloud
storage servers and also ensuring granting the user
the appropriate data slices to be able to recover the
requested data.TheKeyManager server is responsible
for assigning the keys for both the data owners and
requesting users.

(iii) Category 3: two virtual instances. The configuration
for each of them is 8 VCPUS, 16GB RAM, and 40GB
disk.They areworking as StorageManager serverwith
IP address 10.0.10.154 and Access Manager server
with IP address 10.0.10.155. The Storage Manager
receives the encrypted data slices and distributes them
on the appropriate cloud storage instances. TheAccess
Manager receives the encrypted data slices from the
cloud storage instances and sends them to the PIR
Protocol.

It should be mentioned that all of those virtual instances are
cooperating together to construct the proposed scheme. Each
of them has its own task that can perfectly execute it.

5. Performance Analysis

The performance analysis of our proposed scheme is intro-
duced based on two mandatory scenarios.

5.1. Client Situation. Our scheme requires the user to per-
formamore intricate decryption compared to usingAttribute
Encryption Scheme (AES) using a conventional encryption
manner, by introducing the Token Generation Algorithm 2.
In our scheme the decryption is parallelized on several core
VCPUs, which makes the user processing much more effec-
tive. In our experiments, we have considered five different
size categories: 32:127 bits; 128:511 bits; 512:2047 bits; 2048:8191
bits; and 8192:32768 bits.

Figure 2 shows that the decryption cost can be used with
all acceptable scenarios for the use of our scheme. Specifically,
the figure illustrates the throughput obtained by changing
the number of slices, through implementing our scheme in
various configurations defined by five size groups (32:127
bits, 128:511 bits, 512:2047 bits, 2048:8191 bits, and 8192:32768
bits). Based on the execution of our encryption protocol
(Algorithm 1), we notice that even the largest size category
(8192:32768 bits) offers a throughput that is approximately
85 MB/s, while considering 16 slices of that size category.
The throughput for the smallest size category (32:127 bits)
is about 140 MB/s, while considering 16 slices of that size
category. The figure also reveals that decreasing the amount
of slices, we achieve the performance level that is 1.5 times
that obtained from the 8192:32768 bits size group and 2 times
the one obtained by 32:127 bits size group. It should be noted
that the experimental results for that part are the average of
25 trails.

5.2. Overlay Situation. In our proposed scheme, the overlay
situation is analyzed by using the Swift (it organizes objects

6 Wireless Communications and Mobile Computing

Input: (i) 𝐶𝑇𝑥 ⊳The ciphertext related to the file 𝑥
(ii) 𝑈𝑃𝐾 ⊳The user’s public key given by PIR protocol
(iii) 𝑈𝑆𝐾 ⊳The user’s secret key
(iv) 𝑈𝐴 ⊳The user’s set of attributes(1) Let: 𝐶𝑇𝐴 = |A| ⊳The set of attributes involved in 𝐶𝑇𝑥

(2) Choose a set of constants 𝑤𝑖 ∈ Z∗𝑞 , ∀𝑖 ∈ 𝐶𝑇𝐴
(3) for 𝑖 = 1 to 𝐶𝑇𝐴 do
(4) if 𝜆𝑖 ∈ 𝑆ℎ𝑎𝑟𝑒(𝑓) then ⊳ 𝜆𝑖 are valid shares of the secret 𝑓 according to

the dataD
(5) Reconstruct the encryption exponent: 𝑓 = ∑𝐶𝑇𝐴𝑖=1 𝑤𝑖𝜆𝑖
(6) end if
(7) end for
(8) Let {𝑅𝑈,𝑖, 𝐾𝑈,𝑖, 𝐿𝑈,𝑖 ∈ Z∗𝑞 }∀𝑖∈𝐶𝑇𝐴 are random constants
(9) if 𝑈𝐴 ⊨ A then ⊳The user’s attributes satisfiesA

𝐷𝑇𝐾 = 𝐶𝑇𝐴∏
𝑖=1

𝑒(𝐶, 𝐾𝑈,𝑖).𝑒 (𝐶, 𝑅𝑈,𝑖)−1
∏𝐶𝑇𝐴𝑖=1 [𝑒 (𝐶𝑖, 𝑈𝑃𝐾𝑖) .𝑒 (𝐷1,𝑖, 𝐾𝑈,𝜌(𝑖)) .𝑒 (𝐷2,𝑖, 𝐿𝑈,𝑖)]𝑤𝑖𝐶𝑇𝐴

= 𝑒 (𝑔, 𝑔)𝑎.𝑈.𝑓.𝐶𝑇𝐴 .∏𝐶𝑇𝐴𝑖=1 𝑒 (𝑔, 𝑔)(𝛼𝑖/𝑈𝑆𝐾)𝑓𝑒 (𝑔, 𝑔)𝑎.𝑈.𝑓.𝐶𝑇𝐴 . ∑𝐶𝑇𝐴𝑖=1 𝑤𝑖𝜆𝑖
= 𝐶𝑇𝐴∏
𝑖=1

𝑒 (𝑔, 𝑔)(𝛼𝑖/𝑈𝑆𝐾)𝑓
(10) else ⊳ 𝐷𝑇𝐾 cannot successfully computed
(11) 𝐷𝑇𝐾 = rand(𝐻𝑒𝑥) ⊳ 𝐷𝑇𝐾 will get a random Hexadecimal value
(12) end if
Output: TheDecryption Token 𝐷𝑇𝐾

Algorithm 2: Token generation.

32:127
128:511

512:2047
2048:8191

8192:32768

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
 (M

B/
S)

4 6 8 10 12 14 162
Number of Slices

Figure 2: Throughput varying the number of considered slices for
four different size categories.

within containers) service as a reference. We have adopted
the DLO support offered by Swift to implement the get

and put fragment methods that characterize our scheme.

With our experiments at the overlay scenario, we have assem-
bled a Swift user program in Python that implements the get

and also put fragment techniques that describe our strategy.
We have followed two strategies: one is by fragmenting
an object as atomic objects; the second is by using DLO
introduced by Swift.

Figure 3 contrasts the period required for the imple-
mentation of get requests based on different amounts of
contemplated fragments (1, 4, 16, 64, 256, and 1024) to a
specific object. The operation is droved dependent on the
network bandwidth and also the overhead imposed by the
management of every get request.

Specifically for get requests, the overhead introduced
into handling one portion for every fragment predominates
in the event of little costs, whereas the growth in object’s
size exhausts the system’s bandwidth that causes a great
bottleneck. By contemplating an item of size 1 GB, the time
required for implementing the get requests is roughly 92
seconds for 1 considered fragment, and the time is 1000
seconds for 1024 considered fragments for the same object
size. In case of considering an object of size 64 KB, the time
required for executing the get requests is about 0.08 seconds
for 1 considered fragment, and the time is 50 seconds for 1024
considered fragments for the same object size.

Figure 4 reports the throughput for a workload caused by
the implementation of blending get and also put fragment

requests on Swift by changing the object size and the amount

Wireless Communications and Mobile Computing 7

1
4
16

64
256

1024
2048

0

200

400

600

800

1000

Ti
m

e (
S)

256KB 1MB 4MB 16MB 64MB 256MB 1GB64KB
Object Size (KB/MB/GB)

Figure 3: The execution time for the get requests on Swift.

1
4
16

64
256

1024
2048

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 (M

B/
S)

256KB 1MB 4MB 16MB 64MB 256MB 1GB64KB
Object Size (KB/MB/GB)

Figure 4: The throughput for a workload introduced by combining
the get and put fragment requests on Swift.

of contemplated fragments for the exact same object.We have
assessed the behavior of our scheme based on a selection of
2048 objects, where following every put fragment request, a
succession of 100 get requests were implemented on objects
in precisely the exact same group and are all of the exact
same size. These configurations using fragments’ throughput
will be orders of magnitude greater already. The figure also
demonstrates that the very best number of fragments is
dependent upon the resource size. The identification of this
value needs to think about the setup of the workload and this
machine.

6. Conclusion

Wepresented a robust PIR scheme for efficiently and securely
storing and retrieving private information from untrusted
cloud servers. Our scheme lets the data owners to effectively
divide and encrypt their own data into small slices of five
different size categories. Our implementation and exper-
imental analysis confirm the efficacy and efficacy of our
proposed scheme, which appreciates orders of magnitude of
improvement in throughput concerning source protection
and decryption. For an object of size 1 GB, the time required
for implementing the get requests is roughly 92 seconds for
1 considered fragment; the time is 1000 seconds for 1024 con-
sidered fragments for the same object size. Considering an
object of size 64KB, the time required for executing the get

requests is about 0.08 seconds for 1 considered fragment,
and the time is 50 seconds for 1024 considered fragments
for the same object size. The proposed scheme also supports
its compatibility with all present cloud storage environments,
which makes it also relevant to a lot of application domains.

Data Availability

The data used to support the findings of this study are
available from the authors upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private
information retrieval,” in Proceedings of the 36th Annual Foun-
dations of Computer Science, pp. 41–50, Los Alamitos, Calif,
USA, October 1995.

[2] B. Chor and N. Gilboa, “Computationally private information
retrieval (extended abstract),” in Proceedings of the 29th Annual
ACM Symposium onTheory of Computing (STOC ’97), pp. 304–
313, New York, NY, USA, May 1997.

[3] R. L. Rivest, “All-or-nothing encryption and the package trans-
form,” in Fast Software Encryption, vol. 1267 of Lecture Notes
in Computer Science, pp. 210–218, Springer Berlin Heidelberg,
1997.

[4] J. Shen, C. Wang, T. Li, X. Chen, X. Huang, and Z.-H. Zhan,
“Secure data uploading scheme for a smart home system,”
Information Sciences, vol. 453, pp. 186–197, 2018.

[5] X. Chen, J. Li, J. Weng, J. Ma, and W. Lou, “Verifiable computa-
tion over large database with incremental updates,” Institute of
Electrical and Electronics Engineers. Transactions on Computers,
vol. 65, no. 10, pp. 3184–3195, 2016.

[6] X. Chen, J. Li, X. Huang, J. Ma, and W. Lou, “New Publicly
Verifiable Databases with Efficient Updates,” IEEE Transactions
on Dependable and Secure Computing, vol. 12, no. 5, pp. 546–
556, 2015.

[7] H. Sun and S. A. Jafar, “The capacity of robust private infor-
mation retrieval with colluding databases,” Institute of Electrical
and Electronics Engineers Transactions on Information Theory,
vol. 64, no. 4, part 1, pp. 2361–2370, 2018.

8 Wireless Communications and Mobile Computing

[8] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protecting
data privacy in private information retrieval schemes,” Journal
of Computer and System Sciences, vol. 60, no. 3, pp. 592–629,
2000.

[9] C. Gao, S. Lv, Y. Wei, Z. Wang, Z. Liu, and X. Cheng, “M-SSE:
an effective searchable symmetric encryption with enhanced
security for mobile devices,” IEEE Access, vol. 6, pp. 38860–
38869, 2018.

[10] K. Riad and L. Ke, “Operative scheme for functional android
malware detection,” Security and Communication Networks.

[11] J. Xu, L. Wei, Y. Zhang, A. Wang, F. Zhou, and C. Gao,
“Dynamic Fully Homomorphic encryption-based Merkle Tree
for lightweight streaming authenticated data structures,” Jour-
nal of Network and Computer Applications, vol. 107, pp. 113–124,
2018.

[12] J. Li, X. Chen, C. Jia, and W. Lou, “Identity-based encryption
with outsourced revocation in cloud computing,” IEEE Trans-
actions on Computers, vol. 64, no. 2, pp. 425–437, 2015.

[13] H. Li, X. Lin, H. Yang, X. Liang, R. Lu, and X. Shen, “EPPDR:
an efficient privacy-preserving demand response scheme with
adaptive key evolution in smart grid,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 8, pp. 2053–2064,
2014.

[14] J. Shen, J. Shen, X. Chen, X. Huang, and W. Susilo, “An efficient
public auditing protocol with novel dynamic structure for cloud
data,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 10, pp. 2402–2415, 2017.

[15] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-
based encryption for fine-grained access control of encrypted
data,” in Proceedings of the 13th ACM Conference on Computer
and Communications Security (CCS ’06), pp. 89–98, November
2006.

[16] K. Riad, “Multi-authority trust access control for cloud storage,”
in Proceedings of the 4th IEEE International Conference on Cloud
Computing and Intelligence Systems (CCIS ’16), pp. 429–433,
August 2016.

[17] J. Hur and D. K. Noh, “Attribute-based access control with
efficient revocation in data outsourcing systems,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 22, no. 7, pp.
1214–1221, 2011.

[18] K. Riad, “Revocation basis and proofs access control for cloud
storage multi-authority systems,” in Proceedings of the 3rd
International Conference on Artificial Intelligence and Pattern
Recognition (AIPR ’16), pp. 118–127, September 2016.

[19] J. Li, X. Y. Huang, J. W. Li, X. F. Chen, and Y. Xiang, “Securely
outsourcing attribute-based encryptionwith checkability,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 8,
pp. 2201–2210, 2014.

[20] J. Li, Z. Liu, X. Chen, F. Xhafa, X. Tan, and D. S. Wong, “L-
EncDB: A lightweight framework for privacy-preserving data
queries in cloud computing,” Knowledge-Based Systems, vol. 79,
pp. 18–26, 2015.

[21] X. W. Y. Zhang, H. Zhu, and L. Jiang, “An identity-based
signcryption on lattice without trapdoor,” Journal of Universal
Computer Science, 2018.

[22] T. Li, W. Chen, Y. Tang, and H. Yan, “A homomorphic network
coding signature scheme formultiple sources and its application
in IoT,” Security andCommunicationNetworks, vol. 2018, Article
ID 9641273, 6 pages, 2018.

[23] H. Yan, X. Li, Y. Wang, and C. Jia, “Centralized duplicate
removal video storage system with privacy preservation in IoT,”
Sensors, vol. 18, no. 6, 2018.

[24] H. Zhu, Y. Tan, L. Zhu, X. Wang, Q. Zhang, and Y. Li, “An
identity-based anti-quantum privacy-preserving blind authen-
tication in wireless sensor networks,” Sensors, vol. 18, no. 5, 2018.

[25] H. Li, D. Liu, Y. Dai, T. H. Luan, and X. S. Shen, “Enabling
efficient multi-keyword ranked search over encrypted mobile
cloud data through blind storage,” IEEE Transactions on Emerg-
ing Topics in Computing, vol. 3, no. 1, pp. 127–139, 2015.

[26] H. Li, D. Liu, Y. Dai, T. H. Luan, and S. Yu, “Personalized search
over encrypted data with efficient and secure updates in mobile
clouds,” IEEE Transactions on Emerging Topics in Computing,
vol. 6, no. 1, pp. 97–109, 2018.

[27] J. Shen, T. Zhou, D. He, Y. Zhang, X. Sun, and Y. Xiang,
“Block design-based key agreement for group data sharing in
cloud computing,” IEEE Transactions on Dependable and Secure
Computing, 2018.

[28] S. D. C. Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “Encryption policies for regulating access
to outsourced data,” ACM Transactions on Database Systems
(TODS), vol. 35, no. 2, 2010.

[29] I. Hang, F. Kerschbaum, and E. Damiani, “ENKI: Access control
for encrypted query processing,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD ’15), pp. 183–196, New York, NY, USA, June 2015.

[30] K. Riad, “Blacklisting and forgiving coarse-grained access
control for cloud computing,” International Journal of Security
and Its Applications, vol. 10, no. 11, pp. 187–200, 2016.

[31] K. Riad and Z. Yan, “Multi-factor synthesis decision-making
for trust-based access control on cloud,” International Journal of
Cooperative Information Systems, vol. 26, no. 04, pp. 1–33, 2017.

[32] Z. Cai, H. Yan, P. Li, Z.-A. Huang, and C. Gao, “Towards secure
and flexible EHR sharing in mobile health cloud under static
assumptions,” Cluster Computing, vol. 20, no. 3, pp. 2415–2422,
2017.

[33] W. Chen, H. Lei, and K. Qi, “Lattice-based linearly homomor-
phic signatures in the standard model,” Theoretical Computer
Science, vol. 634, pp. 47–54, 2016.

[34] M. Z. A. Bhuiyan, G. Wang, J. Wu, J. Cao, X. Liu, and T.
Wang, “Dependable structural healthmonitoring usingwireless
sensor networks,” IEEE Transactions on Dependable and Secure
Computing, vol. 14, no. 4, pp. 363–376, 2017.

[35] H. Shen, C. Gao, D. He, and L. Wu, “New biometrics-based
authentication scheme for multi-server environment in critical
systems,” Journal of Ambient Intelligence and Humanized Com-
puting, vol. 6, no. 6, pp. 825–834, 2015.

[36] A. Fazeli,A. Vardy, and E. Yaakobi, “PIRwith Low Storage Over-
head:Coding InsteadofReplication,” 2015, https://arxiv.org/abs/
1505.06241.

[37] OpenStack, http://www.openstack.org/.

https://arxiv.org/abs/1505.06241
https://arxiv.org/abs/1505.06241
http://www.openstack.org/

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

