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Multiuser multiple input multiple output (MU-MIMO) wireless communication system provides substantial downlink throughput
in millimeter wave (mmWave) communication by allowing multiple users to communicate at the same frequency and time slots.
However, the design of the optimum beam-vector for each user to minimise interference from other users is challenging. In this
paper, based on the concept of signal-to-leakage plus noise ratio (SLNR), we analyze the ergodic sum-rate capacity using statistical
Eigen-mode (SE) and zero-forcing (ZF) models with Ricean fading channel. In the analysis, the orthogonality of channel vectors
between users is assumed to guarantee interference cancelation from other cochannel users. The impact of the number of antenna
elements on the achievable sum-rate capacity obtained by dirty paper coding (DPC) method considered as a nonlinear scheme
for approximating average system capacity is studied. A power iterative precoding scheme that iteratively finds the most dominant
eigenvector (optimum weight vector) for minimising cochannel interference (CCI), that is, maximising the SLNR for all users
simultaneously, is designed resulting in enhancement of average system capacity. The average system capacities achieved by the
proposed power iterative technique in this study compared with the singular value decomposition (SVD) method are in the ranges
of 5–11 bps/Hz and 1–6 bps/Hz, respectively.Therefore, the proposed power iterative method achieves higher performance than the
SVD regarding achievable sum-rate capacity.

1. Introduction

Millimeter wave (mmWave) communication which ex-
plores shorter propagation distance in frequency band of
20–40GHz is a key enabler for the fifth generation (5G)
mobile communication systems [1]. The mmWave commu-
nication also provides significant benefits to a variety of
applications such as vehicular communication, wire-able
networks, and autonomous robots [2]. In downlink trans-
mission for a MU-MIMO system, a base station (BS) serves

multiple users simultaneously in the same frequency and
time slot. Thus the throughput can be enhanced by spatial
multiplexing. However, the cochannel interference (CCI)
becomes a dominant factor in capacity due to nonorthogonal
signalling [3]. Hence, minimising CCI as much as possible
at the end users is of importance. CCI can be suppressed
by using linear precoders and decoders at transmitter and
receiver sides [4]. Additionally, the channel state information
(CSI) as well as partial information on the transmitter side
can be used to improve the system’s performance [5]. For all
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users served by the BS, the CSI should be known in advance at
the BS to support theCCIminimisationwhich is not available
at user’s end. Explicitly, the overhead on the system is reduced
in this approach because the channel information feedback is
not required [6, 7]. To perfectly cancel CCI at each end user,
the restriction on the system configuration is necessary. For
instance, the number of antenna elements at the BS should be
larger than the total number of antennas at the end users [7].
This assumption is usually valid for single antenna per user
which is generally adopted in the MU-MIMO system.

There are several studies that have been undertaken in
MU-MIMO downlink systems on how to minimise the CCI
problem related to CSI and analyze the achievable sum-rate
per user as well as the average system capacity. In [8], an
in-depth capacity analysis for nonorthogonal multiple access
(NOMA) mmWave massive MIMO systems was provided.
A simplified mmWave channel model was also explored by
extending the uniform random single-path (UR-SP) model
with the angle-of-arrival (AOA). Furthermore, the capacity
analysis was divided into high and low signal to noise ratio
(SNR) regimes, where the dominant factors for the signal
to interference plus noise ratio (SINR) were determined as
interference and noise. A multicast beamforming approach
was proposed in [9], where users locatedwithin the proximity
of the BS can receive two different data streams simultane-
ously, while those away can receive only one data stream. In
[7], a model was designed to transmit beamforming vectors
to maximise the signal to leakage ratio (SLR), minimising
transmission power which may cause interference to other
users. The model is not restricted to a certain number of
transmission antenna elements and can be extended to more
general scenarios. An asymptotic deterministic SLNR opti-
misation approach for regularized zero-forcing (RZF) con-
sidering perfect CSI and antenna correlation was proposed
[10]. It was found that when the users are homogeneously
distributed and the number of antenna elements is large
enough (𝑀 → ∞), the SLNR is asymptotically equal to SINR.
In [11], an efficient statistical Eigen-mode space division
multiple access (SE-SDMA) scheme for downlink ergodic
sum-rate analysis based on SLNRwas proposed. Tomaximise
the approximate ergodic sum-rate capacity, authors in [12]
designed an optimal beamforming vector for each user based
on a three-dimensional beamforming algorithm.The authors
in [3] focused on imperfect CSI scenario and developed a
robust SLNR approach for compensating performance degra-
dation caused by random CSI errors. In [13], a precoding
scheme for heterogeneous networks (Het-Nets)was proposed
based on SLNR under imperfect CSI scenario. In this case,
regularization parameter was used to “weight” the precoding
information for other cells (BSs).

In this paper based on the SLNR concept and Ricean
fading channel model with perfect CSI in MU-MIMO sys-
tems, the statistical Eigen-mode (SE) and zero-forcing (ZF)
models are derived. In addition, the average achievable sum-
rate by each user and the overall average system capac-
ity with different number of users are analyzed. Besides,
the expression of dirty paper coding (DPC) method as a
function of number of users (𝑈) and number of antenna
elements (𝑀) is addressed. Moreover, the impact of 𝑈 on

the average achievable sum-rate is demonstrated. The Ricean
fading channel with the line-of-sight (LOS) and scattering
components as channel model are adopted. We find that the
ergodic capacity of DPC is approximately free from channel
matrix which mainly depends on the number of BS antenna
elements and average transmission power.

Furthermore, by exploring the leakage signal criteria, we
propose a new design solution for precoding based on the
proposed power iteration technique. The technique finds the
optimum weight vector which maximises the SLNR, that
is, enhances the system capacity by obtaining the dominant
eigenvector for minimising the CCI. Finally, we compare
the proposed method with the conventional solutions such
as SVD. The numerical results demonstrate that significant
throughput performance can be achieved with the proposed
technique.

A comparative study of the proposed and SVD methods
regarding computation complexity and storage is also carried
out. The simplicity of the proposed algorithm is observed
in approximating only one eigenvalue of a matrix in a
sequence which is considerably more efficient as the number
of iterations increase. In comparison, the SVDhas to calculate
all eigenvectors and pick the one with the most significant
eigenvalue (the maximum eigenvalue), which requires larger
computation capability and storage capacity.

The contributions of this paper are in twofold:(1) The SE and ZF beam former models in Ricean
fading channel are examined based on SLNR instead of the
commonly used SINR and orthogonal condition of the beam
weight vector in MU-MIMO systems. The linear achievable
sum-rate capacity is investigated using these models to vali-
date the proposedmethod.Moreover, in nonlinear achievable
sum-rate capacity, the DPC technique regarding the impact
of the number of users and antenna elements on the ergodic
capacity is addressed. The results show that the number of
antenna elements has a significant contribution to the ergodic
capacity, and the DPC sum-rate capacity logarithmically
increases with the number of users.(2) A new optimum weight vector is developed based on
the proposed power iterationmethod, which allows each user
to maximise the SLNR and minimise the CCI from other
users.The proposedmethod comparedwith the conventional
SVD method shows that the proposed method can achieve
better performance with relatively low cost.

This paper is organized as follows. In Section 2, the MU-
MIMO downlink system is introduced. The beamforming
and leakage signal approaches are presented in Section 3.
In Section 4, the results and discussion of the study are
presented. Finally, the conclusion is drawn in Section 5.
The significant proofs of the algorithm are addressed in the
appendix.

In this paper, the superscript (∙)𝐻, (∙)𝑇 and (∙)∗ denote the
conjugate-transpose (Hermitian), transpose, and conjugate,
respectively. 𝐸{∙}, I𝑀, and 𝐶𝑁 are the expectation operator,
square identity matrix of size 𝑀 × 𝑀, and Gaussian random
complex numbers, respectively.
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Figure 1: Schematic diagram for leakage signals in MU-MIMO system model from the first user to all other users.

2. System Model

Consider the MU-MIMO system model shown in Figure 1.
The BS is equipped with 𝑀 uniform linear transmission
antennas that serve 𝑈 users simultaneously. Assume that
each user is equipped with a single antenna element [3].
Additionally, the number of the BS antenna elements is
assumed to be larger than that of users (𝑀 ≥ 𝑈); and the
power is equally allocated among all users [11, 12].

2.1. Signal Model. From the previous assumptions, the
received signal 𝑦𝑘 at 𝑘th user is given by

𝑦𝑘 = √𝑝𝑘h𝐻𝑘 w𝑘𝑥𝑘 + √𝑝𝑗 𝑈∑
𝑗=1,𝑗 ̸=𝑘

h𝐻𝑘 w𝑗𝑠𝑗 + 𝑛𝑘. (1)

The expression in (1) can be rewritten in a more simplified
form as

𝑦𝑘 = √𝑝𝑘 𝑈∑
𝑗=1

h𝐻𝑘 w𝑗𝑠𝑗 + 𝑛𝑘, (2)

where h𝑘 ∈ C1×𝑀 is the flat Ricean downlink channel
vector between the BS and the 𝑘th user. The weight vector
w𝑗 ∈ C𝑀×1 is unit normalised beamforming vector of user𝑗 and satisfies ‖w𝑗‖ = 1. Furthermore, the vector 𝑠𝑗 is the
transmitted data symbol of user 𝑗 with 𝐸[|𝑠𝑗|2] = 1. 𝑛𝑘 →𝐶𝑁(0, 𝜎𝑘) is unit normalised (𝜎2𝑘 = 1) complex additive white
Gaussian noise (AWGN). Moreover, 𝑝𝑘 is the transmission
power of the 𝑘th user under the constraint∑𝑈𝑘=1 𝑝𝑘 ≤ 𝑃. Since
the total transmission power (𝑃) is divided among all the
users equally, the average power can be written as 𝑝𝑘 = 𝑃/𝑈
for each user [3, 11, 12]. Consequently, the signal magnitude
of each user can be written as 𝑝|h𝐻𝑘 w𝑘| while the interference
of the 𝑘th user is determined by the sum of interference
from all other users. Hence, the interference can be denoted
as ∑𝑈𝑗=1,𝑗 ̸=𝑘 𝑝|h𝐻𝑘 w𝑗|2. Thus the SINR of the 𝑘th user can be
expressed as in (3) [12, 14]:

(Note: for simplicity we drop the “subscript 𝑘” from 𝑝𝑘 in
the rest of the paper).

SINR𝑘 = 𝑝 h𝐻𝑘 w𝑘21 + ∑𝑈𝑗=1,𝑗 ̸=𝑘 𝑝 h𝐻𝑘 w𝑗2 . (3)

The corresponding average achievable data rate for user 𝑘 can
be written as 𝑅𝑘 = 𝐸 [log2 (1 + SINR𝑘)] . (4)

By substituting (3) into (4), the average achievable sum rate
per user is given as in (5) [15, 16].

𝑅𝑘 = 𝐸{{{log2(1 + 𝑝 h𝐻𝑘 w𝑘21 + ∑𝑈𝑗=1,𝑗 ̸=𝑘 𝑝 h𝐻𝑘 w𝑗2)}}} . (5)

Subsequently, the overall system ergodic sum-rate capacity
can be written in bps/Hz as

𝑅system = 𝑈∑
𝑘=1

𝑅𝑘. (6)

2.2. Channel Model. In this subsection, we describe the
channel model as in [11, 12]. In the most recent studies
on mmWave communication, the Rayleigh fading channel
model is employed which faces difficulty in capturing the
fading variation in the presence of the LOS component.
Moreover, mmWave MU massive antenna system can be
used mainly in 5G hotpot scenarios in the LOS case. To
overcome the capturing problem in Rayleigh fading channel,
the Ricean fading channel is applied in this paper. Consid-
ering the Ricean fading channel model, the channel vector
has two components: LOS and Rayleigh random distribution
components.Thus, the channel vector can be expressed as [11]

h𝑘 = √ 𝐾𝑘𝐾𝑘 + 1h𝑘 + √ 1𝐾𝑘 + 1h𝑤,𝑘, (7)

where 𝐾𝑘 is the power ratio between the LOS component
and scattering components, also called Ricean𝐾-factor of the
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𝑘th user. Moreover, the channel vector h𝑤,𝑘 is the random
component, and the entries are independent and identical
distribution complex Gaussian random variables. Vector
h𝑘 (𝑘 = 1, 2, . . . , 𝑈) is the deterministic component of the
channelmean vector of the 𝑘th user. Based on the assumption
that the BS is equippedwith𝑀uniform linear array antennas,
the deterministic channel vector for each user can be written
as [17, 18]

h𝑘 = [1, 𝑒𝑗2𝜋𝜆−1𝑑 sin(𝜃𝑘) ⋅ ⋅ ⋅ 𝑒𝑗(𝑀−1)2𝜋𝜆−1𝑑 sin(𝜃𝑘)] , (8)

where 𝑑 is the space between two antenna elements, 𝜆 is the
wavelength of the signal, and 𝜃𝑘 is the angle of departure
(AoD) for the 𝑘th user, 𝜃𝑘 ∈ [−𝜋, 𝜋].
3. Beamforming and Leakage Signals

It is assumed that all users have a perfect instantaneous
knowledge of their channel vectors while the BS knows all
users channel vector including the channel mean vector.
Additionally, assuming𝑈 users, it is difficult to maximise the
average system capacity due to a couple of 𝑈 calculations
(capacity of each user) required. Therefore, it is hard to use
SINR directly to obtain the optimum beamforming vector(w𝑘). To overcome this problem, the SLNR can be easily
implemented to control the leakage signals from a specific
user to other users as shown in Figure 1. The SLNR of the𝑘th user can be written as in (9) by assuming unit normalised
Gaussian noise [4, 16]:

SLNR𝑘 = 𝑝 h𝐻𝑘 w𝑘21 + 𝑝∑𝑈𝑗=1,𝑗 ̸=𝑘 h𝐻𝑗 w𝑘2 . (9)

Equations (3) and (9) have different denominators to define
SINR and SLNR. In (3), the user channel vector h𝑘 is used
with other users’ beamforming vectors w𝑗|𝑈𝑗=1, 𝑗 ̸= 𝑘 to
calculate SLNR of the 𝑘th user. While in (9) the 𝑘th user
beamforming vector w𝑘 is used with other users’ channel
vectors h𝑗|𝑈𝑗=1, 𝑗 ̸= 𝑘 to calculate SLNR of the 𝑘th user.
Besides, the lower bound (LB) on the average SLNR of the𝑘th user can be represented as 𝐸{SLNR𝑘} ≥ {SLNR𝑘}LB
demonstrated in [11, 16]:

SLNR𝑘 = {SLNR𝑘}LB= 𝑝w𝐻𝑘 h𝐻𝑘 h𝑘w𝑘1 + 𝑝∑𝑈𝑗=1,𝑗 ̸=𝑘 w𝐻𝑘 h𝐻𝑗 h𝑗w𝑘{SLNR𝑘}LB ≜ 𝑝w𝐻𝑘 R𝑘w𝑘1 + 𝑝w𝐻
𝑘

∑𝑈𝑗=1,𝑗 ̸=𝑘 R𝑗w𝑘 .
(10)

In (10), we can have R𝑘 ≜ 𝐸{h𝐻𝑘 h𝑘}:
R𝑗 ≜ 𝐸 {h𝐻𝑗 h𝑗} = 𝐾𝑗𝐾𝑗 + 1R𝑗 + 1𝐾𝑗 + 1 I𝑀, (11)

where R𝑘 is a Hermitian matrix (channel correlation matrix)
which can be constructed as in (12), where R𝑗 ≜ h

𝐻

𝑗 h𝑗,
and h𝑗 is calculated in (8). Hence, R𝑘 of the 𝑘th user can
be decomposed regarding the deterministic component of
channel vector h𝑘 after normalisation by a factor √𝑀 [6].
Therefore, we can use the normalised version h𝑘/√𝑀 in the
decomposition of the channel correlation matrix as in

R𝑘 = ( h
𝐻

𝑘√𝑀 Ũ𝐻𝑘 )((((
(

𝐾𝑘𝑀𝐾𝑘 + 1 + 1𝐾𝑘 + 1 0 ⋅ ⋅ ⋅ 00 1𝐾𝑘 + 1 ⋅ ⋅ ⋅ 0... ... d
...0 0 ⋅ ⋅ ⋅ 1𝐾𝑘 + 1

))))
)

( h
𝐻

𝑘√�̃�
U𝑘

), (12)

where Ũ𝐻𝑘 is the orthogonal subspace of h
𝐻

𝑘 /√𝑀. Then
we can obtain the optimum beamforming vector which
maximises the lower bound of the SLNR as follows:

wopt
𝑘

= 1√𝑀h
𝐻

𝑘 for 𝑘 = 1, 2, . . . , 𝑈. (13)

On the other hand, to minimise the denominator of (9) we
have

h𝑗w
opt
𝑘

= 1√𝑀h𝑗h
𝐻

𝑘 = 0, 𝑗 ̸= 𝑘, 𝑗 = 1, 2, . . . , 𝑈, (14)

where vector wopt
𝑘

is orthogonal to (1/√𝑀)h𝐻𝑗 . Accordingly,
from (12) we have

w𝐻𝑘 R𝑘w𝑘 = 𝐾𝑘𝐾𝑘 + 1𝑀 + 1𝐾𝑘 + 1
w𝐻𝑘 R𝑗w𝑘 = 1𝐾𝑘 + 1 , for 𝑗 ̸= 𝑘. (15)

The maximum value of the lower bound can be achieved if
wopt
𝑘

is orthogonal to (1/√𝑀)h𝐻𝑗 . By substituting (15) in (10),
we have

{SLNR𝑘}max
LB = 𝑝 ((𝐾𝑘/ (𝐾𝑘 + 1))𝑀 + 1/ (𝐾𝑘 + 1))1 + 𝑝∑𝑈𝑗=1,𝑗 ̸=𝑘 (1/ (𝐾𝑗 + 1)) . (16)
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In (16), the lower bound is directly affected by the number of
antenna elements𝑀, the Ricean factor𝐾, and the number of
users 𝑈. Assuming that the number of users is increased as𝑘 = 1 → 𝑈, taking 𝐾 = 0 and 𝐾 → ∞, the lower bounds of
SLNR are expressed approximately as (𝑝/(1 + 𝑝(𝑈 − 1)))|𝐾=0
and 𝑀 ∗ 𝑝|𝐾→∞, respectively. Therefore, it is seen that the
lower bound is independent of 𝑀 when 𝐾 = 0.
3.1. Analysis of Linear Achievable Rates by SE and ZF. In
this section, we evaluate the Ergodic sum-rate capacity of SE
obtained by (13) and (14) and assume that ZF capacity has
perfect CSI when calculating the mean gap loss between 𝑅SE

and 𝑅ZF. Based on the orthogonal beamforming condition in
(13) and (14), the achievable sum-rate capacity obtained by
the 𝑘th user is given by

𝑅SE
𝑘 = 𝐸{{{{{log2(1
+ 𝑝 (1/√𝑀) h𝑘h𝐻𝑘 21 + 𝑝∑𝑈𝑗=1,𝑗 ̸=𝑘 (1/√𝑀) h𝑘h𝐻𝑗 2)

}}}}}
≈ 𝐸{{{log2(1 + 𝑝 h𝑘wopt

𝑘

21 + 𝑝∑𝑈𝑗=1,𝑗 ̸=𝑘 h𝑘wopt
𝑗

2)}}} .
(17)

The achievable sum-rate capacity by ZF is expressed as𝑅ZF
𝑘 = log2 (1 + 𝑝 h𝑘wZF

𝑘

) , (18)

wherewZF
𝑘 is the unit normalised beamforming vector, which

is selected as the 𝑘th column of the normalised matrix
w = H(HH𝐻)−1 with H = [h𝐻1 h𝐻2 ⋅ ⋅ ⋅ h𝐻𝑈] to suppress
the interference from all other users for |h𝑗wZF

𝑘 | = 0, if𝑘 ̸= 𝑗. Accordingly, the mean gap loss Δ𝑅ZF−SEwith perfect
instantaneous CSI is given byΔ𝑅ZF−SE = 𝑅ZF − 𝑅SE. (19)

From the orthogonal condition (1/√𝑀)h𝑗h𝐻𝑘 = 0|𝑗 ̸=𝑘 which
is addressed in (14), we neglect the interference from the other
users to the 𝑘th user regarding the signal component. In this
case the sum-rate capacity 𝑅SE used in (14) changes to the
loose bound sum-rate capacity of the 𝑘th user expressed as
[11]

𝑅SE
𝑘 ≥ 𝐸{log2 (1 + 𝑝  1√𝑀h𝑘h

𝐻

𝑘

2)}
− 𝐸{{{log2(1 + 𝑝 𝑈∑

𝑗=1,𝑗 ̸=𝑘

 1√𝑀h𝑘h
𝐻

𝑗

2)}}} . (20)

Using (18) and (20), we rewrite (19) as the mean gap loss in
(21) asΔ𝑅ZF−SE

≤ 𝑈∑
𝑘=1

𝐸 {log2 (1 + 𝑝 h𝑘wZF
𝑘

2)}
− 𝐸{log2 (1 + 𝑝  1√𝑀h𝑘h

𝐻

𝑘

2)}
+ 𝐸{{{log2(1 + 𝑝 𝑈∑

𝑗=1,𝑗 ̸=𝑘

 1√𝑀h𝑘h
𝐻

𝑗

2)}}} .
(21)

3.2. Nonlinear Achievable Rate Analysis by DPC. The BS
can serve all users simultaneously and achieve maximum
system capacity as much as possible as the CSI is known at
the BS. In MIMO systems, the system capacity obtained by
downlink strategy is called DPC. Practically, it is challenging
to implement DPC because the encoding and decoding have
high computations which is ineffective for large number of
users. The achievable sum-rate capacity of the DPC can be
written as [19]

𝑅DPC = max log(1 + 𝑈∑
𝑘=1

𝑝h∗𝑘h𝑘) ,
𝑝 ≥ 0, 𝑈𝑘=1 ≤ 𝑃. (22)

When the number of users is large, the DPC achievable sum-
rate capacity is approximately expressed as [19, 20]𝑅DPC = 𝑀 log(1 + 𝑃𝑀 log𝑈) . (23)

From (23), we can observe that the sum-rate capacity
increases linearly with the number of antenna elements.
However, the approximate achievable sum-rate capacity is a
nonlinear function of 𝑈. Therefore, the DPC is regarded as a
nonlinear model.

3.3. OptimumWeight Vector Formulation. In this subsection,
we find the solution for optimumweight vectorwopt, in which
the maximum SLNR can be achieved to guarantee that all
users have the ability to access the limited resources. For equal
transmission of power to all users in a given case, we need
to design w𝑘, 𝑘 = 1, 2, . . . , 𝑈 to maximise the SLNR for
each user at the same time minimise interference. Hence, the
optimum weight vector wopt

𝑘
= argmax(SLR𝑘) can be written

as follows:

wopt
𝑘

= argmax( h𝑘w𝑘2∑𝑈𝑗=1,𝑗 ̸=𝑘 h𝑗w𝑘2) (24)

SLR𝑘 = h𝑘w𝑘2∑𝑈𝑗=1,𝑗 ̸=𝑘 h𝑗w𝑘2 . (25)
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Step 1: Initial Inputs. number of users 𝑈;
number of iteration 𝑁;
initial non-zero vector X0;
Tolerance Tol.

Step 2: For 𝑘 = 1: 𝑈 //to construct the CICTM for each user;
Calculate h𝑤,𝑘 and h𝑘 as defined in Section 2.2;
Calculate for h𝑘 as in (7);
Construct the CICTM h̃𝑘 for each user as in (29);

End
Step 3: For 𝑘 = 1: 𝑈 //to compute wopt

𝑘
for each user.

Calculate matrix A for 𝑘th user as in (31)
Step 4: While 𝑖 ≤ 𝑁;

set: y𝑖 = Ax𝑖−1, and x𝑖 = y𝑖/𝛼𝑖; (normalisation)
“the value of x𝑖 is the scaled version of y𝑖”

if |𝛼𝑖 − 𝛼𝑖−1| ≤ Tol, then 𝑖 = 𝑁 + 1;
else, set 𝑖 = 𝑖 + 1;
end

Step 5: calculate the dominant eigenvector k1 ≈ x𝑖;
the dominant eigenvalue 𝜆1 = x∗𝑖 Ax𝑖/x∗𝑖 x𝑖;

End;
Step 6: SLNR maximise weight vector w𝑘 = x𝑖;

End;
Step 7: Output: the optimum weight vector w𝑘 for each user.

Algorithm 1: Steps for the proposed power iteration method.

Equation (24) is subjected to

Constraint 1: w𝑘2 = 1, 𝑘 = 1, 2, . . . , 𝑈
Constraint 2: h𝑗w𝑘2 = 0, 𝑗, 𝑘 = 1, 2, . . . , 𝑈, 𝑗 ̸= 𝑘. (26)

Consequently, the SLNR is written as

SLNR𝑘 = h𝑘w𝑘21 + ∑𝑈𝑗=1,𝑗 ̸=𝑘 h𝑗w𝑘2 . (27)

Equation (27) is further written as

SLNR𝑘 = h𝑘w𝑘21 + h̃𝑘w𝑘2 , (28)

where h̃𝑘 is congregate interfering channel transfer matrix
(CICTM) of the 𝑘th user, which is an extended channel
matrix that excludes h𝑘 only for the 𝑘th user. Then h𝑘 is
written as

h̃𝑘 = [h1 h2 ⋅ ⋅ ⋅ h𝑘−1 h𝑘+1 ⋅ ⋅ ⋅ h𝑈−1 h𝑈]𝑇
⋅ ( 𝑈∑
𝑗=1
𝑗 ̸=𝑘

1 × 𝑀), (29)

where h̃𝑘 ∈ C𝑀×(𝑈−1)and h𝑘 ∈ C1×𝑀. The optimum weight
code vector can be derived from (28) as follows [21]:

wopt
𝑘

∝ max. eigenvector ((I𝑀 + h̃∗𝑘 h̃𝑘)−1 h∗𝑘h𝑘) , (30)

where I𝑀 is 𝑀 × 𝑀 square identity matrix.

The optimum weight code vector in (30) is called SVD
solution, which is determined from thematrix in (29). Some-
times, when calculating the maximum eigenvalues for the
given matrix, the dominant eigenvector does not correspond
to the optimum code weight vector. Hence, the eigenvalues
are put in ascending or descending order; then an optimum
vector corresponding to the most significant eigenvalue is
easily selected but at the expense of extra overhead to the
system [4, 7]. To enhance the system performance and
minimise the cost, a new approximation method expected
to improve the average user achievable sum-rate capacity is
proposed.

3.4. Proposed OptimumWeight Vector Design. Anewmethod
is developed based on power iteration method to find the
optimumweight vector.Themethod requires only oneweight
vector during implementation. Equation (30) is modified
and adopted as the main matrix in the proposed power
approximation method as follows:

A = (I𝑀 + h̃∗𝑘 h̃𝑘)−1 h∗𝑘h𝑘. (31)

3.4.1. Power Approximation Method. The power approxima-
tion method generates a sequence of vectors A𝑖x0, where
x0 is a nonzero initial selected vector. By normalising these
sequence vectors under conditions stated in Section 3.4.3, the
vector converges to the dominant eigenvector corresponding
to the most significant eigenvalue. The normalisation is used
to ensure that the most significant component of the given
iteration is equal to one [22].The steps in the proposed power
iteration method are given in Algorithm 1.
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This algorithm is summarised in a sequence of iterations
as follows:

x𝑖 = 1𝛼𝑖Ax𝑖−1, (32)

where 𝛼𝑖 is the component (magnitude) of vector Ax𝑖−1.
Before proceeding to the next iteration, it is necessary
to scale down (normalised) the sequence vectors in each
approximation so as to keep the largest component at unity.

3.4.2. Convergence of the Algorithm. The matrix A is 𝑛 × 𝑛
square matrix with 𝑛 eigenvalues [𝜆1, 𝜆2, 𝜆3, . . . , 𝜆𝑛], which
are in descending order as |𝜆1| > |𝜆2| ≥ |𝜆3| ⋅ ⋅ ⋅ ≥ |𝜆𝑛|.
With the initial vector X0 chosen, the sequences {X𝑘 =[𝑥(𝑘)1 𝑥(𝑘)2 ⋅ ⋅ ⋅ 𝑥(𝑘)𝑛 ]𝑇} and {𝑐𝑘} are recursively generated by
the relations Y𝑘 = AX𝑘 and X𝑘+1 = (1/𝑐𝑘+1)Y𝑘, where𝑐𝑘+1 = 𝑥(𝑘)𝑗 and 𝑥(𝑘)𝑗 = max1≤𝑖≤𝑛{|𝑥(𝑘)𝑖 |}. These sequences
converge to the dominant eigenvector V1 and eigenvalue 𝜆1,
respectively, as lim𝑘→∞X𝑘 = V1 and lim𝑘→∞𝑐𝑘 = 𝜆1. The
proof of convergence is referred to in Appendix A.

3.4.3. The Speed of Convergence. Referring to (A.6) in
Appendix A, we observe that the coefficient of V𝑗 in the
sequence X𝑘 goes to zero, which is proportional to (𝜆j/𝜆1)𝑘;
the convergence speed of sequence {X𝑘} to V1 is governed
by (𝜆2/𝜆1)𝑘. Therefore, the rate of convergence and the
convergence of the constants {𝑐𝑘} to 𝜆1 are linear. For any
linear convergent sequence {𝑝𝑘}, we can use the Aitken Δ2
technique which is used to make the linearly convergent
sequences fast.The new convergence of the sequence {𝑝𝑘} can
be written as

𝑝𝑘 = (𝑝𝑘+1 − 𝑝𝑘)2𝑝𝑘+2 − 2𝑝𝑘+1 + 𝑝𝑘 . (33)

The convergence property of the algorithm is given by the
following.

	eorem 1. Assume that there is one and only one eigenvalue𝜆1 of A, and 𝜆1 is semisimple; then either the initial vector x0
which has no component in the invariant subspace associated
with 𝜆1 or the sequence of vectors generated by the algorithm
converges to the eigenvector associated with 𝜆1and 𝑖 and
converges to 𝜆1. The proof is shown in Appendix B.

Definition 2. Eigenvalue 𝜆1 of matrix A is semisimple with
the degree of 𝑛 if it has a geometric multiplicity one and
algebraic multiplicity 𝑛. The vector A𝑖x0 is normalised by a
specific scalar 𝛼𝑖 to make the most significant component
of the vector unity. The initial vector x0 is decomposed as
follows:

𝑥0 = 𝑝∑
𝑗=1

𝑃𝑗x0, (34)

where 𝑃𝑗, 𝑗 = 1, 2, . . . , 𝑝, are the spectral projectors associ-
ated with the eigenvalues 𝜆𝑗, 𝑗 = 1, 2, . . . , 𝑝.

From the formula A𝑃𝑗 = 𝑃𝑗(𝜆𝑗Ι + D𝑗), the power can be
written asA𝑖𝑃𝑗 = 𝑃𝑗(𝜆𝑗Ι+D𝑗)𝑖, where Ι is the identity matrix
andD𝑗 is the diagonal matrix. Consequently, we have

x𝑖 = 1𝛼𝑖A𝑖 𝑝∑𝑗=1𝑃𝑗x0 = 1𝛼𝑖 𝑝∑𝑗=1A𝑖𝑃𝑗x0
= 1𝛼𝑖 𝑝∑𝑗=1𝑃𝑗 (𝜆𝑗Ι + D𝑗)𝑖 x0. (35)

Referring to the Definition 2, D1 = 0 because 𝜆1 is a
semisimple eigenvalue. Thus, we obtain

x𝑖 = 1𝛼𝑖 𝑝∑𝑗=1𝑃𝑗 (𝜆𝑗𝑃𝑗 + D𝑗)𝑖 x0
= 1𝛼𝑖 (𝜆𝑘1𝑃1x0 + 𝑝∑

𝑗=2

𝑃𝑗 (𝜆𝑗𝑃𝑗 + D𝑗)𝑖 x0)
= 𝜆𝑖1𝛼𝑖 (𝑃1x0 + 𝑝∑

𝑗=2

1𝜆𝑖1 (𝜆𝑗𝑃𝑗 + D𝑗)𝑖 𝑃𝑗x0) .
(36)

The spectral radius of each operator (𝜆𝑗𝑃𝑗 + D𝑗)𝜆−1 < 1 and|𝜆𝑗𝜆−11 | < 1 means that the 𝑖th power will converge to zero.
Theorem 1 is true when 𝑃1x0 = 0. However, if 𝑃1x0 ̸= 0,
x𝑖 converge to normalise 𝑃1x0 so that the most significant
component is one. Meanwhile, the scalar 𝛼𝑖 converges to the
eigenvalue 𝜆1, which is an immediate consequence in the
form

Ax𝑖−1 = 𝛼𝑖x𝑖. (37)

Thus, the sequence of vectors x𝑖 is proven to converge to the
optimum weight vector which maximises the SLNR in (28).
The optimum weight vector is equal to the vector x𝑖:w = x𝑖. (38)

The result in (38), which is the main objective of this paper,
maximises the 𝑘th user SLNRwhen substituted in (28) to find
SLNR𝑘.

3.5. Cost Analysis. In this subsection, the cost function is
analyzed regarding storage space required for the proposed
power iteration technique and SVD method. Referring to
(30), the value (I𝑀 + h̃∗𝑘 h̃𝑘)−1h∗𝑘h𝑘 results in a new square
matrix with dimension𝑀×𝑀, where𝑀 denotes the number
of antenna elements. Therefore, finding wopt

𝑘
for each user by

using the solution of SVD in (30), we need to find at least
two matrices, 𝑀 × 𝑀 left eigenvectors matrix, 𝑀 × 𝑀 right
eigenvectors matrix, and 𝑀 diagonal eigenvalues from the
original 𝑀 × 𝑀 matrix. On the other hand, the required
storage memory for the 𝑘th user is equal to the size of three
matrices in addition to the original square matrix. Hence,
the total storage becomes (3𝑀2 + 𝑀) ∗ 𝑈 (full SVD), where𝑈 is the number of users. Then, the determination of the
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Figure 2: Storage capacity required by the proposed technique and
the SVD (full SVDand reduced SVD)method regarding the number
of antenna elements.

optimum weight vector can be from the right eigenvector
or left eigenvector based on the corresponding maximum
eigenvalue. Furthermore, we can reduce the size by taking
only one side eigenvectors matrix (left or right) to save𝑀2 redundant storage size. Thus the reduced new storage
capacity can be written as (2𝑀2 + 𝑀) ∗ 𝑈 (reduced SVD).

Similarly, only the original square matrix with dimension𝑀 × 𝑀 and a vector with size 𝑀 × 1 is required in the
proposed power approximation method. In this case, there
is no need for storing the previous iteration result as it can be
overwritten up to the last iteration or reaches the determined
tolerance. Thus, the required storage for the power iteration
technique is (𝑀2 + 𝑀) ∗ 𝑈 which is much less than full and
reduced SVDs.

Figure 2 shows the storage capacity required in the
proposed power iteration technique and SVDmethod. From
Figure 2, it is observed that the number of antenna elements
has a significant effect on the cost function. However, the
proposed method has much less storage space compared to
SVD hence recommended for a massive MIMO with large
antennas.

4. Simulation Results and Discussion

In this section, the numerical results are presented with the
following assumptions: the equal power allocation strategy(𝑝𝑘 = 𝑃/𝑈) and noise effect (𝜎𝑘 = 𝜎) for all users are the same
[23]. Additionally, the AoD for each user is in a horizontal
direction with the uniform distribution in the range [−𝜋, 𝜋].
Furthermore, for each user the Ricean 𝐾-factor has uniform
distribution in the range of [𝐾min, 𝐾max], where𝐾min = 10 dB
and𝐾max = 30 dB.Moreover, the number of users is increased
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Figure 3: Sum-rate capacities for SE on the number of antenna
elements.

up to 𝑈 = 32. For SE and ZF analysis 𝑀 = 16, 32, 64,
and 128 are selected as the numbers of transmission antenna
elements. The ergodic sum-rate capacities of SE and ZF are
obtained in Figures 3 and 4. In Figure 3. It is observed that
the average system capacity of SE is, respectively, directly and
inversely proportional to the number of antenna elements
and number of users. Moreover, when the number of users is
small, the impact of 𝑀 on the SE capacity is more significant
and conversely when the numbers are large, the impact is less
significant. The SE achieves average capacities approximately
in the range of 1.6–6.2 bps/Hz. At maximum number of users(𝑈 = 32) with 𝑀 = 16, the corresponding SE sum-
rate capacity is less than 1.6 bps/Hz. This is because each
user faces CCI interference which is considered as sum of
leakage signals from all other cochannel users. Referring to
(17), it is validated that as the number of users increases, the
overall contributed interference to the 𝑘th user also increases.
Therefore, the increase in the denominator in (17) causes a
reduction in the sum-rate capacity per user resulting in an
average lower system capacity.

In Figure 4, it is shown that the ergodic sum-rate capac-
ities obtained by ZF are directly proportional to the number
of antenna elements. By referring to (18) the interference
from the other users is perfectly suppressed by the orthogonal
beamforming for user channel and weight vectors. These
vectors are orthogonal to each other based on the condition|h𝑗wZF
𝑘 | = 0 in which 𝑘 ̸= 𝑗.
Moreover, the number of antenna elements 𝑀 has much

contribution on the average system capacity with ZF than SE
as comparatively shown in Figures 4 and 3. The maximum
achievable capacities are 105 bps/Hz and 6.2 bps/Hz for ZF
and SE, respectively, because of the interference effects on SE.

Figure 5 shows the upper bound of themean-rate capacity
gap loss (𝑅ZF −𝑅SE) between ZF and SE. Since the number of
users tends to be large, the difference in themean rate capacity
is most likely the ZF capacity, because the capacity obtained
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Figure 4: Achievable sum-rate capacities for ZF beamforming on
the number of antenna elements.
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Figure 5: Mean gap loss capacity (𝑅ZF −𝑅SE)which is the difference
between ZF and SE capacities.

by ZF is close to 15 times that obtained by SE, which precisely
affects the mean-gap loss. Nevertheless, when the number of
users increases, the difference tends to be very big. It is explicit
that when the number of users is large under any number of
antenna elements, the achievable sum-rate capacity obtained
by SE almost tends to be zero. However, the ergodic sum-rate
capacity achieved by ZF positively increases with increase in
the number of antenna elements and tends to a fixed level
with large number of users. Meanwhile, the achievable sum-
rate capacity is not profoundly affected by the number of
users.

As shown in Figures 3–5, the simulation results depict
that the ZF seems ideal due to a perfect cancellation of CCI.
However, in practice SE is dominant and realisable because
it is challenging to ensure that the interference is perfectly
cancelled by the orthogonal condition between the channel
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Figure 6: Achievable sum-rate capacities for DPC on the number of
antenna elements.

vector and optimum weight vector. Thus, carefully focusing
the beams alignment between the BS and the users a high
system capacity can be achieved.

In Figure 6, the antenna elements 𝑀 = 16, 32, 64, and
128 are considered with number of users up to 32 to satisfy𝑀 ≥ 𝑈 and show the effects of 𝑀 < 𝑈 (𝑀 = 16). The results
show that the ergodic sum-rate capacity achieved by DPC is
nonlinearly increased with the number of users. Moreover, if
the number of users is fixed to 25, at the number of antenna
elements 16, 32, 64, and 128, respectively, the corresponding
ergodic sum-rate capacities are 80, 105, 175, and 250 bps/Hz,
respectively. As the number of users is increased, the system
capacity also increases. Thus, comparing the DPC with ZF
and SE achieves much higher capacity with large number of
antenna elements and users; hence it can provide multiuser
diversity gain.

The results in Figures 7–9 are used to comparatively
evaluate the proposed power iteration method in (38) and
the SVD method in (30). In Figure 7, it is observed that
the SLNR in the range −10.5 dB to 37 dB achieves the system
capacities in the range 5 bps/Hz to 11 bps/Hz for the proposed
method. On the other hand, the SVD method has the SLNR
in the range −15 dB to 31 dB that achieves system capacities in
the range 1 bps/Hz to 6 bps/Hz. It is clear that the proposed
method has the average throughput nearly two times that of
SVD. The main reason is due to the efficiency of the weight
vector obtained in the proposed method that is capable of
minimising the CCI much more than in the SVD. It is
expected that the system capacity can be enhanced in case
the BS has more antenna elements but at a higher simulation
time. Additionally, the SVD method has a drawback in
finding the exact eigenvector corresponding to the dominant
eigenvalue in which the eigenvalues are not always in an
orderly way (ascending or descending), which limits the SVD
performance. Figures 8 and 9 are theCumulativeDistribution
Function (CDF) and Probability Density Function (PDF) of
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Figure 7: Sum-rate capacities for the proposed power iteration
technique and SVD method.
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Figure 8: CDFs of the SLNRs for the proposed power iteration and
SVD methods.

SLNR of the proposed and SVD methods, respectively. It is
observed that the proposed method achieves a much better
SLNRs than the SVD method.

5. Conclusion

In this paper, based on MU-MIMO with massive antennas,
the ergodic capacity for linear sum-rate analysis including
SE and ZF beamforming based on SLNR technique is
investigated. In addition, the nonlinear sum-rate analysis
using DPC in Ricean fading channels based on SLNR was
undertaken. A new method is proposed to find an optimum
beam weight vector by exploring the power iteration method
using eigenvector approximation. The number of antenna
elements is selected up to 128 dramatically increasing the
system capacity. By way of simulation, the most significant
dominant eigenvector to maximise SLNR as well as minimise
the CCI is obtained. By comparing with the SVD method,
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Figure 9: PDFs of the SLNRs for the proposed power iteration and
SVD methods.

the proposedmethod achieves higher performance regarding
mean achievable sum-rate capacity per user. The throughput
of the proposedmethod is in the range of 5 bps/Hz–11 bps/Hz,
while that of SVD in the range of 1 bps/Hz–6 bps/Hz. There-
fore, the proposed method can provide significant system
capacity enhancement. In future work, the proposed power
iteration technique is recommended for a 5G MU massive
antenna system.

Appendix

A. Proof of the Algorithm

As we know, matrixA has 𝑛 eigenvalues and 𝑛 corresponding
eigenvectors V𝑗 (𝑗 = 1, 2, . . . , 𝑛) which are linearly inde-
pendent and normalised and form a basis for 𝑛 dimensional
space. Thus, let the initial vector X0 be written as the linear
combination form as

X0 = 𝑏1V1 + 𝑏2V2 + ⋅ ⋅ ⋅ + 𝑏𝑛V𝑛. (A.1)

Assume vector X0 = [𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛]𝑇 is chosen in such
a way that 𝑏1 ̸= 0, and the elements of X0 are scaled so
that max1≤𝑗≤𝑛{|𝑥𝑗|} = 1. As the vectors {V𝑗}𝑛𝑗=1 represent
the eigenvectors of the matrix A, the multiplication AX0 is
followed by normalisation as follows:

Y0 = AX0 = A (𝑏1V1 + 𝑏2V2 + ⋅ ⋅ ⋅ + 𝑏𝑛V𝑛)= 𝑏1AV1 + 𝑏2AV2 + ⋅ ⋅ ⋅ + 𝑏𝑛AV𝑛= 𝑏1𝜆1V1 + 𝑏2𝜆2V2 + ⋅ ⋅ ⋅ + 𝑏𝑛𝜆𝑛V𝑛= 𝜆1 (𝑏1V1 + 𝑏2 (𝜆2𝜆1)V2 + ⋅ ⋅ ⋅ + 𝑏𝑛 (𝜆𝑛𝜆1)V𝑛) .
(A.2)

Moreover, also we have

X1 = 𝜆1𝑐1 (𝑏1V1 + 𝑏2 (𝜆2𝜆1)V2 + ⋅ ⋅ ⋅ + 𝑏𝑛 (𝜆𝑛𝜆1)V𝑛) . (A.3)
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After 𝑘 iterations we arrive at

Y𝑘−1 = AX𝑘−1 = A
𝜆𝑘−11𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘−1 (𝑏1V1

+ 𝑏2 (𝜆2𝜆1)𝑘−1 V2 + ⋅ ⋅ ⋅ + 𝑏𝑛 (𝜆2𝜆1)𝑘−1 V𝑛)= 𝜆𝑘−11𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘−1 (𝑏1AV1 + 𝑏2 (𝜆2𝜆1)𝑘−1 AV2 + ⋅ ⋅ ⋅
+ 𝑏𝑛 (𝜆2𝜆1)𝑘−1 AV𝑛) = 𝜆𝑘−11𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘−1 (𝑏1𝜆1V1
+ 𝑏2 (𝜆2𝜆1)𝑘−1 𝜆2V2 + ⋅ ⋅ ⋅ + 𝑏𝑛 (𝜆2𝜆1)𝑘−1 𝜆𝑛V𝑛)= 𝜆𝑘1𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘−1 (𝑏1V1 + 𝑏2 (𝜆2𝜆1)𝑘 V2 + ⋅ ⋅ ⋅
+ 𝑏𝑛 (𝜆2𝜆1)𝑘 V𝑛) .

(A.4)

Furthermore, we have

X𝑘 = 𝜆𝑘1𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘 (𝑏1V1 + 𝑏2 (𝜆2𝜆1)𝑘−1 V2 + ⋅ ⋅ ⋅
+ 𝑏𝑛 (𝜆2𝜆1)𝑘−1 V𝑛) . (A.5)

Since we assumed that |𝜆𝑗|/|𝜆1| < 1 for 𝑗 = 2, 3, . . . , 𝑛, then
we have

lim
𝑘→∞

𝑏𝑗 (𝜆𝑗𝜆1)V𝑗 = 0, for 𝑗 = 2, 3, . . . , 𝑛. (A.6)

Hence it follows that

lim
𝑘→∞

X𝑘 = lim
𝑘→∞

𝑏1𝜆𝑘1𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘V1. (A.7)

We need both vectors X𝑘 and V1 to be normalised and their
most significant component is 1.

lim
𝑘→∞

𝑏1𝜆𝑘1𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘 = 1. (A.8)

B. Proof of the Convergence

For the sequence of vectors {X𝑘} which converges to the
dominant eigenvector:

lim
𝑥→∞

X𝑘 = V1. (B.1)

By substituting 𝑘 with 𝑘 − 1, it yields
lim
𝑘→∞

𝑏1𝜆𝑘−11𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘−1 = 1. (B.2)

By merging both into (A.8), we get

lim
𝑥→∞

𝜆1𝑐𝑘 = lim
𝑥→∞

𝑏1𝜆𝑘1/𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘𝑏1𝜆𝑘−11 /𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘−1 = 11 = 1. (B.3)

Therefore, the sequences of the constants {𝑐𝑘} converge to the
dominant eigenvalue as

lim
𝑥→∞

𝑐𝑘 = 𝜆1. (B.4)
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