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In this paper, we examine a spectrum sharing opportunities over the existing Global System of Mobile Communication (GSM)
networks, by identifying the unused channels at a specific time and location. For this purpose, we propose a wideband spectrum
sensing mechanism to analyze the status of 51 channels at once, belonging to the 10 𝑀𝐻𝑧 bandwidth centered at the frequency945 𝑀𝐻𝑧, in four different areas. We propose a subspace based spectral estimation mechanism, adapted to deal with real
measurements. The process begins with data collection using Secondary User (SU) device enabled with Software Defined Radio
(SDR) technology, configured to operate in the GSMband. Obtained samples are used then to feed the sensingmechanism. Spectral
analysis is delivered to estimate power density peaks and corresponding frequencies. Decisionmaking phase brings together power
thresholding technique and GSM control channel decoding to identify idle and busy channels. Experiments are evaluated using
detection and false alarm probabilities emulated via Receiver Operating Characteristic (ROC) curves. Obtained performances
show better detection accuracy and robustness against variant noise/fading effects, when using our mechanism compared to
Energy Detection (ED) based ones asWelchmethod, and Beamforming based ones asMinimumVariance Distortionless Response
(MVDR) method. Occupancy results exhibit considerable potential of secondary use in GSM based primary network.

1. Introduction

Nowadays, the Internet of Things (IoT) paradigm is known
as being the trend that defines the global orientation of
information technology actors. The early stage idea behind
this paradigm consists of deploying smart devices mainly
conceived for physical phenomenamonitoring and control. It
is expanding gradually to reach a point-to-point interaction
between humans and devices leading to a smart and con-
nected ecosystem. Billions of things already proliferate in the
IoT ecosystem, yielding to novel application domains such as
Smart Cities [1, 2] as an all-embracing perspective including
variant sub-applications, Industry 4.0, e-government, among
others. This vision appears highly promising, although it

divulges new types of challenges requiring low latency,
low energy consumption and cost, and easy operation of
massive number of embedded-systems. Those small size
devices need to coexist with high level mobile devices such
as Smartphones, Tablets, and similar accessories and share
the available telecommunication bandwidth to ensure their
connectivity. IoT designed-devices operate mainly in the
unlicensed and limited industrial, scientific, and medical
(ISM) bands. With the proliferation of IoT devices, ISM band
is congested and there is a need to explore utilizing other
bands. In this direction, important research on 5G futuristic
telecommunication standard has investigated the possibility
of exploiting millimeter wave range of 30 − 300 𝐺𝐻𝑧 to
enhance the availability [3]. However, millimeter waves are
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very susceptible to penetration and are still being investigated
in terms of energy efficiency and hardware suitability for IoT
application [4].

In this paper, we explore the underused spectrum in
GSM band to alleviate the spectrum congestion problem
in IoT application. Our interest to use GSM infrastructure
is mainly motivated by the extensive demands for using
the 800 − 900 𝑀𝐻𝑧 bands by NarrowBand IoT (NB-IoT)
devices [5], and the under-utilization of this band [6]. In
fact, deploying NB-IoT in such frequency bands is a great
choice because they provide an already large and established
ecosystem and extensive coverage capabilities. They also
have excellent propagation characteristics which generally
improves the indoor penetration [7]. In particular we focus
at considering Cognitive Radio (CR) technology as the key
technology to overcome the spectrum efficiency challenges
[8].We aim at allowing unlicensed or “secondary users (SUs)”
to access the unused spectrum bands of GSM. To intelligently
access and leave the bands of interest, without interfering
with the primary devices, CR user needs to have the ability
to perform (1) spectrum sensing, (2) decides whether the
channel is available for use, (3) shares the spectrum, and then
(4) decides whether to stay or leave the channel (spectrum
mobility) [9]. In our work, we will focus on the spectrum
sensing functionality [10], which is indispensable to identify
where the unused portions of the GSM spectrum, commonly
called “white spaces,” are located.

Few research contributions have already explored CR
opportunities over GSM networks. Chowdhury and al. [11]
have combined the FDD (Frequency Division Duplex) and
TDMA (Time Division Multiple Access) features of GSM
standard to model PUs (Primary Users) behavior and per-
formed dynamic spectrum access. An opportunistic access
to the 850 MHz GSM uplink frequency channel has been
investigated by Gao [12]. However, spectrum sensing has
not concretely been addressed in both papers. Authors
have adopted many assumptions to meet spectrum sensing
constraints in GSM bands, which question the validity of the
model for real case scenarios. Other works in the literature
[13, 14] have addressed spectrum sensing using Energy
Detection (ED) based techniques in GSM, though they are
significantly vulnerable in noisy environments. Furthermore,
such techniques are limited to narrowband sensing problems,
which make them unable to detect more than one frequency
channel per time. Thus, performing a “Wideband” spectrum
sensing for GSM networks will significantly enhance oppor-
tunistic access possibilities.

In this paper, we propose a subspace-based wideband
spectrum sensing mechanism for GSM downlink channels
characterization. The proposed technique outperforms the
existing approaches in several aspects; it is adaptable to realis-
tic scenarios, robust against fading and noise effects, capable
of sensing multiple channels at once. Subspace techniques
are known to be used in multiple sources multiple antennas
architectures since they rely on eigen-decomposition of the
autocorrelation matrix of the received signals [15]. In our
approach, we adapt the mathematical basics of subspace
algorithm to suite the received data while using SDR-
enabled devices equipped with single antenna to reduce

the sensing cost. Data collection was done in four different
areas to experience different attenuation/noise effects. The
SDR was configured to operate in the GSM band between
940 and 950 MHz, which contains 51 channels of 200 𝑘𝐻𝑧
bandwidth. We then use the received samples as inputs
to our sensing mechanism modeled in Matlab simulation
tools to study its performance. We obtain the PSD (Power
Spectrum Density) distribution all over the band and its
corresponding frequency estimates using Multiple Signal
Classification (MUSIC) algorithm. We retrieve then the
power content in each 200 𝑘𝐻𝑧 channel and compare it to
specific predetermined threshold to decide whether it is busy
or idle. To evaluate the efficiency of the proposedmechanism,
we opted for an analytical study of GSM control channels.
We decoded them to obtain the ARFCN (Absolute Radio-
Frequency Channel Number) parameters that correspond to
active channels in advance. This study allows us to obtain
correct detection and false alarm probabilities to evaluate
detection accuracy of our technique versus Welch ED-based
approach and MVDR (Minimum Variance Distortionless
Response) beamforming-based one. The results prove the
efficiency of the presented mechanism in different radio
environments and its suitability to characterize accurately
GSM channels activity.

The remainder of this paper is organized as follows.
In Section 2, we review some of the related works in the
literature. Section 3 lays out the mathematical model of
the presented sensing mechanism. Section 4 outlines the
experimental scenario and reports the results obtained from
our experiments. In Section 5, we conclude our work and
discuss potential improvements.

2. Related Works

Cognitive Radio is essentially based upon resources sharing
and coexistence between primary networks and secondary
ones. Thus, enabling SUs with dynamic RF-spectrum access
protocols requires accurate spectrum sensing mechanisms to
avoid interference with PUs. In this sense, several sensing
approaches have been proposed in the literature including
ED, cyclostationarity features detection [16], matched fil-
tering [17], among others [18]. The commonly used within
GSM-based primary networks is the ED, mainly because of
its low computational load and minimum dependency to a
priori information [19]. It was implemented in a primitive
way, in [13] using a spectrum analyzer to retrieve spectrum
occupancy statistics of GSM band at Jaipur city, India.
However, ED is vulnerable to noise uncertainty and needs
to have an accurate knowledge of the noise floor, which
interrogates the accuracy of signal detection in the presence
of injurious shadowing andmultipath fading effects. Another
relevant paper [14] has portrayedCR opportunities over GSM
by examining captured samples in real time, based upon Fast
Fourier Transform (FFT) algorithm to do spectrum sensing.
Nonetheless, the FFT analysis is marked by tradeoffs in
windowing, time domain averaging, and frequency domain
averaging of sampled data obtained from random processes
in order to balance the need to reduce side lobes and to
ensure adequate spectral resolution [20]. The authors in
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[21] have come up with the idea of a spectrum pooling
scenario to enable dynamic access to the GSM unused bands
by an OFDM (Orthogonal Frequency-Division Multiplex-
ing) based secondary system. The sensing technique was
built upon cyclostationnarity features extraction of GMSK
(Gaussian Minimum-Shift Keying) based modulation and
OFDM-based one coupled with frequency domain and time
domain ED tests to enhance the performance under specific
constraints. Similarly in [22] the couple GSM and OFDM
were, respectively, examined as primary and secondary sys-
tems by adopting an interference elimination mechanism
through the insertion of a ZFBF (Zero Forcing Beamforming)
precoding and postcoding, respectively, at the secondary
system transmitter and receiver. The approaches in [21, 22]
are far to be investigated for a generalized detection mech-
anism, since they are uniquely adequate to detect OFDM
modulated signals, which is not the case in heterogeneous
radio environments as for IoT paradigm, where secondary
devices are enabled with different multiplexing and access
technologies. Besides, the aforementioned spectrum sensing
policies are narrowband, which means that they make single
binary decision for the whole spectrum [23]. This is a real
bottleneck since they cannot identify individual spectral
opportunities that lie within the considered spectrum [24].
For this reason, adopting wideband sensing that consists
in a joint observation of multiple subchannels at a stroke
and joint decision on the occupancy in each sub-band
makes the sensing more efficient, especially in GSM based
primary network where all targeted 200 kHz subbands need
to be investigated at once. Several research studies have
been used in this sense, such as multi-band joint detection
algorithm and filter-bank detection [25]. Such methods treat
the problem as a narrowband sensing one, since they rely
on dividing the wideband spectrum into narrower subbands
for processing. The main drawback of these methods is that
they require prefixed bandwidth locations which may cause
detection errors in realistic scenarios when signals exceed
frequency bins boundaries. Wavelet methods were adopted
to solve this problem by detecting edges in the PSD of
wideband channel [26, 27]. Unlike the above mentioned
methods, subspace based techniques are highly promising for
wideband spectrum sensing since they can sense multiple
channels in one go [15, 28] which makes them the most
convenient tools for GSM channels detection. In addition,
they do not need a priori information of the PUs signal
characteristics as in [21, 22] since they are not restricted to
specific modulations. Furthermore, subspace techniques are
significantly robust against noise as shown in [29], unlike
the methods used in [13, 14, 19], because they rely on the
eigen-decomposition of the autocorrelation matrix which
allows to remove the uncertain background noise in advance.
This was the main motivation behind the recent study held
in [30] that used subspace filtering to sense multiple PU
signals corrupted with AWGN (Additive White Guassian
Noise) and Rayleigh fading. The probabilistic analysis seems
to be the main contribution of this work, which was already
addressed in several previous studies [31, 32]. Rao and
al. in [15] have addressed wideband sensing problem by
proposing a cooperative subspace detection scheme. They

considered received samples over all cognitive SUs, where
each of them is equipped with multiple antennas, and by
default, they all participate in sensing. This may be neither
efficient nor necessary owing to the cost associated with
sensing in realistic scenarios. Furthermore, in such model,
one PU signal can be detected by more than one SU, which
creates estimates association problem that needed data fusion
procedure to keep the correct estimates. In our paper, we
make the following contributions:

(1) Different from the works in [11, 13, 14], we are
proposing realistic testbed using SUs devices enabled
with SDR, configured to act independently and collect
periodically the signal samples emitted by GSM PUs
to lower the sensing cost that usually accompanies
subspace techniques in multiple antennas system
design as in [15].

(2) We have adapted the mathematical basics of the
subspace method to suit data inputs retrieved by
sampling GSM channels.

(3) Our model eliminates data fusion problem, since it
does not involve multiple antennas architecture, and
the PSDs are evaluated with respect to each 200 𝑘𝐻𝑧
subband within the 10 𝑀𝐻𝑧without worrying about
the number of users.

(4) Performing an analytical study besides the blind
detection one as subspace leads to better threshold
selection and accurate decision making process.

3. Subspace Based Technique
for Spectrum Sensing

Spectrum sensing mechanism is primordial in CR communi-
cation cycle, since it defines the occupancy or the availability
of the band of interest, so as to figure out how to best
take advantage of unused spectrum. To meet the sensing
requirements of a GSM based primary network, a wideband
sensing mechanism is investigated to identify where the
white spaces reside in a wide portion of the spectrum,
characterized byspecific number of GSM downlink channels.
The bandwidth of each one is fixed to 200 𝑘𝐻𝑧 according to
the standardized properties of the GSM network.

3.1. Formulation of the Signal Model. Let us assume that
there are 𝐿 secondary users attempting to access the GSM
spectrum in anopportunisticmanner. Let𝐷 be themaximum
number of signals that may occupy the band of interest
which corresponds to the number of primary users active at a
specific time, each with a carrier frequency 𝑓𝑑 for 𝑑 ∈ [1,𝐷].
Equation (1) indicates the mathematical representation of the
primary signal, while 𝛼𝑑(𝑛) and 𝛽𝑑(𝑛) represent, respectively,
the amplitude and the phase of the signal sample 𝑛 with 𝑛 ∈[1,𝑁].

𝑆𝑑 (𝑛) = 𝛼𝑑 (𝑛) cos (2𝜋𝑓𝑑𝑛 + 𝛽𝑑 (𝑛)) (1)
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Considering the complex envelope of the signal, we obtain
the analytical expression in equation (2):

𝑆𝑒𝑛V𝑑 (𝑛) = 𝛼𝑑 (𝑛) ⋅ 𝑒𝑗𝛽𝑑(𝑛)
where 𝑆𝑑 (𝑛) = R {𝑆𝑒𝑛V𝑒 (𝑛) ⋅ 𝑒𝑗2𝜋𝑓𝑑𝑛} (2)

Themathematical processing is developed for one secondary
user in different nonoverlapped signal bursts 𝐼𝑡 for 𝑡 ∈[1, 𝜏], where 𝜏 refers to the whole observation time in the
present use case scenario. During each burst 𝐼𝑡, the secondary
user 𝑆𝑈𝑙 receives a vector →V 𝑙𝑡(𝑛) containing 𝐾 samples as
expressed in equation (3).

→V 𝐼𝑡 (𝑛) = [V𝐼𝑡 (𝑛) , V𝐼𝑡 (𝑛 + 1) , . . . , V𝐼𝑡 (𝑛 + 𝑘 − 1)]𝑇 (3)

In the present use case scenario, and inspired by [15], 𝐾 is
selected to be enough small to respect the condition 𝐷 <𝐾 << 𝑁, and to ensure the slow variation property of the
process 𝑆𝑑(𝑛) with respect to the sampling rate 𝐹𝑠 of the
SDR chosen in the experimental phase.Thus, we assume that𝑆𝑑(𝑛) ≈ 𝑆𝑛(𝑛 + 𝑘) for 𝑘 ∈ [1, 𝐾 − 1]. The generalized model
of the complete signal received during the observation time 𝜏
by 𝑆𝑈𝑙 is delivered in equation (4).

V𝑙 (𝑛) = [→V 𝐼1 (𝑛) , →V 𝐼2 (𝑛) , . . . , →V 𝐼𝜏 (𝑛)]
V𝑙 (𝑛) = AS (𝑛) + Z𝑙 (𝑛)

(4)

with A = [→𝐴1, →𝐴2, . . . , →𝐴𝐷] where each column →𝐴𝑑 =
[1, 𝑒−𝑗2𝜋𝑓𝑑 , . . . , 𝑒−𝑗2𝜋(𝐾−1)𝑓𝑑]𝑇 for 𝑑 ∈ [1,𝐷]. S = [→𝑆 1, →𝑆 2, . . . ,→𝑆 𝑙𝜏] where each column →𝑆 𝑙𝜏 = [𝑆(𝐼𝑡 ,1), 𝑆(𝐼𝑡,2), . . . , 𝑆(𝐼𝑡 ,𝐷)]𝑇
contains the complex signal received from the d-th PU
signal at the antenna in the block 𝐼𝑡. Z𝑙(𝑛) = [→𝑍𝐼1(𝑛),→𝑍𝐼2(𝑛), . . . , →𝑍𝐼𝜏 (𝑛)] is a zero mean Gaussian white noise
matrix with variance 𝜎2, where the column →𝑧 𝐼𝑡 =
[𝑧𝐼𝑡(𝑛), 𝑧𝐼𝑡 (𝑛 + 1), . . . , 𝑧𝐼𝑡 (𝑛 + 𝐾 − 1)]𝑇. The autocorrelation
matrix of the complete signal is given in equation (5).

RVV = 𝐸 {V𝑙 (𝑛)V𝐻𝑙 (𝑛)} (5)

where 𝐸{⋅} denotes the expectation operator. Substituting the
equation (4) in equation (5), we obtain

RVV = AR𝑠𝑠A
𝐻 + 𝜎2I𝑛𝑜 (6)

where R𝑠𝑠 = 𝐸{S(𝑛)S𝐻(𝑛)} is the autocorrelation matrix
of signals. The quantity 𝜎2I𝑛𝑜 corresponds to the noise
autocorrelation matrix with variance 𝜎2 and I𝑛𝑜 the identity
matrix.ThematrixR𝑠𝑠 holds in its diagonal the average power
received from𝐷 signal sources by the secondary user 𝑙, during
the whole observation period 𝜏 divided into time intervals 𝐼𝑡.
Thus, it can be expressed according to equation (7)

diag (R𝑠𝑠)
= [ 𝜏∑
𝑛=1

𝑆𝐼𝑛,1 (𝑛)2 ,
𝜏∑
𝑛=1

𝑆𝐼𝑛,2 (𝑛)2 , . . . ,
𝜏∑
𝑛=1

𝑆𝐼𝑛,𝐷 (𝑛)2]
(7)

As a matter of fact, the exact value of the autocorrela-
tion matrix analytically obtained in equation (6) cannot be
accurately attained. For this reason, we adopt the following
approximation in equation (8).

RVV ≈ 1
𝑁 − 𝐾 + 1

𝑁−𝐾+1∑
𝑛=1

V𝑙 (𝑛)V𝐻𝑙 (𝑛) (8)

As soon as we get to define the data model, the estimation
methods can be used to estimate the spectral content in the
received data set.

3.2. Eigen-Decomposition of the Autocorrelation Matrix. The
eigen-decomposition phase allows to separate the space of
observations in two orthogonal vector subspaces, the signal
subspace, and its complement, the noise subspace. The auto-
correlation matrix obtained by equation (6) can be written
as a decomposition of 𝐾 eigenvectors {→Φ𝑖}𝑖=1,...,𝐾 and 𝐾
associated eigenvalues {𝜆}𝑖=1,...,𝐾, arranged in the descending
order, as shown in equation (9).

RVV = 𝐾∑
𝑖=1

𝜆𝑖→Φ𝑖→Φ𝐻𝑖 = →Φ𝑖→Λ →Φ𝐻𝑖 (9)

where →Λ = diag{𝜆1, 𝜆2, . . . , 𝜆𝐾}. Since there are 𝐷 signal
sources and the noise is an AWGN (Additive White Gaussian
Noise), we have 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝐷 ≥ 𝜆𝐷+1 = ⋅ ⋅ ⋅ = 𝜎2𝑁
[33]. In fact, the eigenvector →Φ𝑖 associated with its particular
eigenvalue 𝜆𝑖 satisfies the following equation (10):

(RVV − 𝜆𝑖I𝑛𝑜) →Φ𝑖 = 0 (10)

Considering the eigenvectors corresponding to the (K-D)
smallest eigenvalues, we obtain

(RVV − 𝜎2𝑖 I𝑛𝑜) →Φ𝑖 = AR𝑠𝑠A
𝐻→Φ𝑖 + 𝜎2𝑖 I𝑛𝑜→Φ𝑖 − 𝜎2𝑖 I𝑛𝑜→Φ𝑖

= AR𝑠𝑠A
𝐻→Φ𝑖 = 0

for 𝑖 = 𝐷,𝐷 + 1, . . . , 𝐾
(11)

SincematrixA is full rank andR𝑠𝑠 is nonsingular, we conclude
that A𝐻→Φ𝑖 = 0. Thus, the eigenvectors associated with the(𝐾 − 𝐷) smallest eigenvalues are orthogonal to𝐷 directional
vectors that make up as written in equation (12).

{→𝐴1, →𝐴2, . . . , →𝐴𝐷} ⊥ {→Φ𝐷+1, →Φ𝐷+2, . . . , →Φ𝐾} (12)

This analysis shows that the eigenvectors composing the
autocorrelation matrix RVV belong to one of the two orthog-
onal subspaces. We define the signal subspace U𝑠𝑖𝑔 =
[→Φ1, . . . , →Φ𝐷] and the noise subspace U𝑛𝑜 = [→Φ𝐷+1, . . . , →Φ𝐾].
Thus, the information relative to the signal space is held in𝐷 eigenvectors that correspond to the highest eigenvalues.
The remaining (𝐾 − 𝐷) eigenvectors compose the noise
subspace that does not contain any information referring to
the spectral content of the signal.
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3.3. Frequencies Estimation with Multiple Signal Classification
(MUSIC) Algorithm. The estimation of the frequency values
from the autocorrelation matrix of the signal cannot be
achieved without the prior knowledge of the number of
sources 𝐷 in the communication environment. Otherwise,
the parameter𝐷needs to be also estimated [15]. In the present
use case scenario where the primary network is based on
GSM standard, the number of signals can be identified since
it corresponds to the slots of 200 𝑘𝐻𝑧 channels present in the
band under study. At this stage, following the computation of
the eigenstructure of the received waveforms and the number
of signals, the Multiple Signal Classification (MUSIC) algo-
rithm [34] is used to obtain the estimates of frequencies {𝑓𝑑}
for 𝑑 ∈ [1, 𝐷]. The idea of the algorithm is based upon the
property of orthogonality between the signal space and the
noise space. TheMUSIC spectrum is evaluated as the inverse
of the squared Euclidean distance between the vectors in the
matrix and the noise space.Thus, the power peaks expression
is given by equation (13).

𝑃 = 1
A𝐻U𝑛𝑜U𝐻𝑛𝑜A

(13)

3.4. Channels Occupancy Analysis. After the spectral estima-
tion step using the subspace technique, we opt for evaluating
the average power of received signals in each GSM channel
with 200 𝑘𝐻𝑧 bandwidth. We resort to this technique in
order to build our decision making procedure which is
based upon the threshold selection. Thus, equation (14) is
applied to sweep the detected power peaks in each channel
independently for 𝑐 ∈ [1,𝑁𝑐] with 𝑁𝑐 denoting the number
of channels and 𝑁𝑝 denoting the number of bins in each
channel.

𝑃𝑐ℎ (𝑐) = 1
𝑁𝑝
𝑐⋅𝑁𝑝−1∑
𝑚=(𝑐−1)⋅𝑁𝑝

𝑃 (𝑚) (14)

In the present use case scenario, we are using real
measurements taken from the received signal samples for
detection, and no information on the transmitted signal and
channel is needed. Suchmethods belong to the so called blind
detection methods. In the simple case of ED based methods,
accurate knowledge on the noise power is therefore the key
to the success of the method. Unfortunately, in practice,
the noise uncertainty is always present; thus, the estimated
noise power may be different from the actual noise power
[32]. To this purpose, in our use case scenario based upon
subspace based mechanism, we set the decision threshold 𝛾
that guarantees the best compromise between the false alarm
and misdetection probabilities. We then classify the channels
as idle or busy as follows:

if 𝑃𝑐ℎ (𝑐) ≥ 𝛾 ⇒ channel is busy
if 𝑃𝑐ℎ (𝑐) < 𝛾 ⇒ channel is idle

(15)

4. Experimental Scenario

4.1. �e Experimental Setup. The experimental prototype
used to monitor the GSM downlink radio channels is

based on a SDR platform. It is composed of GNU-
Radio which is an open source toolkit radio applications
prototyping [35], run on a Linux-based Desktop, con-
nected to the Universal Software Radio Peripheral (USRP)
transceiver board, model B200, from Ettus Research com-
pany [36]. The testbed is illustrated in Figure 1(a). Exper-
iments have been enrolled in an urban area in four dif-
ferent locations, which are the GPS coordinates, respec-
tively, 37 35 3, 46 North/15 2 22, 51 East, 37 35 4, 72
North/15 2 21, 20 East, 37 35 2, 76 North/15 2 23, 14
East and 37 35 3, 65 North/15 2 23, 02 East, in the
province of Catania, Italy. Positions one and three are in the
same sea level where positions two and four are in another
same sea level. Figure 1(b) illustrates the four positions
where the SDR prototype was located to receive the GSM
complex samples, marked with the red color. The SDR
equipment was tuned to scan the GSM base station downlink
transmission in the frequency band from 940 to 950 𝑀𝐻𝑧
that corresponds to the ARFCN (Absolute Radio-Frequency
Channel Number) codes from 25 to 75, using a sample rate of10 𝑀𝑆𝑎𝑚𝑝𝑙𝑒𝑠/𝑠. Data analysis is made considering different
windows of samples; each one contains 𝑁 = 1024 discrete
points. A block of 512 points between each two consecutive
observation vectors was discarded to avoid the overlapping.
Each window is spread over a resolution bandwidth of10 𝑀𝐻𝑧 centered in 945 𝑀𝐻𝑧, engendering a frequency
spacing of 9.76 𝑘𝐻𝑧 between each two points, obtained every10𝜇𝑠.

In parallel to our sensing approach we have made an
analytical study using the open source project “gr-gsm” [37],
that allows us to have a priori information about the occupied
ARFCNs in the considered area, so that we can evaluate
false alarm and misdetection probabilities of our approach.
Specifically the gr-gsm project provides the “grsgm scanner”
tool which gives information about ARFCNs used in the
sensed area by decoding GSM control channels. We consider
the active ARFCNs in both, the cell covering the current
receiver position, and its neighbor ones, all obtained while
decoding the control channels. Table 1 contains the active
ARFCNs and their corresponding central frequencies in the940 − 950 𝑀𝐻𝑧 band.

Figure 2 shows the estimated PSDs obtained in each
acquisition point using Welch method applied on a long
sequence of 4096 non overlapped windows of 1024 received
samplesweighted bymeans ofHanningwindow.Thevertical-
red lines correspond to the central frequencies of each active
GSM channel. PSD distribution reveals tiny idle bands refer-
ring to the inactive channels at 940.2 𝑀𝐻𝑧 and 941.2 𝑀𝐻𝑧,
and a 4 𝑀𝐻𝑧 idle band referring to the inactive channels
from 945.6 𝑀𝐻𝑧 to 949.6 𝑀𝐻𝑧.

4.2. Simulation Results and Discussion. The first step of
our GSM downlink channels characterization mechanism
consists in implementing the spectrum sensing mechanism
described in Section 3. We used complex samples acquired
by means of the USRP device as input to our subspace
based algorithm. The acquisition system was installed in four
different positions as specified in the previous Section 4.1 to
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Table 1: Occupied ARFCNs in the data collection area.

ARFCN 25 27 28 29 30 32 33 34 35 36 37 38 39 40
fo MHz 940.0 940.4 940.6 940.8 941.0 941.4 941.6 941.8 942.0 942.2 942.4 942.6 942.8 943.0
ARFCN 41 42 43 44 45 46 47 48 49 50 51 52 74 75
fo MHz 943.2 943.4 943.6 943.8 944.0 944.2 944.4 944.6 944.8 945.0 945.2 945.4 949.8 950.0

(a) (b)

Figure 1: (a) Experimental Testbed; (b) Data collection area.
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Figure 2: Estimated PSDs obtained in each acquisition point: (a) position 1, (b) position 2, (c) position 3, and (d) position 4.The vertical red
lines mark the active ARFCNs.
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Figure 3: Spectral estimation results obtained in the first position using: (a) 1 window, (b) 128 windows, and (c) 4096 windows.

experience the effects of PUs distance variations (the GSM
BTSs in the cell and in the neighbor cells), surrounding
buildings, and vegetation on threshold selection and detec-
tion accuracy. In parallel, we have implemented two other
spectral estimation techniques, the traditional Welchmethod
with Hanning windowing and the MVDR method [38]. The
latter belongs to the beamforming techniques for processing
spatiotemporal samples to estimate incoming signals and the
directions of arrival (DOA). We opt for those approaches
since they rely on other computational basics different than
the subspace one.

The three approaches are evaluated using different
amounts of samples acquired in each area of the four

considered locations. Firstly, we processed only one window
containing 1024 samples. Secondly, we used 128 windows of1024 samples, and thirdlywe dealt with 4096 windows of 1024
samples. The PSD distributions show the same behavior in
different locations. Figure 3 illustrates the obtained PSDs in
the first position. Spectral analysis results exhibit a tremen-
dous impact of the number of windows using Welch and
MVDRmethods.The subspace based one appears insensitive
to the number of windows used. In fact, the variance of the
PSD estimates is significantly high using Welch and MVDR
while processing one window of 1024 samples, particularly
in low power density areas. Subsequently, it starts decreasing
with higher number of windows (128 windows of 1024
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Figure 4: Averaged power density over each 200 𝑘𝐻𝑧 channel evaluated using 1window in the first position: (a)Welchmethod, (b) Subspace
based, and (c) MVDR.

samples) until it reaches stable values when a thousand
of windows (4096) of samples are used. In such case, the
execution time will be a real bottleneck even though the
computational complexity of the algorithm itself is practically
low as in the case of Welch method. On the other hand, the
subspace-based technique gives better performanceswith less
number of samples with significant improvement in terms of
power peaks resolution and dB levels.

In step two, we proceed by evaluating independently and
consecutively the averaged power content obtained using the
considered mechanisms in each 200 𝑘𝐻𝑧 GSM channel in
the 10 𝑀𝐻𝑧 bandwidth using equation (14). The maximum
number of channels to be processed by our subspace sensing
mechanism is fixed to 𝑁𝑐 = 51. Figure 4 shows the obtained
results in the first position using the three considered spectral
estimation methods.

To evaluate the performance of the proposed mechanism
versus the other considered techniques in this paper, we used
ROC (Receiver Operating Characteristic) curves analysis in

each position. The classification of each single channel as
busy or idle is performed using equation (15). We evaluate
correct detection 𝑃𝑑 and false alarm probabilities 𝑃𝐹𝐴 based
upon GSM control channels information obtained by “grsgm
scanner” tool that decodes active channels as listed in Table 1.
As the reader can deduce from the analysis performed in
Figure 5, the subspace based method outperforms in each
position bothWelch andMVDRwith correct detection prob-
ability that reaches 100%.Threshold values that maximize the
probability of correct detection 𝑃𝑑 and its corresponding 𝑃𝐹𝐴
in our use case scenario, for the four positions, are gathered
in Table 2. The optimal values are also indicated on the ROC
curves (Figure 5) with red circles. Obtained results prove
the efficiency of the proposed mechanism in the presence
of variant fading/noise effects in each area, since threshold
values and corresponding probabilities do not mark relevant
variations when we change the experiments location. Except
position four, we are able to obtain 100% correct detection,
while keeping the false alarms less than 22% in the worst
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Table 2: Threshold values vs probabilities.

Position 1 Position 2 Position 3 Position 4
Threshold 𝛾 (dB) −59.977 −59.974 −60.015 −60.061
𝑃𝐷 100% 100% 100% 99.714%
𝑃𝐹𝐴 13.000% 13.565% 17.739% 21.435%
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Figure 5: ROC curves evaluated in each position: (a) position 1, (b) position 2, (c), position 3, and (d) position 4.

case. Even being in such case, the probability that a SU
correctly classifies an idle channel reaches 88%. Thus, the
presented sensing mechanism provides us with a powerful
tool to characterize the radio spectrum. On average, in the
studied area, a SU can approximately access 39% 𝑀𝐻𝑧 over
10 𝑀𝐻𝑧 of the considered band without interfering with
PUs.

5. Conclusions

Enabling CR users with wideband and accurate spectrum
sensing mechanism is primordial to ensure efficient spectral
resources sharing. Thus, a subspace technique based on the
eigen-decomposition of signals autocorrelation matrix has
been proposed to perform wideband spectrum sensing over
the GSM system network. The Average of power density
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peaks obtained using MUSIC algorithm is evaluated in each
channel to be then compared to a decision threshold. The
aforementioned processing was applied on real measure-
ments collected and sampled using a SDR platform in four
locations. The obtained probabilities prove the efficiency of
the proposed sensing approach and a considerable potential
of opportunistic access to GSM band, allowing devices with
CR capabilities to coexist with GSM based primary networks.
In the future work, we opt for investigating an opportunistic
use of the active channels too in the free time slots, taking
advantages of the Time Division Multiple Access (TDMA)
method implemented within GSM standard that allows
several users to share the same frequency channel during a
specific time slot.

Data Availability

TheMATLAB data used to support the findings of this study
are included within the supplementary information file(s)
(available here).
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