
Research Article
Homomorphic Evaluation of the Integer Arithmetic
Operations for Mobile Edge Computing

Changqing Gong ,1 Mengfei Li ,1 Liang Zhao ,1 Zhenzhou Guo,1 and Guangjie Han 2

1School of Computer Science and Technology, Shenyang Aerospace University, Shenyang 110136, China
2Laboratory for Ubiquitous Network and Service Software of Liaoning Province, School of Software,
Dalian University of Technology, Dalian 116024, China

Correspondence should be addressed to Liang Zhao; lzhao@sau.edu.cn

Received 26 September 2018; Accepted 31 October 2018; Published 15 November 2018

Guest Editor: Mianxiong Dong

Copyright © 2018 Changqing Gong et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

With the rapid development of the 5G network and Internet of Things (IoT), lots of mobile and IoT devices generate massive
amounts of multisource heterogeneous data. Effective processing of such data becomes an urgent problem. However, traditional
centralised models of cloud computing are challenging to process multisource heterogeneous data effectively. Mobile edge
computing (MEC) emerges as a new technology to optimise applications or cloud computing systems. However, the features of
MEC such as content perception, real-time computing, and parallel processing make the data security and privacy issues that exist
in the cloud computing environment more prominent. Protecting sensitive data through traditional encryption is a very secure
method, but this will make it impossible for the MEC to calculate the encrypted data. The fully homomorphic encryption (FHE)
overcomes this limitation. FHE can be used to compute ciphertext directly.Therefore, we propose a ciphertext arithmetic operation
that implements data with integer homomorphic encryption to ensure data privacy and computability. Our scheme refers to the
integer operation rules of complement, addition, subtraction, multiplication, and division. First, we use Boolean polynomials (BP)
of containing logical AND, XOR operations to represent the rulers. Second, we convert the BP into homomorphic polynomials
(HP) to perform ciphertext operations. Then, we optimise our scheme.We divide the ciphertext vector of integer encryption into
subvectors of length 2 and increase the length of private key of FHE to support the 3-multiplication level additional. We test our
optimised scheme in DGHV and CMNT. In the number of ciphertext refreshes, the optimised scheme is reduced by 2/3 compared
to the original scheme, and the time overhead of our scheme is reduced by 1/3. We also examine our scheme in CNT of without
bootstrapping. The time overhead of optimised scheme over DGHV and CMNT is close to the original scheme over CNT.

1. Introduction

With the rapid development of the 5G network and Internet
ofThings (IoT),mobile devices and IoTdevices aremore con-
venient to access the internet and generate massive amounts
of data. Since these data come from edge network devices,
traditional centralised cloud computing models are difficult
to process these multisource heterogeneous data quickly and
efficiently. If we migrate some of the features of cloud com-
puting to an edge network as [1–3], it will be beneficial to data
collection and calculation. Therefore,mobile edge computing
(MEC) emerges as the above requires. Edge computing [4]
is a method of optimizing applications or cloud computing
systems by taking some portion of an application, its data, or

services away from one or more central nodes (the “core”) to
the other logical extreme (the “edge”) of the internet which
contacts with the physical world or end users. In one vision
of this architecture, specifically for IoT devices, data comes in
from the physical world via various sensors, and actions are
taken to change physical state via various forms of output and
actuators; by performing analytics and knowledge generation
at the edge, communications bandwidth between systems
under control and the central data centre is reduced. The
MEC is to put any computer program that needs low latency
nearer to the requests in particular for mobile networks such
as 5G. MEC allows terminal devices to migrate storage and
computing tasks to network edge nodes. The architecture of
edge computing is shown in Figure 1.

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 8142102, 13 pages
https://doi.org/10.1155/2018/8142102

http://orcid.org/0000-0002-4831-6069
http://orcid.org/0000-0003-2390-3600
http://orcid.org/0000-0001-5829-6850
http://orcid.org/0000-0002-6921-7369
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/8142102

2 Wireless Communications and Mobile Computing

latency Lower

Medium

Higher

Real-time analytics

Transactional analytics

Business intelligence

Data Center/Cloud

unsafe

unsafe

unsafe unsafe

unsafe

unsafeunsafe

unsafe
unsafe

unsafe

unsafe

unsafe

Mobile Edge
Computing

Mobile Edge
Computing

Mobile Edge
Computing

Mobile Edge
Computing

Figure 1: The architecture of mobile edge computing.

MEC covers a wide range of technologies including
wireless sensor networks, mobile data acquisition, mobile
signature analysis, cooperative distributed peer-to-peer ad
hoc networking, and processing. The foundation of MEC
is traditional network, wireless network, mobile network,
and Internet of Vehicles (IoV), in which a large number of
network infrastructure technologies and services are applied.
Include energy efficiency and spectral efficiency tradeoff in
device-to-device [5], QoS-aware interdomain multicast [6],
efficient cross-layer relay node selection model [7], mobile
anchors assisted localization [8], and vehicular communica-
tions [9]. Mobile edge computing (see Figure 1) is a service
for multiple entities (mobile devices and IoT devices). Many
entities put their real-time data (outsourced data in cloud
computing) on mobile edge computing for analysis or stor-
age. The extensive features of mobile edge computing such
as data collection, real-time analytics, and parallel processing
make the privacy issues that exist in the cloud computing
environment become more prominent. Therefore, the secu-
rity of outsourced data remains a fundamental issue for data
security of MEC.The red dotted lines (see Figure 1) represent
safety risk between the different entities and mobile edge
computing, such as IoV and smart home services provided
by mobile edge computing. In IoV, the location information
of the vehicle and the online browsing records generated by

the owner are collected by the mobile edge calculation, so as
to feed back the precise navigation information of the vehicle,
and the push information for the owner’s preferences. In this
process, the data of the owner and the car are exposed to the
mobile edge computing, which is extremely unsafe. In smart
home, many sensors monitor environment changes in the
room, such as temperature, humidity, surveillance video, etc.,
through mobile edge calculation storage and analysis, giving
the best home environment settings. This process is also
unsafe. Traditional methods, including intrusion detection,
access control, and virtual isolation, can only protect data
from being stolen by external attackers. For internal attacks
(honest and curious mobile edge computing), data security
is still not guaranteed. The encrypted data are relatively
considered a safe storage status. However, it is unable to
satisfy the computability of ciphertext data. If we want the
edge computing to be able to do nontrivial computations
with the ciphertext data, and therefore the problem is severe
to solve. The nontrivial computations include deep learning
for the IoV with Edge Computing [10], offloading com-
putation for MEC [11]. The fully homomorphic encryption
(FHE) overcomes this limitation. Gentry described the first
encryption scheme that supports both addition and multipli-
cation base on ciphertexts, i.e., FHE scheme [12]. The FHE
scheme allows anyone to perform arbitrary computations

Wireless Communications and Mobile Computing 3

on encrypted data, despite not having the secret decryption
key.

The development of FHE can be partitioned into three
generations [13]. The first generation includes Gentry’s orig-
inal scheme using ideal lattices [12], the somewhat simpler
scheme of van Dijk et al. [14], and some optimisations for first
generation in public key size [15–17]. All these schemes
have a problem of rapidly growing noise, which affected
both efficiency and security. The second generation begin
with Brakerski-Vaikuntanathan [18, 19] and Brakerski et al.
[20] and is characterized by modulus-switching and key-
switching techniques for controlling the noise, resulting in
improved efficiency, including LWE [18], Ring-LWE [19],
and NTRU [21, 22] hardness assumption. The third gener-
ation begins with the scheme of Gentry et al. [23]. Third-
generation schemes are usually slightly less efficient than
second-generation ones, but they can be based on somewhat
weaker hardness assumptions.

In the homomorphic evaluation of FHE, different circuits
in the real world are realized by multiplication homomor-
phic, addition homomorphic, and decryption homomorphic
(ciphertext refresh). The application of FHE is ciphertext
arithmetic operation and ciphertext retrieval. Gentry, Halevi,
and Smart propose the first evaluation of a complex circuit,
i.e., a full AES-128 block evaluation [24] by using a BGV [20]
style scheme.The schememakes use of batching [25, 26], key
switching, and modulus switching techniques to obtain an
efficient levelled implementation. Chen Y. et al. [27] propose
the integer arithmetic over ciphertext and homomorphic data
aggregation by using a BGV style scheme. The scheme uses
the HElib library to implement homomorphic evaluation
for addition, subtraction, multiplication, and division of un-
signed integrins. Gai K. et al. [28] propose the blend arith-
metic operations on tensor-based FHE over real numbers
and proposes a novel tensor-based FHE solution [29]. Yang
J. et al. [30] propose the secure tensor decomposition using
FHE scheme.

In [24], AES-128 block evaluation cannot implement
carry operation. In [27], the integer arithmetic over ciphertext
just implement 2-4 bits arithmetic operation of unsigned
integer. In [28], the blend arithmetic operations do not
implement division operation over tensor-based FHE over
real numbers. Therefore, the [24, 27, 28] cannot be used as
a complete homomorphic evaluation of a signed inte-
ger arithmetic operations scheme by using addition and
multiplication homomorphism in MEC. The homomor-
phic evaluation of integer arithmetic operations is an
important foundation for nontrivial computations with the
ciphertext data. Therefore, it is significant to construct
homomorphic evaluation of integer arithmetic operations
scheme.

Contribution. We propose the homomorphic evaluations of
integer arithmetic operations base on DGHV [14] and its
variants [15, 31, 32] in mobile edge computing. And we
use the features of homomorphic encryption to prevent
sensitive data from being stolen. At the same time, we
can also calculate ciphertext data in mobile edge comput-
ing.

(i) Our scheme refers to the integer operation rules
which are expressed inBoolean polynomials (BP) that
only contains logical AND, XOR operations.Then, we
convert BP into homomorphic polynomials (HP) by
using addition and multiplication on ciphertexts.

(ii) We propose judgment choose Boolean polynomials
(JCBP) to solve the constantly choose problem in the
multiplication and division. Then we convert JCBP
into judgment choose homomorphic polynomials
(JCHP) by using addition and multiplication on
ciphertexts.

(iii) We optimise the process of homomorphic evalua-
tion of integer arithmetic operations. We divide the
ciphertext vector of integer encryption into subvec-
tors of length 2 and add the length of the private key of
FHE to support the 3-multiplication level additional,
except for the 15-multiplication level required by
bootstrapping.

(iv) We test the optimized scheme in DGHV [14] and
CMNT [17]. In the number of ciphertext refreshes,
the optimized scheme is reduced by 2/3 compared
to the original scheme, and the homomorphic eval-
uation time overhead of integer arithmetic opera-
tions is reduced by 1/3. We also test our scheme
in CNT [31] of without bootstrapping. The time
overhead of optimized scheme over DGHV [14] and
CMNT [17] is close to the original scheme over CNT
[31].

Organization. In Section 2, we will introduce DGHV [14],
the variants of DGHV [17, 31, 32] and some homomorphic
evaluation in detail. In Section 3, we modify the polynomials
of integer arithmetic operation according to the computation
process of complement, addition, subtraction, multiplication,
and division of integer in the computer. We also propose
the BP of integer arithmetic operation and convert the BP
into the HP of integer arithmetic operation. In Section 4,
we analyse the noise ceiling and optimize the process of
homomorphic evaluation of integer arithmetic operations.
In Section 5, we show our implementation and experimen-
tal result. We show the efficiency and conclusion of our
scheme.

2. Related Work

Fully homomorphic encryption scheme over the integers
and its variants are an essential branch of homomorphic
encryption research. Also, we propose the homomorphic
evaluations of integer arithmetic operations base on DGHV
and its variants. We use DGHV and its variants to encrypt
data and upload ciphertext data to a MEC data center. The
server of MEC can process ciphertext data by using features
of homomorphic encryption. Our scheme involves homo-
morphic encryption and ciphertext computing. Therefore,
we will introduce the original homomorphic encryption
scheme DGHV [14] and its variants on integer, including
shorter public keys CMNT [17], public keys compress and
modulus switching CNT [31], batch encryption CCKL+

4 Wireless Communications and Mobile Computing

[32]. Below we will replace [14, 17, 31, 32] with DGHV,
CMNT, CNT, and CCKL+. At the same time, we will also
introduce some ciphertext computing techniques related to
our scheme, including full AES-128 block evaluation [24] by
using a BGV style scheme, integer arithmetic over ciphertext
and homomorphic data aggregation [27], the blend arith-
metic operations on tensor-based FHE over real numbers
[28].

2.1. DGHV and Variants Scheme. The DGHV scheme is de-
scribed by van Dijk et al. base on integer and to simplify
[12]. The advantages of DGHV include simple encryption
process and being easy to understand. However, it has a
weakness that the noise in ciphertext increases rapidly with
the multiplicative level increases. The scheme is based on a
set of public integers: 𝑥𝑖 = 𝑞𝑖𝑝 + 𝑟𝑖, 0 ≤ 𝑖 ≤ 𝜏, where the
integer 𝑝 is secret. We use the same notation as in DGHV.
The DGHV use the following parameters (all polynomial in
the security parameter 𝜆):

(i) 𝛾 is the bit-length of the 𝑥𝑖’s.
(ii) 𝜂 is the bit-length of private key 𝑝.
(iii) 𝜌 is the bit-length of the noise 𝑟𝑖.
(iv) 𝜏 is the number of 𝑥𝑖’s in the public key.
(v) 𝜌󸀠 is used for encryption.

For a specific 𝜂-bit odd integer 𝑝, DGHV use the following
distribution over 𝛾-bit integers:

D𝛾,𝜌(𝑝) = {𝐶ℎ𝑜𝑜𝑠𝑒 𝑞 ←󳨀 Z ∩ [0, 2𝛾𝑝) , 𝑟 ←󳨀 Z

∩ (−2𝜌, 2𝜌) : 𝑂𝑢𝑡𝑝𝑢𝑡 𝑥 = 𝑞 ⋅ 𝑝 + 𝑟}
(1)

𝐾𝑒𝑦𝐺𝑒𝑛(𝜆). Generate a random odd integer 𝑝 of size 𝜂 bits
as a 𝑠𝑘. For the public key, sample 𝑥𝑖 ←󳨀 D𝛾,𝜌(𝑝) for 0 ≤ 𝑖 ≤ 𝜏.
Relabel so that 𝑥0 is the largest. Let 𝑥0 be odd and [𝑥0]𝑝 even.
Let 𝑝𝑘 = ⟨𝑥0, 𝑥1, . . . , 𝑥𝜏⟩ and 𝑠𝑘 = 𝑝.
𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑝𝑘,𝑚 ∈ {0, 1}). Choose a random subset 𝑆 ⊆{1, 2, . . . , 𝜏} and a random integer 𝑟 ∈ (−2𝜌, 2𝜌), and output𝑐 ←󳨀 [𝑚 + 2𝑟 + 2∑𝑖∈𝑆 𝑥𝑖]𝑥0 .
𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑠𝑘, 𝑐). Output 𝑚󸀠 = ((𝑐) mod 𝑝) mod 2 = (c mod2)(⌊𝑐/𝑝⌉ mod 2).
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑘, 𝐶, 𝑐1, 𝑐2, . . . , 𝑐𝑡). Given the function 𝐹 with t
input, and 𝑡 ciphertexts 𝑐𝑖, convert logic AND and logic XOR
of 𝐹 into addition and multiplication, performing all the
addition and multiplication, and return the resulting integer.

The following parameter set is suggested inDGHV:𝜌 = 𝜆,𝜌󸀠 = 2𝜆, 𝜂 = Õ(𝜆2), 𝛾 = Õ(𝜆5), 𝜏 = 𝛾 + 𝜆. The public key size
is then Õ(𝜆10).

The CMNT scheme is described by Coron et al. to reduce
the public key size of the DGHV scheme from Õ(𝜆10) down
to Õ(𝜆7). CMNT scheme applies a new parameter 𝛽 by
the form 𝑥󸀠𝑖𝑗 = 𝑥𝑖,0 ∙ 𝑥𝑗,1 mod 𝑥0, 1 ≤ 𝑖, 𝑗 ≤ 𝛽 to

generate the 𝜏 = 𝛽2 integers 𝑥󸀠𝑖𝑗 used for encryption. CMNT
scheme enables reducing the public key size from 𝜏 down to
roughly 2√𝜏 integers of bits. CMNT scheme uses an error-
free 𝑥0, that is, 𝑥0 = 𝑞0𝑝, since otherwise, the error would
grow too large. Additionally, for encryption CMNT scheme
consider a linear combination of the 𝑥󸀠𝑖𝑗 with a coefficient
vector 𝑏 = (𝑏𝑖,𝑗) instead of bits; this enables reducing
the public key size further. The vector 𝑏 with components
in [0, 2𝛼).

The CMNT scheme takes 𝜌 = 𝜆, 𝜂 = Õ(𝜆2), and 𝛾 =
Õ(𝜆5) as in the DGHV scheme. However, it takes 𝛼 = 𝜆, 𝛽2 =
Õ(𝜆2), and 𝜌󸀠 = 4𝜆. The main difference is that instead of
having 𝜏 = Õ(𝜆5) integers 𝑥𝑖’s, CMNT scheme has only 2𝛽 =
Õ(𝜆2) integers 𝑥𝑖. Hence the public key size becomes Õ(𝜆7)
instead of Õ(𝜆10).

Coron and Naccache et al. describe the CNT scheme.The
CMT describes a method that can compress the public key
size of the DGHV scheme and optimise the noise manage-
ment technique by modifying the modulus switching tech-
nology [20]. The noise ceiling of CNT scheme increases only
linearly with the multiplicative level instead of exponentially.
So, a levelled DGHV variant was implemented. This scheme
gives two optimisations for homomorphic encryption on
DGHV as below.

The first optimisation is public keys compression. First
generate the secret key 𝑝 of size 𝜂 bits and use a pseudo-
random function 𝑓 with random seed 𝑠𝑒 to generate a set of𝜒𝑖 ∈ [0, 2𝛾), 1 ≤ 𝑖 ≤ 𝜏. Finally, compute 𝛿𝑖 that 𝑥𝑖 = 𝜒𝑖 − 𝛿𝑖 is
small modulo 𝑝 and store 𝛿𝑖 in the public key, instead of the
full 𝑥𝑖’s.

The second optimisation is Modulus-Switching Tech-
nique. The CMNT show how to adapt Brakerski, Gentry, and
Vaikuntanathan’s (BGV) FHE framework [20] to the DGHV
scheme over the integers. Under the [20] framework, the
noise ceiling increases only linearly withmultiplicative depth,
instead of exponentially.

The CNT scheme takes 𝜌 = 𝜆, 𝜂 = Õ(𝜆2), 𝛾 = Õ(𝜆5),𝛼 = Õ(𝜆2), 𝜏 = Õ(𝜆3), and 𝜌󸀠 = Õ(𝜆2). The new public key of
CNT scheme has size 𝛾+𝜏 ∙ (𝜂+𝜆) = Õ(𝜆5) instead of Õ(𝜆10)
of DGHV.

J.H. Cheon et al. describe the CCKL+ scheme. It extends
DGHV to support the same batching capability as in RLWE-
based schemes [20, 25], and to homomorphically evaluate a
full AES circuit with roughly the same level of efficiency as
[24]. The CCKL+ scheme is a merger of two independent
works [33, 34] built on the same basic idea but with different
contributions. Its security under the (stronger) Error-Free
Approximate-GCD assumption already DGHV, CMNT, and
CNT.

The CCKL+ scheme extends the DGHV scheme by
packing ℓ plaintexts 𝑚0, ⋅ ⋅ ⋅ 𝑚ℓ−1 into a single ciphertext,
using theChinese RemainderTheorem (CRT). For somewhat
homomorphic encryption, this allows us to encrypt not only
bits but elements from rings of formZ𝑄. The CKLL+ scheme
takes 𝜌 = 2𝜆, 𝜂 = Õ(𝜆2), 𝛾 = Õ(𝜆5), 𝛼 = Õ(𝜆2), and𝜏 = Õ(𝜆3) as in CNT scheme, with 𝜌󸀠 = Õ(𝜆), 𝛼󸀠 = Õ(𝜆2),
and ℓ = Õ(𝜆2).

Wireless Communications and Mobile Computing 5

Table 1: The parameters of DGHV, CMNT, CNT and CCKL+, and public key storage size.

FHE scheme 𝜆 𝜌󸀠 𝜂 𝛾 pk length pk size
DGHV 𝜆 2𝜆 Õ (𝜆2) Õ (𝜆5) Õ (𝜆10) 41 GB
CMNT 𝜆 4𝜆 Õ (𝜆2) Õ (𝜆5) Õ (𝜆7) 800MB
CNT 𝜆 Õ (𝜆2) Õ (𝜆2) Õ (𝜆5) Õ (𝜆5) 10.1MB
CCKL+ 𝜆 3𝜆 Õ (𝜆2) Õ (𝜆5) Õ (𝜆8) 5.6GB

We can conclude (see Table 1) that the CNT scheme
performs best in public key storage and only 10.1 MB. We
test public key size of DGHV by using “large” parameters
of CMNT, and up to 41 GB. The CNT scheme has better
noise management technique, in which the noise ceiling
increases only linearlywith themultiplicative level.Therefore,
the CNT scheme supports more multiplication level than
other schemes. The CCKL+ scheme implements batch FHE
scheme to encrypt a plaintext vector to a ciphertext by
using the CRT. However, each one of the components in the
plaintext vector is required to be independent. If we encrypt
a plaintext vector, the encryption result is a plaintext vector
using DGHV, CMNT, and CNT scheme, and the encryption
result is a ciphertext by using CCKL+.Therefore, when we do
arithmetic operations on the ciphertext of a plaintext vector,
we can perform carry operation by using DGHV, CMNT, and
CNT scheme, instead of using CCKL+.

2.2. Homomorphic Evaluation. The advantage of homomor-
phic evaluation is implementing various operations in the real
world on ciphertext and is not only multiplication homomor-
phic, addition homomorphic, and decryption homomorphic
(ciphertext refresh). The FHE abstracts various operations
of the real world as a collection of circuits consisting of
logical XOR and logical AND.The homomorphic evaluation
is to implement different circuits in this collection of circuits.
Below we will introduce some relevant schemes for homo-
morphic evaluation of arithmetic operations.

Gentry, Halevi, and Smart propose the first evaluation of
a complex circuit, i.e., a full AES-128 block evaluation [24]
by using a BGV [20] style scheme. The scheme makes use
of batching [25, 26], key switching, and modulus switching
techniques to obtain an efficient levelled implementation.
After that, Gentry, Smart, and Halevi publish significantly
improved runtime results. Compared to the earlier imple-
mentation [21], Gentry et al. use the latest version of the
HElib library [35]. Two variations of the implementation are
reported: one with bootstrapping and one without bootstrap-
ping.

Chen Y. et al. [27] propose the integer arithmetic over
ciphertext and homomorphic data aggregation by using a
BGV [20] style scheme. The scheme uses the HElib library
[35] to implement homomorphic evaluation for addition,
subtraction, multiplication, and division of unsigned inte-
grins. However, the scheme report time overhead of inte-
ger arithmetic over ciphertext without bootstrapping and
modulus switching (somewhat homomorphic encryption).
The length of integer ciphertext only sets 2, 3, 4 bits
and sets 128 security level to guarantee right result. The

schemedoes not optimise the operations of integer arithmetic
over ciphertext with bootstrapping and modulus switch-
ing.

Gai K. et al. [28] propose the blend arithmetic operations
on tensor-based FHE over real numbers and propose a novel
tensor-based FHE solution [29].The scheme uses tensor laws
to carry the computations of blend arithmetic operations
over real numbers. However, blend arithmetic operations
only include addition and multiplication. The scheme does
not implement blend arithmetic operations with the divi-
sion.

3. Homomorphic Evaluation of the Integer
Arithmetic Operations

Integer addition, subtraction, multiplication, and division are
operated by complement addition and shift. One bit full-
adder uses XOR (⨁) gate to get sum and uses AND (∧)
gate to get carry. Below we will explain our notation. The
integer arithmetic operations will take A = a𝑛−1 ⋅ ⋅ ⋅a0,
B = b𝑛−1 ⋅ ⋅ ⋅b0 and A∗ = a∗𝑛−1 ⋅ ⋅ ⋅a∗0 , B∗ = b∗𝑛−1 ⋅ ⋅ ⋅b∗0
as inputs. A and B are the complements. A∗ and B∗ are
two’s complement of A and B. However, in complement
operation, A is original code, A∗ is the complement of the
A. TheA = ⟨a𝑛−1, . . . , a0⟩ represents ciphertext vector ofA.
Let a𝑖 = 𝐸𝑛𝑐(a𝑖), 0 ≤ 𝑖 ≤ 𝑛 − 1. The A∗ = ⟨a∗𝑛−1, . . . , a∗0 ⟩
represents ciphertext vector of A∗, a∗𝑖 = 𝐸𝑛𝑐(a∗𝑖), 0 ≤ 𝑖 ≤𝑛 − 1. The V represents the ciphertext vector of B, b𝑖 =𝐸𝑛𝑐(b𝑖), 0 ≤ 𝑖 ≤ 𝑛 − 1. The B∗ = ⟨b∗𝑛−1, . . . , b∗0 ⟩ represents
ciphertext vector of B∗, b∗𝑖 = 𝐸𝑛𝑐(b∗𝑖), 0 ≤ 𝑖 ≤ 𝑛 − 1. The
A,V,A∗, andB∗ are inputs of homomorphic evaluation of
the integer arithmetic operations. The 𝑛 is big enough. We
do not consider the overflow about integer arithmetic opera-
tions.

3.1. Homomorphic Evaluation of the Complement Operations.
Fixed-point number use the complement to finish arithmetic
operations. The rules of converting original code into com-
plement:

(i) Positive number: a positive complement and the same
original code.

(ii) Negative number: negative complement is the symbol
for the numerical bit reverse and then at the bottom
(LSB) plus 1.

Given the original code A, apply the XOR and AND to get
complement A∗. The MSB a𝑛−1 is the signed bit of A, and
the size of the remaining bitsa𝑛−2 ⋅ ⋅ ⋅a0 represent the value.

6 Wireless Communications and Mobile Computing

Given an initialised carry c−1 = 0, we output theA∗. The BP
of complement:

c−1 = 0
c𝑖 = a𝑖 ∨ c𝑖−1

a
∗
𝑖 = (a𝑖 ⊕ a𝑛c𝑖−1)

0 ≤ 𝑖 ≤ 𝑛 − 2
(2)

We convertc𝑖 into aBP by usingXORgate andANDgate.The
BP:c𝑖 = a𝑖c𝑖−1 ⊕a𝑖 ⊕c𝑖−1, 0 ≤ 𝑖 ≤ 𝑛 − 2. Due to initialised
carry c−1 = 0, we can convert c𝑖 into a polynomial without
c−1:

c𝑖 = 𝑖+1∑
𝑘=1

∑
|S|=𝑖+1

∏
𝑗∈𝑆

a𝑗 mod 2 (3)

where S = {a𝑖, ⋅ ⋅ ⋅a0}, 0 ≤ 𝑖 ≤ 𝑛 − 3, |S| is the Hamming
weight of the S. We can convert above polynomials into
HP of complement by using addition and multiplication on
ciphertexts. The HP of complement:

c𝑖 = (𝑖+1∑
𝑘=1

∑
|S|=𝑖+1

∏
𝑗∈𝑆

a𝑗) mod 𝑥0
a
∗
𝑖 = (a𝑖 + a

∗
𝑛 ∙ c𝑖−1) mod 𝑥0

0 ≤ 𝑖 ≤ 𝑛 − 2
(4)

where c𝑖 represents the ciphertext result of c𝑖, and 𝐷𝑒𝑐(c𝑖) =
c𝑖. Let a

∗
𝑛−1 = a𝑛−1. The 𝑥0 is the largest odd public key in

FHE. We can get ciphertext complement A∗ by using above
HP.

3.2. Homomorphic Evaluation of the Addition and Subtraction
Operations. Integer complement addition operation needs to
calculate results in order from low to high. Every result bit
requires an addend bit, an augend bit, and a carry bit from
the low. Every carry bit requires an addend bit, an augend bit,
and a carry bit from low aswell. By iterating above operations,
we can get the result of complement addition. We set integer
complement A and B as inputs to calculate S = A + B,
where S = s𝑛−1 ⋅ ⋅ ⋅ s0. The 𝑛 is big enough. We do not
consider the overflow of the S. The BP of addition:

c−1 = 0
s𝑖 = a𝑖 ⊕ b𝑖 ⊕ c𝑖−1

c𝑖 = a𝑖b𝑖 ⊕ c𝑖−1 (a𝑖 ⊕ b𝑖)
0 ≤ 𝑖 ≤ 𝑛 − 1

(5)

We can convert above BP into HP of addition by using addi-
tion and multiplication on ciphertexts. The HP of addition:

c−1 = 𝐸𝑛𝑐 (0)
s𝑖 = (a𝑖 + b𝑖 + c𝑖−1) mod 𝑥0
c𝑖 = (a𝑖b𝑖 + c𝑖−1a𝑖 + c𝑖−1b𝑖) mod 𝑥0

0 ≤ 𝑖 ≤ 𝑛 − 1
(6)

where the s𝑖 is 𝑖-th ciphertext of result vector S =⟨s𝑛−1, ⋅ ⋅ ⋅ s0⟩, and 𝐷𝑒𝑐(A) + 𝐷𝑒𝑐(B) = 𝐷𝑒𝑐(S).
The addition operation can do integer subtraction oper-

ation. If we calculate A − B, we can convert B to B∗, and
calculateA+B∗ by using integer addition operation. In order
to get B∗, we need to use the complement operation to get
B󸀠 = b󸀠𝑛−1 ⋅ ⋅ ⋅b󸀠0, and then let b∗𝑛−1 = b󸀠𝑛−1 ⊕ 1, b∗𝑖 = b󸀠𝑖 , 0 ≤𝑖 ≤ 𝑛−2.TheHP of subtraction contains two parts, including
HP of complement and HP of addition.

3.3. Homomorphic Evaluation of the Multiplication Opera-
tions. Integer multiplication operation is based on Booth’s
multiplication algorithm [36]. It is a multiplication algorithm
that multiplies two signed numbers in two’s complement
notation. We set multiplicand A, and multiplier B. Booth’s
algorithm examines adjacent pairs of bits of the multiplier
B in signed two’s complement representation, including an
implicit bit below the least significant bit, b−1 = 0. Also, we
denote byP the product accumulator. The steps of the basic
algorithm for multiplication operations:

(1) We reinitialise the value ofA,A∗, andP.

(i) A:A = A ≪ 𝑛, arithmetic left shift (𝑛 + 1) bits.
A = a𝑛a𝑛−1 ⋅ ⋅ ⋅a00 ⋅ ⋅ ⋅ 0.

(ii) A∗: A∗ = A∗ ≪ 𝑛, arithmetic left shift (𝑛 + 1)
bits.A∗ = a∗𝑛−1 ⋅ ⋅ ⋅a∗00 ⋅ ⋅ ⋅ 0.

(iii) P: fill the most significant 𝑛 bits with 0. To the
right of this, append the value ofB. Fill the LSB
with a 0.P = 0 ⋅ ⋅ ⋅ 0b𝑛−1 ⋅ ⋅ ⋅b00.

(2) Determine the two least significant (rightmost) bits of
P.

(i) If b−1 = b0, do nothing. Use P directly in the
next step. Arithmetic right shift 1 bit.

(ii) If b0b−1 = 01, find the value of P = P + A.
Ignore any overflow. Arithmetic right shift 1 bit.

(iii) If b0b−1 = 10, find the value of P = P + A∗.
Ignore any overflow. Arithmetic right shift 1 bit.

Repeat above second steps until they have been done 𝑛 − 1
times. Drop the LSB from P. According to second steps
mentioned technique, we can summarise a judgment choice
Boolean polynomial (JCBP):

JCBP𝑚𝑢𝑙𝑡 (b0,b−1,A∗,A)
= (b0 ⊕ b−1) [b0A∗ + b−1A] (7)

We useP𝑖 to represent 𝑖-th times iteration. The BP of multi-
plication operation:

P𝑖 = P𝑖−1 + JCBP𝑚𝑢𝑙𝑡 (b0,b−1,A∗,A)
P𝑖 = P𝑖−1 ≫ 1

0 ≤ 𝑖 < 𝑛 − 1
(8)

Wireless Communications and Mobile Computing 7

where≫ represent the arithmetic right shift. We can convert
formula (7) into HP of addition by using addition and multi-
plication on ciphertexts.TheHP of JCBP𝑚𝑢𝑙𝑡(b0,b−1,A∗,A):

JCHP𝑚𝑢𝑙𝑡,𝑥0,𝜌󸀠 (b0, b−1,A∗,A, 𝑟, 𝑠𝑤𝑖𝑡𝑐ℎ (⊕, ∧))
= [(b0+b−1) (b0A∗ + b−1A) + 2𝑟] mod 𝑥0 (9)

The A and A∗ represent ciphertext vector of reinitialising
A and A∗. The 𝑟 = ⟨𝑟0, . . . , 𝑟𝑛−1⟩ is a noise vector, and𝑟𝑖 ←󳨀 Z ∩ (−2𝜌󸀠 , 2𝜌󸀠), 0 ≤ 𝑖 ≤ 𝑛 − 1. The HP of multiplica-
tion:

P𝑖

= P𝑖−1

+ JCHP𝑚𝑢𝑙𝑡,𝑥0,𝜌󸀠 (b0, b−1,A∗,A, 𝑟, 𝑠𝑤𝑖𝑡𝑐ℎ (⊕, ∧))
P𝑖 = P𝑖−1 ∼≫ 1

0 ≤ 𝑖 < 𝑛 − 1

(10)

where ∼≫ represent the right shift of ciphertext vectorP𝑛−1.
When the right shift of P𝑛−1 by 1 ciphertext slot, the most
significant component of P𝑛−1 is filled with a copy of the
original most significant component. The final value ofP𝑛−1
is the signed ciphertext product.

3.4. Homomorphic Evaluation of the Division Operation.
Division is the most complex of the basic arithmetic opera-
tions. For a simple computer that operate with an adder cir-
cuit for its arithmetic operations, a variant using traditional
long division, called nonrestoring division, provides a simpler
and faster speed. This method only needs one decision and
addition/subtraction per quotient bit, and need not restoring
step after the subtraction. We set dividend A and divisor
B. The B∗ is two’s complement of B. The R is the partial
remainder, and the Q is quotient. The basic algorithm for
binary (radix 2) nonrestoring division is as follows:

(1) Reinitialize value ofB,B∗,R, and Q.

(i) B: B = B ≫ 𝑛, do arithmetic left shift 𝑛 bits.
B = b𝑛−1 ⋅ ⋅ ⋅b00 ⋅ ⋅ ⋅ 0.

(ii) B∗: B∗ = B∗ ≫ 𝑛, do arithmetic left shift 𝑛
bits.B∗ = b∗𝑛−1 ⋅ ⋅ ⋅b∗00 ⋅ ⋅ ⋅ 0.

(iii) R:R = A ≫ 𝑛, do arithmetic right shift 𝑛 bits.
R = r2𝑛−1 ⋅ ⋅ ⋅r0.

(iv) Q: Q = q𝑛−1 ⋅ ⋅ ⋅q0, fill it 𝑛 bits with 0.

(2) Determine the one most significant (a signed bit) bit
ofR.

(i) If r2𝑛−1 = 0, fill the LSB of Q with 1 digit, do
logical left shift 1 bit. Find the value ofR = 2 ∗
R +B∗.

(ii) If r2𝑛−1 = 1, fill the LSB of Q with 0 digit, do
logical left shift 1 bit. Find the value ofR = 2 ∗
R +B.

(3) Repeat above second steps until they have been done𝑛 − 1 times.
(4) Convert the quotient Q. We suppose original Q =11101010.

(i) Start: Q = 11101010.
(ii) Mask the zero term (Signed binary notation

with one’s complement): Q = 00010101.
(iii) Subtract Q = Q − Q: Q = 11010101.

(5) The actual remainder is R = R ≫ 𝑛. Final result
of quotient is always odd, and the remainder R is
in the range −B < R < B. To convert to a
positive remainder, do a single restoring step afterQ is
converted from a nonstandard form to standard form.
IfR < 0, find the value ofQ = Q−1 andR = R+B.

According to the second step mentioned technique, we can
summarise a judgment choice Boolean polynomial (JCBP):

JCBP𝑑𝑖V (r2𝑛−1,B,B∗) = r2𝑛−1B + (r2𝑛−1 ⊕ 1)B∗ (11)

We useR𝑖 to represent 𝑖-th times iteration.TheBPof division
operation:

R𝑖 = 2R𝑖−1 + JCBP𝑑𝑖V (r2𝑛−1,B,B∗)
0 ≤ 𝑖 < 𝑛 − 1

q𝑛−1−𝑖 = r𝑖,2𝑛−1 ⊕ 1 0 ≤ 𝑖 < 𝑛 − 1
Q = Q − Q

R𝑛−1 = R𝑛−1 ≫ 𝑛

(12)

where r𝑖,2𝑛−1 represent the MSB ofR𝑖. Finally, doing the fifth
step correctsQ andR𝑛−1.We can convert aboveBP intoHPof
addition by using addition and multiplication on ciphertexts.
The HP of JCBP𝑑𝑖V(r2𝑛−1,B,B∗):

JCBP𝑑𝑖V,,𝑥0 ,𝜌󸀠 (r2𝑛−1,B∗,V, 𝑟, 𝑠𝑤𝑖𝑡𝑐ℎ (⊕, ∧))
= [r2𝑛−1V + (r2𝑛−1 + 𝐸𝑛𝑐 (1))V + 2𝑟] mod 𝑥0 (13)

whereV andB∗ represent ciphertext vector of reinitialising
B andB∗, respectively. The HP of division:

R𝑖

= 2R𝑖−1
+ JCBP𝑑𝑖V,,𝑥0 ,𝜌󸀠 (r2𝑛−1,B∗,V, 𝑟, 𝑠𝑤𝑖𝑡𝑐ℎ (⊕,∧))

0 ≤ 𝑖 < 𝑛 − 1
q𝑛−1−𝑖 = (r𝑖,2𝑛−1 + 𝐸𝑛𝑐 (1)) mod 𝑥0 0 ≤ 𝑖 < 𝑛 − 1
Q = Q −Q

R𝑛−1 = R𝑛−1 ∼≫ 𝑛

(14)

where R𝑖 = ⟨r𝑖,2𝑛−1, ⋅ ⋅ ⋅ r𝑖,0⟩ represents ciphertext vector of
R𝑖 andQ=⟨q𝑛−1 ⋅ ⋅ ⋅ q0⟩ represents ciphertext vector of Q.Q

8 Wireless Communications and Mobile Computing

represent q𝑖 = (q𝑖 + 𝐸𝑛𝑐(1)) mod 𝑥0, 0 ≤ 𝑖 < 𝑛. Finally, we
need to correctQ andR𝑛−1 by the following operations:

Q = [r𝑛−1,𝑛−1 (Q − 𝐸𝑛𝑐 (1))] mod 𝑥0
R = [r𝑛−1,𝑛−1 (R𝑛−1 +V)] mod 𝑥0 (15)

The final value ofQ andR is the result of HP of division.

4. Noise Analysis and Optimization

In Section 3, we describe the homomorphic evaluation of
the integer arithmetic operations including complement,
addition, subtraction, multiplication, and division. In this
section, we will analyse the noise ceiling and optimisation
for our scheme. Under the DGHV scheme, the noise ceiling
increases exponentially with the multiplicative degree. When
ciphertexts have noise at most 2𝜂−2 < 𝑝/2, the ciphertexts
cannot be decrypted correctly. Therefore, we need bootstrap-
ping to control noise of ciphertexts, but using bootstrapping
to refresh ciphertext will reduce the efficiency of DGHV.
We will show the noise ceiling about the homomorphic
evaluation of the integer arithmetic operations in this section.
Moreover, we will describe an optimisation for the process of
integer arithmetic operations to reduce time overhead in FHE
with bootstrapping.

4.1. Noise Analysis of Our Scheme. According to Section 3, we
show the noise ceiling and items of homomorphic evaluation
of the 𝑛 bits signed integer arithmetic operations. We denote
by HE-IAO the homomorphic evaluation of the integer
arithmetic operations and use HE-com, HE-add, HE-sub,
HE-mul, HE-div to represent five operations of HE-IAO.The
details are shown in Table 2.

Proof. According to homomorphic evaluation of the comple-
ment operations formula (3),

c𝑖 = 𝑖+1∑
𝑘=1

∑
|S|=𝑖+1

∏
𝑗∈𝑆

a𝑗 mod 2, 0 ≤ 𝑖 ≤ 𝑛 − 2 (16)

∑|S|=𝑖∏𝑗∈𝑆a𝑗 has (𝑛−2𝑖+1) terms, and degree amounts to 𝑖 + 1.
According to binomial theorem, the term of formula (3) can
be represented as (1+𝑥)𝑛−2−1 = ∑𝑛−2𝑖=0 (𝑛−2𝑖) 𝑥𝑖−1, when𝑥 = 1.
Therefore, the polynomial c𝑖 of term is up to 2𝑛−2 − 1, and
degree amounts to 𝑛 − 2. Because ofa∗𝑖 = (a𝑖 ⊕a𝑛c𝑖−1) 0 ≤𝑖 ≤ 𝑛 − 1, a∗𝑖 of term amounts to 2𝑛−2, and degree amounts
to 𝑛 − 1.

According to homomorphic evaluation of the addition
operations formula (5), the degree of carry formula c𝑖 =
a𝑖b𝑖 ⊕ c𝑖−1(a𝑖 ⊕ b𝑖) is higher 1 than c𝑖−1, and the term of c𝑖
is higher 2 ∗ 𝑡𝑒𝑟𝑚(c𝑖−1) + 1 than c𝑖−1, where 𝑡𝑒𝑟𝑚(c𝑖−1) rep-
resents the term of c𝑖−1. The degree of c0 = a0b0 amounts
to 2, and the term of c0 = a0b0 amounts to 1. The degree of
c𝑛−2 amounts to 𝑛, and terms of c𝑛−2 amount to 2𝑛−1 −1.The
MSB ofSs𝑛−1 = a𝑛−1 ⊕ b𝑛−1 ⊕c𝑛−2 where the degree of s𝑛−1
amounts to 𝑛, and the term of s𝑛−1 amounts to 2𝑛−1 + 1. If
we do not consider complement operation, subtraction and

Table 2: The degree ceiling and items of homomorphic evaluation
of the 𝑛 bits signed integer arithmetic operations. Above showing the
HPof integer arithmetic operations 𝑛-th iterations ciphertext results’
degree and term.

HE-IAO degree term
HE-com 𝑛 − 1 2𝑛−2
HE-add 𝑛 2𝑛−1 + 1
HE-sub 𝑛 2𝑛−1 + 1
HE-mul 𝜓 ∙ 22𝑛−4 −
HE-div 𝜑 ∙ 22𝑛−4 −
Table 3: The noise ceiling of homomorphic evaluation of the 𝑛 bits
signed integer arithmetic operations. The base of the log is 2.

HE-IAO noise ceiling
HE-com 𝜌󸀠 log(𝑛−1) + log 2𝑛−3
HE-add 𝜌󸀠 log(𝑛) + log (2𝑛−1 + 1)
HE-sub 𝜌󸀠 log(𝑛) + log (2𝑛−1 + 1)
HE-mul 𝜌󸀠 log𝜓∙22𝑛−4 + −
HE-div 𝜌󸀠 log𝜑∙22𝑛−4 + −

addition have the same process. Therefore, the degree and
term are the same as the addition. Multiplication and division
require iteration 𝑛 − 1 times addition and shift. The processes
of multiplication and division are particularly complicated,
we can’t find the formula to express the degree. According to
our calculations, the degree of multiplication and division is
close to the 2 to the power of 2𝑛 − 4. Therefore, the degree of
multiplication is not more than 𝜓 ∙ 22𝑛−4, and the degree of
division is not more than 𝜑∙22𝑛−4.The term of multiplication
and division is too high, and the degree has made noise more
than the limitation of correct decryption.

We can conclude (see Table 2) the degree of homomor-
phic evaluation of addition and subtraction is Õ(𝑛), and the
depth of the homomorphic evaluation of multiplication and
division is Õ(𝜓 ∙ 22𝑛−4). We use items that represent the 𝑙1
norm of HP (the coefficient vector of HP). The noise ceiling
of homomorphic evaluation of the 𝑛 bits integer arithmetic
operations can be calculated by the following polynomi-
al:

𝑁𝑜𝑖𝑠𝑒 = 𝜌󸀠log 𝑑 + log
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝑓

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (17)

where 𝑑 represents the degree of HP and log 𝑑 represents
multiplication level of HP. |󳨀→𝑓| is the 𝑙1 norm of HP. 𝜌󸀠 is
the noise of length in every ciphertext. The noise ceiling
of homomorphic evaluation of the 𝑛 bits integer arithmetic
operations is shown in Table 3.

We can conclude (see Table 3) the noise of homomorphic
evaluation of the 𝑛 bits signed integer arithmetic operations.
The noise increases very rapidly. In the homomorphic eval-
uation of the complement, addition, and subtraction, noise
increases up to Õ(𝜌󸀠𝑛). In the homomorphic evaluation of the
multiplication and division, noise ismore than Õ(𝜌󸀠𝜓∙22𝑛−4).

Wireless Communications and Mobile Computing 9

1 1 1 1 1 1

3 3 3 3 3 3

33L-233L-233L-2

3L+11 recrypt
3L+1recrypt1

r
shift

33L-233L-233L-21

1 1 1 1 1 11

recrypt recrypt recrypt recrypt recrypt recrypt

Figure 2: The optimised addition operations; each colour block represents same position subvectors ofP
𝑖
andF, the length of each colour

block is L, “r shift” represents ciphertext vector right shift one position, “recrypt” represents ciphertext refresh. This figure shows the degree
change of each component ofP

𝑖
andF.

4.2. Optimization of Our Scheme. From the analysis of noise
ceiling in Section 4.1, we need to control the noise increases
by using ciphertext refresh, or modulus-switching technique
in each multiplication level of homomorphic evaluation of
the 𝑛 bits signed integer arithmetic operations. However,
the ciphertext refresh or modulus-switching technique will
reduce our scheme efficiency. Therefore, we will describe an
optimisation for our scheme in this section. The optimisation
can reduce the number of ciphertext refresh and improve
efficiency.

Because the integer arithmetic operation is completed
based on the addition operation, we optimise the homo-
morphic evaluation of the integer addition. We divide the
ciphertext vector of integer encryption into subvectors of
length L. The homomorphic evaluation of arithmetic oper-
ations between the subvectors in the same position do not
need ciphertext refresh, and the subvectors in different posi-
tions need to refresh ciphertext-carry once. Therefore, the
optimised scheme need not ciphertext refresh in each multi-
plication level and reduces the number of ciphertext refresh.
We take addition operations of the product accumulator to
explain our optimisation. In the homomorphic evaluation
of the multiplication operations, the product accumulator
P𝑖 is as formula (9). The formula (9) is a polynomial of
degree three, and P𝑖 is a ciphertext vector of degree one.
We denote by F vector of JCHP𝑚𝑢𝑙𝑡,𝑥0,𝜌󸀠 . We divide the
ciphertext vector of P𝑖 and F into ciphertext subvectors
of length L. The ciphertext operations of subvectors of the
same position are the same as homomorphic evaluation of
the addition operations (without ciphertext refresh). The
ciphertext operations of subvectors of different position need
to refresh ciphertext-carry once (see Figure 2).

The subvectors of P𝑖 and F generate ciphertext-result
block and ciphertext-carry. In every ciphertext-result block,
the maximum degree is 3L − 2 (leftmost), and the minimum
degree is 3 (rightmost). The ciphertext-carry degree is 3L +1 in each subvector of the different position. Each cipher-
text of ciphertext-result block and ciphertext-carry can use

ciphertext refresh (recrypt) to reduce degree up to one. The
number of ciphertext refresh of once product accumulator(P𝑖 +F) for ciphertext-carry:

(i) If 𝑛 is divisible by L, it will generate 𝑛/L−1 ciphertext-
carry, and the number of ciphertext refresh is 𝑐𝑛𝑡 =𝑛/L − 1 times.

(ii) If 𝑛 is inalienable by L, it will generate ⌊𝑛/L⌋
ciphertext-carry, and the number of ciphertext refresh
is 𝑐𝑛𝑡 = ⌊𝑛/L⌋ times.

Homomorphic evaluation of the multiplication operations
needs 𝑛−1 times product accumulator, and whole operations
need (𝑛−1)∙𝑐𝑛𝑡 times ciphertext refresh for ciphertext-carry,
and (𝑛 − 1) ∙ 𝑛 times ciphertext refresh for ciphertext-result
block. Total times of ciphertext refresh for homomorphic
evaluation of the multiplication operations:

𝐶𝑁𝑇 = (𝑛 − 1) ∙ 𝑛 + (𝑛 − 1) ∙ 𝑐𝑛𝑡 (18)

In the original homomorphic evaluation of the multi-
plication operations, every multiplication level needs once
ciphertext refresh. Whole operations need (𝑛 − 1)(3𝑛 − 3) +𝑛(𝑛 − 1) + 2𝑛 − 3 times ciphertext refresh. We apply above
optimisation to the homomorphic evaluation of the com-
plement, addition, subtraction, multiplication, and division
operations, and set 𝑛 = 16, L = 1, 2, 3, 4.We show the number
of ciphertext refresh of the original scheme (L = 0) and an
optimised scheme (L = 1, 2, 3, 4) as Table 4.

In order to implement our optimisation, we need to adjust
the parameters of homomorphic encryption and make FHE
support the log(3L+1)multiplication level additional, except
for the 15-multiplication level required by bootstrapping.
Therefore, we reset the length of the private key: 𝜂 ≥ 𝜌󸀠 ∙Θ(𝜆log2𝜆) + 𝜌󸀠 ∙ 2log(3L+1) + log(2L−1 + 1). We set security
parameter 𝜆 = 52, the length of noise 𝜌󸀠 = 24, and 𝜃 = 15,Θ = 500. Parameters are set as Table 5.

10 Wireless Communications and Mobile Computing

Table 4: The number of ciphertext refresh of homomorphic evaluation of the integer arithmetic operations.

HE-IAO L = 0 L = 1 L = 2 L = 3 L = 4
HE-com 29 29 22 20 18
HE-add 45 31 23 21 19
HE-sub 74 60 45 41 37
HE-mul 944 494 367 335 303
HE-div 1095 585 437 397 359

Table 5: Concrete parameters, based on the “small” parameters of CMNT scheme, and reset the length of public key 𝜂 and 𝛾. Fixed 𝜆, 𝜌󸀠 and
the number of public keys 𝜏, only changed 𝜂 and 𝛾 according to L.

parameters 𝜆 𝜌󸀠 𝜂 𝛾 𝜏
L = 0 52 24 1632 2.0 ∙ 106 1000
L = 1 52 24 1728 2.5 ∙ 106 1000
L = 2 52 24 1801 3.0 ∙ 106 1000
L = 3 52 24 1874 3.5 ∙ 106 1000
L = 4 52 24 1993 4.2 ∙ 106 1000

5. Experimental Result

Our optimisations described in our scheme were incorpo-
rated in our code, which is built on top of GnuMP. We tested
our implementation on a desktop computer with Intel Core
i5-3470 running at 3.2 GHz, on which we run an Ubuntu
18.04 with 8 GB of RAM and with the gcc compiler version
6.2. We regard this desktop computer as an edge data centre
to test our scheme efficiency in edge computing. We choose
the ciphertext vector of 16 and 8 bits signed integer as input.
Due to our optimisations for the FHE with bootstrapping,
we test our original scheme (L = 0) and optimised scheme
(L = 1, 2, 3, 4) in DGHV and CMNT scheme (see Figures
3(a), 3(b), 3(c), 3(d), and 3(e)). In CNT scheme, we only
use modulus-switching technique to control noise. So, we
test the original scheme in CNT scheme (see Figures 4(a)
and 4(b)). In our figures, “HE-com (CMNT 16)” represent
the homomorphic evaluation of the complement operations
and calculate the ciphertext vector of 16 bits signed integer
in the CMNT scheme. “HE-com (DGHV 8)” represent the
homomorphic evaluation of the complement operations and
calculate the ciphertext vector of 8 bits signed integer in
DGHV scheme.The explanation of other legends is the same
as above. We show the following experimental results based
on the Section 4.2 parameter settings.

We can conclude (see Figures 3(b), 3(c), 3(d), and 3(e))
that L = 2 is best parameters setting for homomorphic
evaluation of the addition, subtraction, multiplication, and
division. However, the time overhead of homomorphic eval-
uation of the complement operations is monotone increasing
at L (see Figure 3(a)). When L = 0, the time overhead is the
absolute minimum. When L = 0 and L = 1, the number of
ciphertext refresh is the same.Also, the degree of complement
operations is 2𝑛 − 3. When 𝑛 = 16, the degree is 29 in
L = 0. It is the same as L = 1. The reduced time overhead
of the optimised complement operations cannot offset the
computation cost caused by the increase in ciphertext length.
However, the relative minimum value appears at L = 2

(see Figures 3(a), 3(b), 3(c), 3(d), and 3(e)). It shows that
our optimisation is useful and can reduce the time overhead
for our scheme, except homomorphic evaluation of the
complement operations. Namely, we divide the ciphertext
vector of integer encryption into subvectors of length 2 and
make DGHV and CMNT scheme to support the log(3 ∙ 2 +1) ≈ 3 multiplication level additional. The optimisation of
our scheme can achieve the best results. In the number of
ciphertext refreshes, the optimised scheme is reduced by 2/3
compared to the original scheme over DGHV and CMNT,
and the homomorphic evaluation time overhead of integer
arithmetic operation is reduced by 1/3.

The DGHV and CMNT schemes are different with CNT
scheme in noise management technology. The DGHV and
CMNT schemes use bootstrapping to control noise, and
the CNT scheme uses the modulus switching technology to
control noise. Our optimization is used for homomorphic
evaluation of integer arithmetic operations which are imple-
mented byDGHVandCMNTschemes (with bootstrapping),
rather than by CNT scheme (modulus-switching).Therefore,
we just compare the beat result (L = 2) of our scheme based
on DGHV and CMNT schemes with CNT scheme (L = 0).
We can draw a conclusion (see Figures 4(a) and 4(b)) that
the time overhead of our optimised scheme based on DGHV
and CMNT schemes (bootstrapping) with L = 2 close to the
time overhead of basing on CNT (modulus-switching) with
L = 0. It also shows that our optimisation is effective. And our
optimized scheme can be applied to mobile edge computing
to solve privacy data computing problems in ciphertext.

6. Conclusion

We implement the homomorphic evaluation scheme of
integer arithmetic operations under DGHV and its variants
in edge computing. We use the features of homomorphic
encryption to prevent sensitive data from being stolen in
edge computing. At the same time, we can also calculate
ciphertext data in edge computing and improve the QoS

Wireless Communications and Mobile Computing 11

HE-com(CMNT 16)
HE-com(DGHV 16)

HE-com(CMNT 8)
HE-com(DGHV 8)

200

300

400

500

600

700

800

Ti
m

e (
s)

30 1 42
L (subvector length)

(a)

HE-add(CMNT 16)
HE-add(DGHV 16)

HE-add(CMNT 8)
HE-add(DGHV 8)

30 1 2 4
L (subvector length)

200

300

400

500

600

700

800

900

Ti
m

e (
s)

(b)

400

600

800

1000

1200

1400

1600

1800

Ti
m

e (
s)

30 1 2 4
L (subvector length)

HE-sub(CMNT 16)
HE-sub(DGHV 16)

HE-sub(CMNT 8)
HE-sub(DGHV 8)

(c)

HE-mul(CMNT 16)
HE-mul(DGHV 16)

HE-mul(CMNT 8)
HE-mul(DGHV 8)

30 1 2 4
L (subvector length)

2000

4000

6000

8000

10000

12000

14000

16000

Ti
m

e (
s)

(d)

HE-div(CMNT 16)
HE-div(DGHV 16)

HE-div(CMNT 8)
HE-div(DGHV 8)

30 1 2 4
L (subvector length)

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Ti
m

e (
s)

×10
4

(e)

Figure 3: Tested (a) HE-com, (b) HE-add, (c) HE-sub, (d) HE-mul, (e) HE-div CPU time.

of edge computing. Through scheme design, noise analysis,
scheme optimisation, and experimental comparison, the
different performance of homomorphic evaluation of the
integer arithmetic operations is obtained under different FHE
schemes. Although we optimise our scheme in Section 4.2,

the time overhead of our scheme is still high. The primary
open problem is to improve the efficiency of the FHE scheme.
This requires us to work together to find a natural FHE
scheme or to continue to optimise the FHE architecture to
achieve more efficient noise management techniques.

12 Wireless Communications and Mobile Computing

3500

3000

2500

2000

1500

1000

500

0

Ti
m

e (
s)

DGHV(8)
CMNT(8)
CNT(8)

DGHV and CMNT:L=2,CNT:L=0
HE-divHE-mulHE-subHE-addHE-com

(a)

Ti
m

e (
s)

DGHV(16)
CMNT(16)
CNT(16)

DGHV and CMNT:L=2,CNT:L=0
HE-divHE-mulHE-subHE-addHE-com

12000

10000

8000

6000

4000

2000

0

(b)

Figure 4: (a) Tested HE-IAO CPU time of ciphertext vector of length 8. (b) Tested HE-IAO CPU time of ciphertext vector of length 16.

Data Availability

The data and code used to support the findings of this
study have been deposited in the GitHub repository (https://
github.com/limengfei1187/Homomorphic-Encryption.git).

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work is partly supported by the National Science
Foundation of China (61701322), the Key Projects of Liaoning
Natural Science Foundation (20170540700), and the Liaoning
Provincial Department of Education Science Foundation
(L201630).

References

[1] L. He, O. Kaoru, and D. Mianxiong, “ECCN: Orchestration of
Edge-Centric Computing and Content-Centric Networking in
the 5G Radio Access Network,” IEEEWireless Commun, vol. 25,
no. 3, pp. 88–93, 2018.

[2] M. Tao, K. Ota, andM.Dong, “Foud: Integrating Fog andCloud
for 5G-EnabledV2GNetworks,” IEEENetwork, vol. 31, no. 2, pp.
8–13, 2017.

[3] J. Xu, K. Ota, and M. Dong, “Real-Time Awareness Scheduling
for Multimedia Big Data Oriented In-Memory Computing,”
IEEE Internet of Things Journal, 2018.

[4] P. G. Lopez, A. Montresor, D. Epema et al., “Edge-centric
computing: vision and challenges,” Computer Communication
Review, vol. 45, no. 5, pp. 37–42, 2015.

[5] Z. Zhou,M. Dong, K. Ota, J.Wu, and T. Sato, “Energy efficiency
and spectral efficiency tradeoff in device-to-device (D2D)
communications,” IEEE Wireless Communications Letters, vol.
3, no. 5, pp. 485–488, 2014.

[6] A. Y. Al-Dubai, L. Zhao, A. Y. Zomaya, andG.Min, “QoS-Aware
Inter-DomainMulticast for Scalable Wireless Community Net-
works,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 11, pp. 3136–3148, 2015.

[7] L. Zhao, A. Al-Dubai, X. Li, andG. Chen, “A new efficient cross-
layer relay node selectionmodel forWireless CommunityMesh
Networks,” Computers Electrical Engineering, vol. 61, pp. 361–
372, 2017.

[8] G. Han, J. Jiang, C. Zhang, T. Q. Duong, M. Guizani, and G.
K. Karagiannidis, “A Survey on Mobile Anchor Node Assisted
Localization in Wireless Sensor Networks,” IEEE Communica-
tions Surveys & Tutorials, vol. 18, no. 3, pp. 2220–2243, 2016.

[9] L. Zhao et al., “Vehicular Communications: Standardization
and Open Issues,” IEEE Communications Standards Magazine,
2019.

[10] H. Li, K. Ota, and M. Dong, “Learning IoT in edge: deep
learning for the internet of things with edge computing,” IEEE
Network, vol. 32, no. 1, pp. 96–101, 2018.

[11] X. Tao, K.Ota,M.Dong,H.Qi, andK. Li, “Performance guaran-
teed computation offloading formobile-edge cloud computing,”
IEEEWireless Communications Letters, vol. 6, no. 6, pp. 774–777,
2017.

[12] C.Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proceedings of the 41st annual ACM symposium on Theory of
Computing (STOC ’09), pp. 169–178, ACM, Bethesda, Md, USA,
2009.

[13] S. Halevi, “Homomorphic Encryption,” in Tutorials on the
Foundations of Cryptography, Information Security and Cryp-
tography, pp. 219–276, Springer International Publishing,
Cham, 2017.

[14] M. vanDijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Advances in
cryptology—EUROCRYPT 2010, vol. 6110, pp. 24–43, Springer,
Berlin, Germany, 2010.

[15] C. Gentry and S. Halevi, “Implementing Gentry’s fully—
homomorphic encryption scheme,” inAdvances in cryptology—
EUROCRYPT 2011, vol. 6632 of Lecture Notes in Computer
Science, pp. 129–148, Springer, Heidelberg, Germany, 2011.

[16] N. P. Smart andF.Vercauteren, “Fully homomorphic encryption
with relatively small key and ciphertext sizes,” Lecture Notes in

https://github.com/limengfei1187/Homomorphic-Encryption.git
https://github.com/limengfei1187/Homomorphic-Encryption.git

Wireless Communications and Mobile Computing 13

Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics): Preface, vol.
6056, pp. 420–443, 2010.

[17] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully
homomorphic encryption over the integers with shorter public
keys,” in Proceedings of the 31st Annual International Cryptology
Conference (CRYPTO ’11), vol. 6841 ofLectureNotes in Computer
Science, pp. 487–504, Springer, Santa Barbara, Calif, USA.

[18] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomor-
phic encryption from (standard) LWE,” in Proceedings of the
IEEE 52nd Annual Symposium on Foundations of Computer
Science (FOCS ’11), pp. 97–106, Palm Springs, Calif, USA,
October 2011.

[19] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic
encryption from ring-LWE and security for key dependent
messages,” inAdvances in Cryptology—CRYPTO2011, R. Phillip,
Ed., vol. 6841, pp. 505–524, Springer, Berlin, Germany, 2011.

[20] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)
fully homomorphic encryption without bootstrapping,” in Pro-
ceedings of the 3rd Innovations in Theoretical Computer Science
Conference, pp. 309–325, ACM, 2012.

[21] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-
fly multiparty computation on the cloud via multikey fully
homomorphic encryption,” in Proceedings of the 44th Annual
ACM Symposium onTheory of Computing (STOC ’12), pp. 1219–
1234, ACM, May 2012.

[22] J. W. Bos, K. Lauter, J. Loftus, andM. Naehrig, “Improved secu-
rity for a ring-based fully homomorphic encryption scheme,” in
Cryptography and coding, vol. 8308 of Lecture Notes in Comput.
Sci., pp. 45–64, Springer, Heidelberg, 2013.

[23] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptoti-
cally-faster, attribute-based,” Proceedings of CRYPTO 2013, vol.
8042, no. 1, pp. 75–92, 2013.

[24] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evalu-
ation of the AES circuit,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics): Preface, vol. 7417, pp. 850–867,
2012.

[25] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic
encryption with polylog overhead,” inAdvances in cryptology—
EUROCRYPT 2012, vol. 7237 of Lecture Notes in Comput. Sci.,
pp. 465–482, Springer, Heidelberg, 2012.

[26] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD
operations,” Designs, Codes and Cryptography, vol. 71, no. 1, pp.
57–81, 2014.

[27] Y. Chen and G. Gong, “Integer arithmetic over ciphertext
and homomorphic data aggregation,” in Proceedings of the 3rd
IEEE International Conference onCommunications andNetwork
Security, CNS 2015, pp. 628–632, Italy, September 2015.

[28] K. Gai and M. Qiu, “Blend Arithmetic Operations on Tensor-
Based Fully Homomorphic Encryption Over Real Numbers,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp.
3590–3598, 2018.

[29] K. Gai,M.Qiu, Y. Li, andX.-Y. Liu, “Advanced FullyHomomor-
phic Encryption Scheme over Real Numbers,” in Proceedings
of the 4th IEEE International Conference on Cyber Security and
Cloud Computing, CSCloud 2017 and 3rd IEEE International
Conference of Scalable and Smart Cloud, SSC 2017, pp. 64–69,
USA, June 2017.

[30] L. Kuang, L. T. Yang, J. Feng, and M. Dong, “Secure Ten-
sor Decomposition Using Fully Homomorphic Encryption

Scheme,” IEEE Transactions on Cloud Computing, vol. 6, no. 3,
pp. 868–878, 2018.

[31] J.-S. Coron, D. Naccache, and M. Tibouchi, “Public key
compression and modulus switching for fully homomorphic
encryption over the integers,” in Proceedings of the Annual
International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT 2012), vol. 7237 of
Lecture Notes in Comput. Sci., pp. 446–464, Springer.

[32] J. H. Cheon, J. S. Coron, J. Kim et al., “Batch fully homomorphic
encryption over the integers,” in Annual International Confer-
ence on theTheory andApplications of Cryptographic Techniques,
vol. 7881 of Lecture Notes in Computer Science, pp. 315–335,
Springer, Berlin, Germany, 2013.

[33] J.-S. Coron, T. Lepoint, M. Tibouchi, J. H. Cheon, and J.
Kim, “Batch fully homomorphic encryption over the integers,”
in Proceedings of the Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pp. 315–
335, Springer, Berlin, Germany, 2013.

[34] J. Kim, M. S. Lee, A. Yun et al., CRT-based fully homomorphic
encryption over the integers , Cryptology ePrint Archive,
https://eprint.iacr.org//057.pdf.

[35] S. Halevi and V. Shoup, “Algorithms in helib,” in Lecture Notes
in Computer Science, vol. 8616 of Lecture Notes in Comput. Sci.,
pp. 554–571, Springer, Heidelberg, 2014.

[36] A. D. Booth, “A signed binary multiplication technique,” The
Quarterly Journal of Mechanics and Applied Mathematics, vol.
4, pp. 236–240, 1951.

https://eprint.iacr.org//057.pdf

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

