
Research Article
High-Throughput Fast-SSC Polar Decoder for
Wireless Communications

Xiaojun Zhang ,1 Xiaofeng Yan,1 Qingtian Zeng,1 Jianming Cui,1

Ning Cao ,2 and Russell Higgs 2

1Shandong University of Science and Technology, Qingdao 266590, China
2University College Dublin, Belfield, Dublin 4, Ireland

Correspondence should be addressed to Xiaojun Zhang; buttern@163.com

Received 4 May 2018; Accepted 4 July 2018; Published 29 July 2018

Academic Editor: Naixue Xiong

Copyright © 2018 Xiaojun Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Polar code has been proven to achieve the symmetric capacity of memoryless channels. However, the successive cancellation
decoding algorithm is inherent serial in nature, which will lead to high latency and low throughput. In order to obtain high
throughput, we design a deeply pipelined polar decoder and optimize the processing elements and storage structure. We also
propose an improved fixed-point nonuniform quantization scheme, and it is close to the floating-point performance. Two-level
control strategy is presented to simplify the controller. In addition, we adopt FIFO structure to implement the 𝛼 memory and𝛽 memory and propose the 348-stage pipeline decoder.

1. Introduction

Wireless communication is changing our life and has been
applied to many scenarios [1–5], and error-correcting codes
are utilized to improve its transmission efficiency and reli-
ability. Polar code is a class of error-correction codes pro-
posed by Arikan [6]. Within the ongoing 5th-generation
wireless systems (5G) standardization, polar codes have been
adopted as channel coding for the enhanced mobile broad-
band (eMBB) communication service for its excellent error-
correction performance. Especially, for the ultra-reliable low-
latency communications (URLLC), it should satisfy the high
throughput of several tens Gbps [7], which bring in a
challenge for polar decoder. In the past, great research efforts
have been made on polar codes in decoding algorithm and
hardware architecture since Arikan presented the successive
cancellation (SC) decoding algorithm. SC has the advantages
of low complexity and simple decoding structure. Although
polar codes can theoretically achieve channel capacity when
code length is infinite, the performance of SC is mediocre
for codes of short and moderate lengths. To address this
issue, successive cancellation list (SCL) decoding algorithm is
proposed in [8]. Different from the SC algorithm, SCL does

not focus on a single candidate codeword; it saves L most
reliable candidate codewords at every step. The decoding
performance of SCLhas been significantly improved. K. Chen
and K. Niu proposed CRC-aided SCL (CA-SCL) algorithm
[9] based on that the correct codewords can pass the CRC
check. And they proposed the successive cancellation stack
(SCS) decoding algorithm in [10] and successive cancellation
hybrid (SCH) decoding algorithm in [11]. Unlike the SCL
decoding which preserves the L most reliable paths in each
layer, SCS always extends the most reliable path. Compared
with SCL decoding, the performance of SCS is the same as
SCL, but the time complexity is lower and the space complex-
ity is higher.The actual time complexity of SCS decoding is far
below than that of SCL in the high-SNR regime and is close
to SC decoding. SCH algorithm combines the advantages of
SCL and SCS, and the performance of SCH is close to that of
maximum likelihood (ML) [12]. The researchers of Huawei
proposed the adaptive CA-SCL (aCA-SCL) [13] decoding
algorithm based on CA-SCL algorithm. aCA-SCL improves
the decoding performance by gradually expanding the search
width L. aCA-SCL can reduce the software complexity sig-
nificantly. The above decoding algorithm is proposed for
improving the performance, but their throughput is not

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 7428039, 10 pages
https://doi.org/10.1155/2018/7428039

http://orcid.org/0000-0003-0032-4905
http://orcid.org/0000-0001-6430-3586
http://orcid.org/0000-0002-0896-6788
https://doi.org/10.1155/2018/7428039

2 Wireless Communications and Mobile Computing

ideal. Thus A. Alamdar-Yazdi and F. R. Kschischang propose
simplified successive cancellation (SSC) decoding algorithm
in [14] based on the location of frozen and information bits.
SSC decoding reduces the computational complexity and
improves the decoding parallelism by combining some leaf
nodes, such as Rate-1 node whose leaf nodes are all unfrozen
bits. Simulation results illustrate that the performance is
similar to that of SC. G. Sarkis and W. J. Gross divide the
leaf nodes into Rate-0, Rate-1, and Rate-R nodes and propose
the maximum likelihood SSC (ML-SSC) decoding algorithm
in [15] which is mainly to improve the performance of
Rate-R nodes decoder in SSC decoding. Compared with the
semiparallel SCdecoding in [16],ML-SSCdecoding improves
the decoding throughput by 25 times. In order to further
reduce the decoding complexity and improve the throughput,
G. Sarkis proposes the fast simplified successive cancella-
tion (Fast-SSC) decoding algorithm, which mainly improves
the decoding rules of Rate-R nodes and gives the specific
operation for each constituent node [17]. Fast-SSC decoding
divides the Rate-R nodes into repetition (REP), single-parity-
check (SPC), and REP-SPC nodes and improves the through-
put.

In addition, for the decoding hardware architecture of
polar codes, a semi-parallel architecture is proposed in [16].
In order to improve resource utilization, this method reuses
the processing elements (PE) which effectively reduce the
hardware complexity. The overlapped architectures proposed
in [18] have advantages in both latency and throughput,
which uses precalculation function calculate the possible
results firstly and according to the decoded results to choose
the corresponding results. It is proved that the decoding
latency is reduced by 50% when the code length is larger
than 27. Then B. Yuan proposed the SCL decoder with multi-
bit decision which effectively reduces the decoding latency
[19]. And an unrolled hardware polar decoder is proposed in
[20] on the basis of Fast-SSC. This decoder loads one frame
channel decoding data and outputs a frame of codeword each
clock.The PEs are no longer reused and dedicated PEs are as-
signed to each stage. Graphics processor unit (GPU) provides
the flexibility andmassive parallel units; theGPU-based polar
decoders obtain high throughput [21–23].

In this paper, we investigate the characters of LLRs for
different stages of Fast-SSC polar decoder and propose an
improved nonuniform fixed-point quantization method. It
adopts (6,5,1) quantization scheme; the decoding perfor-
mance is close to the floating-point decoding performance.
The proposed decoder employs deeply pipelined architecture
and optimizes the REP decoder and G operation. To sim-
plify the deeply pipelined control, the controller is divided
into global controller and local controller. 𝛼 memory and𝛽 memory use FIFO architecture to reduce the control logic.
Finally, a 348-stage pipeline architecture is devised, which is
implemented on Altera Stratix V 5SGXEA7N2F45C2. To test
the decoding performance, we design a platform based on
FPGA.

The remainder of this paper is organized as follows. A
brief review of Fast-SSC decoding algorithm and analysis of
the quantization schemes are shown in Section 2. Section 3

depicts the deeply pipelined architecture and the PEs. Perfor-
mance is evaluated in Section 4 and conclusions are drawn in
Section 5.

2. Review of Fast-SSC

2.1. PolarCodes. Apolar code can be represented by𝑃(𝑁,𝐾),
where 𝑁 denotes the code length and 𝐾/𝑁 is the code rate.
Polar code of length N can be constructed by concatenating
two polar codes of length 𝑁/2.The construction method can
be denoted by 𝑥 = 𝑢𝐺⊗𝑛, where 𝑢 = {𝑢0, 𝑢1, . . . , 𝑢𝑁−1} is the
input sequence that to be encoded, and 𝑥 = {𝑥0, 𝑥1, . . . , 𝑥𝑁−1}
denote the codewords. 𝐺⊗𝑛 is the n-th Kronecker power of
the generator matrix 𝐹 = [1 01 1]. Polar codes select K most
reliable channels to transmit information bits, and the other
N-K channels transmit frozen bits.

2.2. Fast-SSC Decoding Algorithm. The binary decoding tree
of Fast-SSC nodes is divided into four types: Rate-0, Rate-
1, REP, and SPC. Compared with SC decoding tree, Fast-
SSC has less leaf nodes. Since the polar decoder traverses
the entire binary tree during iterations, Fast-SSC decoding
algorithm has low latency. Figure 1 shows SC decoding tree
and corresponding Fast-SSC decoding tree for a (16, 8)
polar code. For instance, the REP node consists of leaf node{4, 5, 6, 7} and SPC node includes leaf node {8, 9, 10, 11}. The
leaf nodes of Rate-0 node are all frozen bits. Therefore, its
output will be the zero vector. The leaf nodes of Rate-1 node
are all information bits. The decoding result of such nodes is
obtained by

𝛽V [𝑖] = {{{
0, 𝛼V [𝑖] ≥ 0
1, otherwise

(1)

For the REP node, only the last bit of it is information bit,
and others are frozen bits. The REP node adds all the input 𝛼
first and then makes a hard decision as

𝛽V = {{{{{
0, when (𝑁V−1∑

𝑖=0

𝛼V [𝑖]) ≥ 0
1, otherwise

(2)

where𝑁V denotes the code length of the node.
The SPC node, of which only the first leaf node is frozen

bit, performs threshold detection by (3) on the input LLRs
firstly.The parity of all the inputs is calculated by (4).Then the
least reliable bit is founded and flipped if the parity constraint
is not satisfied. The threshold detection can be written via

𝛽V [𝑖] = {{{
0, 𝛼V [𝑖] ≥ 0
1, otherwise

(3)

The parity of the input is calculated as

𝑝𝑎𝑟𝑖𝑡𝑦 = 𝑁V−1⨁
𝑖=0

𝛽V [𝑖] (4)

Wireless Communications and Mobile Computing 3

information
frozen

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

other

(a) SC decoding tree
REP SPCRate0 Rate1

(b) Fast-SSC decoding tree

Figure 1: Decoding tree for 𝑃(16, 8).

Finally, the output of the SPC node is

𝛽V [𝑖] = {{{
𝛽V [𝑖] ⊕ 𝑝𝑎𝑟𝑖𝑡𝑦, when 𝑖 = 𝑗
𝛽V [𝑖] , otherwise

𝑖 = argmin
𝑗

(𝛼V [𝑖])
(5)

In addition to the above four type nodes, the rest colored
in grey is referred to as other node, as shown in Figure 1. The
decoding method of other nodes uses standard SC algorithm
as in Figure 2.Whennode V is activated, it will receive𝛼V from
its parent node 𝑝V and then calculate the soft-valued input to
its left child, 𝛼𝑙, which is calculated using the F operation.

𝛼𝑙 [𝑖] = 𝐹 (𝛼V [𝑖] , 𝛼V [𝑖 + 𝑁V2])
= sign (𝛼V [𝑖]) sign (𝛼V [𝑖 + 𝑁V2])

∗min(𝛼V [𝑖] , 𝛼V [𝑖 + 𝑁V2])
(6)

Once 𝛽𝑙 of the left child node is estimated, it is used to
calculate the input to the right child node𝛼𝑟 withG operation.

𝛼𝑟 [𝑖] = 𝐺 (𝛼V [𝑖] , 𝛼V [𝑖 + 𝑁V2] , 𝛽𝑙 [𝑖])

= {{{{{
𝛼V [𝑖 + 𝑁V2] + 𝛼V [𝑖] , when 𝛽𝑙 [𝑖] = 0
𝛼V [𝑖 + 𝑁V2] − 𝛼V [𝑖] , otherwise

(7)

Finally, 𝛽𝑙 and 𝛽𝑟 are combined to calculate 𝛽V as

𝛽V [𝑖] = {{{{{
𝛽𝑙 [𝑖] ⊕ 𝛽𝑟 [𝑖] , when 𝑖 < 𝑁V2
𝛽𝑟 [𝑖 − 𝑁V2] , otherwise

(8)

Table 1 lists the number of constituent nodes of the
decoding tree for a (1024, 512) polar code. It can be seen
that the total number of constituent nodes is 104 of the Fast-
SSC decoding, which decreases from 1024 of the SC decoding

Table 1: The number of constitute nodes.

Node Types Rate-0 Rate-1 REP SPC total
Numbers 14 40 24 26 104

p

r

l

rl

l r

Figure 2: Local decoder of node V.

tree. The decoder does not need to traverse the entire decod-
ing tree, it just traverses the pruned tree. Thus Fast-SSC algo-
rithm improves the decoding efficiency and throughput and
decreases the latency.

2.3. Quantization Scheme. The quantization scheme is divid-
ed into uniform and nonuniform quantization. The uniform
quantization is simple, but the consumption of resources
is more than that of nonuniform scheme. The nonuniform
quantization employs different quantization bits in different
decoding stages and uses less storage resources, but the
memory structure is not regular [27]. Unlike the conventional
SCdecoderwhichmemory is shared for the nodes of different
stages, the PEs of deeply pipelined decoder in each stage are
equipped with a separate memory. In order to reduce the
memory consumption, the nonuniform scheme is adopted to
quantitate channel LLRs and internal LLRs. In [20], it adopts
the all-integer quantization method, where channel LLR is
4 bits and internal LLR is 5 bits. In this paper, an improved
quantization scheme is proposed based on LLR distribution
of different stages. At the beginning, the internal LLRs is
small, and it is quantitated with the same bits as channel
LLRs. To avoid catastrophic overflow, the internal LLRs of
latter stages are quantitated with larger bits. Let (𝑄𝑖, 𝑄𝑐𝑓, 𝑄𝑓)
denote the quantization scheme, where 𝑄𝑐𝑓 presents the

4 Wireless Communications and Mobile Computing

BLER-1024

10−4

10−3

10−2

10−1

100
BL

ER

0.5 31.5 2.5 3.50 1 2
Eb/N0 (dB)

Polar SC

Fast SSC
Polar S＃Ｋ

Fast SS＃Ｋ(6,5,1)
Fast SS＃Ｋ(6,4,1)

Figure 3: The BLER performance of different decoding schemes.

quantization bits of channel LLRs and that of LLRs for the
former stages of the decoder, 𝑄𝑖 denotes the internal LLRs
of other stages, and 𝑄𝑓 is the fractional bits. Figure 3 shows
the block error rate (BLER) performance of SC, Fast-SSC
algorithm, and different quantization schemes. The floating
decoding performance of Fast-SSC is close to that of SC. In
the quantization schemes of Fast-SSC, it can be seen that the
performance of (6,5,1) quantization is close to the floating-
point performance, but (6,4,1) quantization results in less
than 0.2dB performance loss in high 𝐸𝑏/𝑁0. Therefore, this
paper adopts (6,5,1) quantization scheme.

3. Architecture of Fast-SSC Decoder

The decoder is implemented in deeply pipelined architecture
to improve the decoding throughput. This paper optimizes
the PEs, storage, and control modules to lower the latency.

3.1. Architecture. The structure of Fast-SSC decoder is de-
picted in Figure 4, which consists of PE, memory, and con-
troller. The PE is composed of various functions, such as F, G
function, and Kronecker power module. Memory is divided
into 𝛼 memory and 𝛽 memory, which are utilized to store
the channel and internal LLRs and the hard decision of each
constituent node, respectively. Because the decoding result of
every constituent node needs to multiply 𝐺𝑁, the Kronecker
power module contains G𝑁 (N = 4, 8, 16, 32, 64) matrix for
the leaf nodes of different length.The entire decoding process
is manipulated by the controller module. When the channel
LLRs signal (en cha alpha) is valid, the decoder starts to
load one new frame into the decoder, and it outputs the
codeword estimates. If the results of current stage are not used
immediately by the next stage, it will be stored into 𝛼 memory
or 𝛽 memory.

3.2. Deeply Pipelined. The deeply pipelined architecture for
a (1024, 512) polar code is illustrated in Figure 4. The dotted
lined rectangles represent the PEs such as REP128, where REP
denotes the operation type; the subscript 128 represents the
input length of the node.The spotted rectangles represent the
RAMs, which are used to store the internal results to give the
latter pipelined stages when the current results are not used
immediately and the data is larger than 16. The solid lined
rectangles represent registers. When the two-stage operation
using a certain data is closer and the amount of data is small,
the registers are used to store the data temporarily to reduce
the memory control signal. The deeply pipelined architecture
is designed according to the node activation order of the
decoding tree and the operation order of the local decoding
of each node. The software simulation which consists of 368
operations and the hardware implementation is a total of 330
operations. In order to achieve high throughput, this paper
split the stages with larger latency. For example, REP128 can
be split into four stages. The final architecture has 348 stages;
thus the decoding delay is 348 clock cycles. Each stage in the
pipeline contains one PE.

3.3. Memory. For node V in Figure 2, the inputs data 𝛼V need
to be used twice during the decoding process. Firstly, it is
used to calculate 𝛼V𝑙 of left child node; then it is utilized to
calculate 𝛼V𝑟 of right child node. Similarly, the local decoding
result 𝛽V𝑙 of node V𝑙 needs to be input into Kronecker product
module to obtain the final decoded words, and it also needs to
calculate the local decoding results 𝛽V𝑟 of its brother node V𝑟
to obtain the result 𝛽V of node V by 𝐶 operation. The internal𝛼 and 𝛽 need to be used twice in different stages, so they need
to be stored. Since the bit widths of 𝛼 and 𝛽 are different, they
are stored separately. The memory is divided into 𝛼 memory
and 𝛽 memory as shown in Figure 4. If a node produces 𝑚
internal data at 𝑡1 clock and uses them at 𝑡2, assuming 𝑑 =𝑡2 − 𝑡1, it will require 𝑚 ⋅ (𝑑 + 2) memory unit. When the
memory unit is less than 16, it can be stored with registers.
Otherwise, we will use RAMs to store the internal results.
The access timing of RAM is shown in Figure 5, where Adi
denotes the i-th address of RAM. It is clear that the read
sequence is the same as write sequence and they only differ d
in clock cycles. Therefore, we can use FIFO to replace RAM.

3.4. Processing Elements. The main PEs of Fast-SSC decoder
are listed in Table 2. F and F with front complement are used
to calculate the left child inputs of the activated node. G,
G-0R, G without complement, G without front complement,
and G without latter complement can calculate the inputs of
right child nodes. The C operation is used to combine the
local decoding results of the left and right children nodes into
the local decoding of the active node V. R0-R1, REP, SPC, and
R0 SPC are the decoding operation of the corresponding type
of leaf nodes, respectively. In addition to the 330 operations,
there are two else stages operations. One exists in the first
stage and the other one in the last stage. The first stage is
used to cache the channel LLRs and occupies one clock. The
results of the local nodes need to multiply G𝑁 matrix to
recover the local codeword. After the last constituent node

Wireless Communications and Mobile Computing 5

Processing Unit
Register
Memory

Controlleren_channel

en_stage0
en_stage1 en_stage2 en_stage383en_stage382en_stage381c[0]

c c c

1 1

2 205

206196

c[1]

c[2]

c[1022]

c[1023]
＆1024

＆512

２％０128 3

197198

＇64

＇128

＃64

960 ∼ 1024

928 ∼ 959

0 ∼ 127

Figure 4: The architecture of Fast-SSC decoder.

Ad1 Ad2 Ad3 Ad4 Ad5 Ad6 Ad7 Ad8

Ad1 Ad2 Ad3 Ad4 Ad5 Ad6 Ad7 Ad8

write
sequence

read
sequence

d

Figure 5: Access timing of RAM.

is computed, the converting operation by G𝑁 for it will take
one separate clock cycle. According to the above analysis, the
deeply pipelined architecture has a total of 332 stages.

To implement the deeply pipelined architecture, we
unfold the overall decoder. The G-0R, R0-R1, and R0-SPC
operations are introduced to reduce the number of stages.
The decoder can directly active the right child when the left
child is Rate-0 node; thus it can reduce the decoding latency
and the storage capacity. Moreover, in order to balance the
pipeline at all stages and lower wire routing congestion, we
refine the F and G operations into F with front complement,
G without complement, G without front complement, and
G without latter complement operations when the inputs are
large.

3.5. F Module. F operation is used to calculate the 𝛼𝑙 of left
child nods. According to (4), the sign bit of 𝛼𝑙[𝑖] is obtained
by XOR operation, and the numerical bits are the minimum
of 𝛼𝑙[𝑖] and 𝛼𝑙[𝑖 + 1] by compare operation. The structure is
shown in Figure 6.

3.6. G Module. The G operation calculates 𝛼𝑟 of the right
child based on 𝛽𝑙 of the left child and 𝛼V of the parent node.
According to (5), 𝛼[𝑖] adds 𝛼[𝑁/2 + 𝑖] when 𝛽 = 0, and 𝛼[𝑖]
subtracts 𝛼[𝑁/2 + 𝑖] when 𝛽 = 1. The structure is shown in
Figure 7.

When the input size ofG is larger than 256, high decoding
latency will be brought. It is clear that when the input length

concatenation

min

sign ([i])
sign ([N/2+i])

l[i]
|[i]|

|[N/2 + i]|

Figure 6: Structure of F module.

comple
ment

adder comple
ment

0
1

comple
ment

sign([i])

[i]

[N/2 + i]

|[i]|

Figure 7: Structure of Gmodule.

is long, the next stage after G is usually F operation. Since the
complexity of F operation is less than that of G operation, to
balance the frequency of the two operations, the complement
operation of G is moved into the F operation. The optimized
architecture is depicted as Figure 8. The left and right sides
of the dotted line are the PEs of two stages, respectively. The
complement operation of G colored in grey is performed in
the next stage.

6 Wireless Communications and Mobile Computing

Table 2: The number of each operation for one frame.

Types Description numbers
F Calculating 𝛼𝑙 . (4) 82
F with front complement Calculating 𝛼𝑙, input complement. 7
G Calculating 𝛼𝑟. (5) 78
G-0R Calculating 𝛼𝑟. where 𝛽𝑙 = 0 14
G without complement Calculating 𝛼𝑟, input and output complement 3
G without front complement Calculating 𝛼𝑟, input complement. 4
G without latter complement Calculating 𝛼𝑟, output complement. 4
C Calculating 𝛽V . (6) 85
R0 R1 Decoding Rate-1 nodes, where 𝛽𝑙 = 0. 3
REP Decoding REP nodes 24
SPC Decoding SPC nodes 23
R0 SPC Decoding SPC nodes, where 𝛽𝑙 = 0 3
Total 330

complement

complement

complement

complement

complement

complement

adder

adder

adder

complement

complement

complement

[0]

[1]

[2]

[3]

[254]

[255]

G256

F128

Figure 8: Optimized structure of 𝐺256.

3.7. C Module. TheCmodule combines 𝛽𝑙 of left child and 𝛽𝑟
of right child to calculate 𝛽V of parent node. According to (6),
the first half of 𝛽𝑟 is obtained by 𝛽𝑙 XOR 𝛽𝑟, and the latter half
is equal to 𝛽𝑟 directly. The structure of Cmodule is shown in
Figure 9.

3.8. REP Module. The number of input ports in REP module
is 4, 8, 16, 32, and 64. The 4-input module is the basic REP;
other types can be decomposed into 4-input type. The hard-
ware architecture for 8-input REP is presented in Figure 10.
When the input length of REP nodes increases, the decoding
latency also increases. To improve the working frequency,
the 8-input REP is divided into two stages; thus it will use
two clock cycles. The first stage translates the input data to
complement and generates four internal results. The second
stage adds them, and the REP module outputs the result of
all the 8-inputs data. The hardware architecture is shown in

… …

… …

l[0] l[1] l[2] l[N/2-1] r[0] r[1] r[2] r[N/2-1]

[0][1] [2] [N/2-1] [N/2] [N/2+1] [N-1]

Figure 9: Structure of C module.

ment
comple

adder

adder

adder

adder

adder

adder

adder

in0

in1

in2

in3

in4

in5

in6

in7

out

Figure 10: Optimized 8-input architecture of REP module.

Figure 10. The dotted line indicates that the original 8-input
REP module is divided into two stages.

Similarly, REP module of other lengths is divided into
different stages. For instance, the 16-, 64-, and 128-input REP
modules are divided into 2, 3, and 4 stages, respectively.

3.9. SPC Module. In order to improve the frequency, the
length of SPC node is constrained to 4 as shown in Figure 11.|𝛼[𝑖]| denotes the absolute value of 𝛼[𝑖], and sign(𝛼[𝑖]) is the
sign bit of 𝛼[𝑖]. The 4MIN1 module selects the smallest LLRs
through compare operation. min01 flag denotes the index of
the minimum of 𝛼[0] and 𝛼[1], and min23 flag denotes the

Wireless Communications and Mobile Computing 7

1
0

1
0

parity

D0
D1
D2
D3

min01_flag

min23

sel

min01

min23_flag

judgeCompare

Compare

Compare

1
0

1
0

4MIN1

|[0]|

|[1]|

|[2]|

|[3]|

sign([0])
sign([1])

sign([2])
sign([3])

[0]

[1]

[2]

[3]

Figure 11: Structure of SPC module.

level 1 level 2 level 3
0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Figure 12: Architecture of Kronecker power module.

index of the minimum of 𝛼[2] and 𝛼[3]. If 𝛼[0] is less than𝛼[1] min01 flag is set to zero; otherwise min01 flag is one. If
min01 is less thanmin23, sel is set to zero; otherwise sel is one.
D1∼D3 is determined by judgemodule. For instance, if sel and
min01 flag are both zeroes, then D0 is set to one and others
are set to zero. If sel is zero and min01 flag is one, then D1 is
set to one and others are set to zero.

3.10. Kronecker Power Module. The decoding result of the
constitute nodes requires the conversion of nth-Kronecker
power to get the final result by (9). The code length of the
architecture of the Kronecker power module is 8 as shown in
Figure 12, where ⊕ denotes XOR operation and ∙ denotes that
the data is connected directly.

global_controller

stage_0_en

channel_en

local_controller

stage_1_en stage_382_en stage_383_en

stage_0 stage_1 stage_382 stage_383

Figure 13: Two-level controller.

It can be found that if V𝑖 is equal to zero, then it can be
obtained as zero directly. As shown in Figure 12, the three
XOR operations colored in red can be removed for V0 is zero.

V𝑁1 = 𝑢𝑁1 𝐹⊗𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑁 = 2𝑛, 𝑛 ≥ 0 (9)

3.11. Controller. The controller uses a two-level mode to
generate control signals. As shown in Figure 13, the first level
generates the global control signals, which assigns an enable
signal to each stage to determine whether the corresponding
stage works or not. For instance, if stage1 en is asserted, then
stage1 is working; otherwise, stage1 is idle. The second level
only generates the local control signals for each stage, such as

8 Wireless Communications and Mobile Computing

clk
stage0_en

stage1_en

stage2_en

N N+1 N+2 N+3 N+4 N+5

M+1 M+2 M+3 M+4 M+5M

P+1 P+2 P+3 P+4 P+5P

addr__stage0

addr__stage1

addr__stage2

N+1 N+2 N+3 N+4 N+5

M+1 M+2 M+3 M+4 M+5M

P+1 P+2 P+3 P+4 P+5P

addr__stage0

addr__stage1

addr__stage2

1 2 3 4

1

5 6 7 8 9 10 11 12

．

Figure 14: Timing of the controller.

PCIe

Communicate port

FPGA

Error frames

init_lfsr

init_gng

Error frame

comfigure

A

Random
number

Add
CRC

Polar
encoder BPSK remove

CRC statisticsFast-SSC
decoder

AWGN

Figure 15: Test platform for polar decoder based on FPGA.

the address bus, data, and control signals of the memory, and
the enable signals of PEs.

As depicted in Figure 14, addr 𝛼 stgae2 denotes the
address bus of the 𝛼 memory in stage2. When satge2 en is
asserted, the corresponding address adds one. Namely, an
internal LLR is stored into𝛼 memory stage2. Comparedwith
the one-level controller to generate all the control signals, it
can reduce the implementation complexity of the controller.

4. Performance Analysis

4.1. Test Platform. To test the high throughput of Fast-SSC
decoder, we implement a test platform based on FPGA. The
overall platform including generating test data is completed
on the FPGA to reduce the communication cost with the
host computer. As depicted in Figure 15, the platform consists
of random number generator, CRC check, polar encoder,
BPSK AWGN, Fast-SSC decoder, and statistics module. PCIe
is responsible for the communication between the host
computer and FPGAplatform.Meanwhile, this paper designs
a software platform based on C++ that compares the results
of hardware test and software simulation. At the beginning,

the host computer generates randomnumber seeds, Gaussian
noise seeds, the number of test frames, and start signal and
transmits them to FPGA. When the decoding is completed,
the statistics module uploads the number of error frames;
then the host computer calculates the BLER and displays the
test parameters. For the (1024, 512) polar code, simulations
show that the test platform takes 19.18s at 300MHz to test data
with 1.4∗1010 bits.
4.2. Resource Consumption. The (1024, 512) polar decoder
is implemented on Altera Stratix V 5SGXEA7N2F45C2 in
Quartus II 15.0. The resources used by the decoder based
on FPGA are shown in Table 3. It can be observed that the
proposed decoder costs more memory compared with other
decoder based on FPGA for that 6 bits is used to quantize the
LLRs partly. However, it costs less registers compared with
[20]. For the decoder in [24], it costs less resource because it
does not adopt deeply pipelined architecture.

4.3. Performance. The latency and throughput are the main
performance parameters of the polar decoder. Let freq decode
be the frequency of the decoder, and frame decoder clocks

Wireless Communications and Mobile Computing 9

Table 3: Statistics of resources.

ALMs/LUTs Register Memory (bits)
Proposed 81498 96762 2367488
[20] 156450 152124 285120
[24] 29828 2332 18356

Table 4: Comparison with other polar decoders.

This work P. Giard [20] Park [25] Dizdar [26] P. Giard [24]
Decoding. Algo. Fast-SSC Fast-SSC BP SC Fast-SSC
IC type FPGA FPGA ASIC ASIC FPGA
Tech(nm) 28 40 65 90 40
f(MHz) 300 231 300 2.5 80.6
Latency(us) 1.16 2.4 50 0.4 2.1
T/P(Gbps) 307.2 237 4.68 2.56 0.48

denote the number of clocks to decode one frame.The latency
and throughput are calculated by

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 1𝑓𝑟𝑒𝑞 𝑑𝑒𝑐𝑜𝑑𝑒𝑟
∗ 𝑓𝑟𝑎𝑚𝑒 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 𝑐𝑙𝑜𝑐𝑘𝑠

(10)

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑁 ∗ 𝑓𝑟𝑒𝑞 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (11)

In this paper, for the (1024, 512) polar decoder, its working
frequency can achieve 300MHz. The decoder requires 348
clocks to decode one frame. By (10) and (11), the latency is
1.16us, and the throughput is 307.2Gbps. Table 4 compares the
proposed decoder with other polar decoders. In [20], a deeply
pipelined decoder based on FPGA is capable of achieving the
throughput over 237 Gbps for a (1024, 512) polar code. The
latency of the decoder is twice more than this work. And
the throughput of the proposed decoder is 1.3 times greater
than that. It shows that either the latency or the throughput
of this work is better than that in [20, 24, 25]. O. Dizdar and
E. Arikan proposed a deeply pipelined polar decoder based
on SC decoding algorithm. That decoder operates at lower
clock frequency and costs less dynamic power.The proposed
decoder has three times higher latency but is over 119 times
faster than that in [26].

5. Conclusions

In this paper, a decoder in deeply pipelined architecture has
been presented based on Fast-SSC decoding algorithm. The
proposed decoder can output 1024 bits at each clock. To
optimize the critical path, the PEs are decomposed and re-
combined to balance the latency of two adjacent stages. The
fixed-point nonuniform quantization scheme lowers storage
capacity and obtains a good decoding performance. The
two-level mode is proposed to reduce the complexity of the
controller. Moreover, we build a platform based on FPGA to
test its performance. Numerical results show that the decoder
can achieve high throughput.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest re-
garding the publication of this paper.

Acknowledgments

This work was supported in part by the Natural Science
Foundation of China (61701284, 61472229, and 61471224), Sci.
& Tech. Development Fund of Shandong Province of China
(2016ZDJS02A11), project funded by China Postdoctoral
Science Foundation (2016M592216), Qingdao Postdoctoral
Research Project (2016125), and SDUST Research Fund
(2015TDJH102).

References

[1] W. Liu and X. Luo, “Localization Algorithm of Indoor Wi-Fi
Access Points Based on Signal Strength Relative Relationship
and Region Division , Computers,”Materials Continua, vol. 55,
no. 1, pp. 71–93, January 2018.

[2] Z. Xia, N. N. Xiong, A. V. Vasilakos, and X. Sun, “EPCBIR: An
efficient and privacy-preserving content-based image retrieval
scheme in cloud computing,” Information Sciences, vol. 387, pp.
195–204, 2017.

[3] H. Cheng, Z. Su, N. Xiong, and Y. Xiao, “Energy-efficient node
scheduling algorithms forwireless sensor networks usingMark-
ov RandomFieldmodel,” Information Sciences, vol. 329, pp. 461–
477, 2016.

[4] R. Meng, S. G. Rice, J. Wang et al., “A fusion steganographic
algorithm based on faster R-CNN,” Computers, Materials &
Continua, vol. 55, no. 1, pp. 1–16, January 2018.

[5] H. Cheng, N. Xiong, A. V. Vasilakos, L. Tianruo Yang, G. Chen,
and X. Zhuang, “Nodes organization for channel assignment
with topology preservation in multi-radio wireless mesh net-
works,” Ad Hoc Networks, vol. 10, no. 5, pp. 760–773, 2012.

10 Wireless Communications and Mobile Computing

[6] E. Arikan, “Channel polarization: amethod for constructing ca-
pacity-achieving codes for symmetric binary-inputmemoryless
channels,” IEEE Transactions on InformationTheory, vol. 55, no.
7, pp. 3051–3073, 2009.

[7] “IMT-2020(5G) PG White Paper on 5G Concept,” http://www
.imt-2020.org.cn/zh/documents/1?currentPage=2&content=.

[8] I. Tal andA.Vardy, “List decoding of polar codes,” inProceedings
of the 2011 Information Theory, pp. 1–5, St. Petersburg, Russia,
August 2011.

[9] K.Niu andK. Chen, “CRC-aided decoding of polar codes,” IEEE
Communications Letters, vol. 16, no. 10, pp. 1668–1671, 2012.

[10] K. Niu and K. Chen, “Stack decoding of polar codes,” IEEE
Electronics Letters, vol. 48, no. 12, pp. 695–697, 2012.

[11] K. Chen, K. Niu, and J.-R. Lin, “Improved successive cancella-
tion decoding of polar codes,” IEEE Transactions on Communi-
cations, vol. 61, no. 8, pp. 3100–3107, 2013.

[12] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation
list decoder for polar codeswith cyclic redundancy check,” IEEE
Communications Letters, vol. 16, no. 12, pp. 2044–2047, 2012.

[13] J. Snyders and Y. Be’ery, “Maximum likelihood soft decoding of
binary block codes and decoders for the Golay codes,” Institute
of Electrical and Electronics Engineers Transactions on Informa-
tion Theory, vol. 35, no. 5, pp. 963–975, 1989.

[14] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified succes-
sive-cancellation decoder for polar codes,” IEEE Communica-
tions Letters, vol. 15, no. 12, pp. 1378–1380, 2011.

[15] G. Sarkis and W. J. Gross, “Increasing the throughput of polar
decoders,” IEEE Communications Letters, vol. 17, no. 4, pp. 725–
728, 2013.

[16] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-
parallel successive-cancellation decoder for polar codes,” IEEE
Transactions on Signal Processing, vol. 61, no. 2, pp. 289–299,
2013.

[17] G. Sarkis, P. Giard, A. Vardy, C.Thibeault, andW. J. Gross, “Fast
polar decoders: algorithm and implementation,” IEEE Journal
on SelectedAreas in Communications, vol. 32, no. 5, pp. 946–957,
2014.

[18] C. Zhang and K. Parhi, “Low-latency sequential and overlapped
architectures for successive cancellation polar decoder,” IEEE
Transactions on Signal Processing, vol. 61, no. 10, pp. 2429–2441,
2013.

[19] B. Yuan and K. K. Parhi, “Low-Latency Successive-Cancellation
List Decoders for Polar Codes with Multibit Decision,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
23, no. 10, pp. 2268–2280, 2015.

[20] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “237 Gbit/s
unrolled hardware polar decoder,” IEEE Electronics Letters, vol.
51, no. 10, pp. 762-763, 2015.

[21] Y. Li and R. Liu, “High throughput GPU polar decoder,” in
Proceedings of the 2nd IEEE International Conference on Com-
puter and Communications, ICCC 2016, pp. 1123–1127, Chengdu,
China, October 2016.

[22] S. Cammerer, B. Leible, M. Stahl, J. Hoydis, and S. Ten Brink,
“Combining belief propagation and successive cancellation list
decoding of polar codes on a GPU platform,” in Proceedings of
the 2017 IEEE International Conference on Acoustics, Speech, and
Signal Processing, ICASSP 2017, pp. 3664–3668, New Orleans,
La, USA, March 2017.

[23] X. Han, R. Liu, Z. Liu, and L. Zhao, “Successive-cancellation
list decoder of polar codes based on GPU,” in Proceedings of
the 2017 3rd IEEE International Conference on Computer and

Communications (ICCC), pp. 2065–2070, Chengdu, December
2017.

[24] F. Ercan, C. Condo, and W. J. Gross, “Reduced-memory high-
throughput fast-SSC polar code decoder architecture,” in Pro-
ceedings of the 2017 IEEE International Workshop on Signal
Processing Systems (SiPS), pp. 1–6, Lorient, France,October 2017.

[25] Y. S. Park, Y. Tao, S. Sun, and Z. Zhang, “A 4.68Gb/s belief pro-
pagation polar decoder with bit-splitting register file,” in Pro-
ceedings of the 2014 IEEE Symposium on VLSI Circuits, pp. 1-2,
Honolulu, Hawaii, USA, June 2014.

[26] O. Dizdar and E. Arikan, “A high-throughput energy-efficient
implementation of successive cancellation decoder for polar
codes using combinational logic,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 63, no. 3, pp. 436–447, 2016.

[27] A. Balatsoukas-Stimming, A. J. Raymond, W. Gross, and A.
Burg, “Hardware Architecture for List SC Decoding of polar
codes,” https://arxiv.org/abs/1303.7127.

http://www.imt-2020.org.cn/zh/documents/1?currentPage=2&content=
http://www.imt-2020.org.cn/zh/documents/1?currentPage=2&content=
https://arxiv.org/abs/1303.7127

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

