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The proliferation of location-based services, representative services for the mobile networks, has posed a serious threat to users’
privacy. In the literature, several privacy mechanisms have been proposed to preserve location privacy. Location obfuscation
enforced using cloaking region is a widely used technique to achieve location privacy. However, it requires a trusted third-party
(TTP) and cannot sufficiently resist various inference attacks based on background information and thus is vulnerable to location
privacy breach. In this paper, we propose a context-aware location privacy-preserving solution with differential perturbations,
which can enhance the user’s location privacy without requiring a TTP. Our scheme utilizes the modified Hilbert curve to project
every 2-d location of the user in the considered map to 1-d space and randomly generates the reasonable perturbation by adding
Laplace noise via differential privacy. In order to solve the resource limitation of mobile devices, we use a quad-tree based scheme
to transform and store the user context information as bit stream which achieves the high compression ratio and supports efficient
retrieval. Security analysis shows that our proposed scheme can effectively preserve the location privacy. Experimental evaluation
shows that our scheme retrieval accuracy is increased by an average of 15.4% compared with the scheme using standard Hilbert
curve. Our scheme can provide strong privacy guarantees with a bounded accuracy loss while improving retrieval accuracy.

1. Introduction

As the indispensable parts of the communications and net-
works field, the green mobile networks are seen as a potential
enabler to realize green communications and networks by
minimizing energy consumption while guaranteeing the
quality of service [1]. Recently, the rapid development of
green wireless communication technologies and personal
mobile devices equipped with GPS chips enable location-
based services (LBSs) become very popular in almost all
social and business domains. Some potential applications
of LBS include location-aware information retrieval (e.g.,
Around Me), GPS navigator (e.g., TomTom), mapping
application (e.g., Google Maps), and location-aware social
networks (e.g., Foursquare) [2]. With the help of these
applications, users can easily issue LBS queries from their
smartphones to the LBS providers (LSP) and obtain services

related to their current locations. For example, users can
search for their friends, share information with each other,
and provide check-in data by using the Foursquare.

Despite the enormous benefits of LBSs provided to
individual and society, they also raise major privacy concerns
when location information has to leave users’ devices to
untrusted LSP. Location data contained into the LBS queries
can be easily linked to a variety of other information about an
individual and reveal his sensitive private information such
as his home and work address, sexual preferences, political
views, religious inclinations, and health conditions.

To address the privacy issues for mobile users in LBSs, a
variety of privacy-preserving mechanisms and metrics have
been proposed to allow users to make use of the LBSs while
mitigating privacy concerns over the past few years [3–15].
These LBS privacy protection mechanisms (LPPMs) provide
different privacy-utility trade-off, which offer alternatives
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Figure 1: Location privacy as a result of using CR.

to better meet personal requirements of different mobile
users. Roughly speaking, these LPPMs can be divided into
two categories according to their architecture [16]: trusted
anonymization server-based schemes [3, 5, 7, 8, 11, 13]
and mobile devices-based schemes [4, 6, 9, 10, 14, 15]. In
trusted anonymization serve-based schemes, a trusted third-
party server (e.g., anonymizer [3]) is employed to perturb,
obfuscate, and cloak user’s query location by using the notion
of k-anonymity [3]. To achieve k-anonymity, a user issues his
location to LSP via a trusted third-party server (TTP), which
subsequently generates a cloaking regions (CR) that covers
not only this user, but also k-1 other users geographically.
Therefore, it is difficult for the untrusted LSP to distinguish
a user among at least k-1 others. Although such schemes can
indeed strengthen the location privacy of users, they heavily
rely on the TTP, which would easily be a bottleneck due to
handling query requests, frequent updates of user locations,
and result postprocessing. Moreover, since the TTP knows
the complete knowledge of the locations and queries of all
users, it would suffer from a single point of failure. If the
adversary seizes control of it, the privacy of all users will
be compromised. Recent research [7] attempts to solve this
problem by using dynamic grid system, while it requires
changing the system mode of the client-side, TTP, and sever-
side. Furthermore, it incurs the high computation overhead
at client-side. Mobile device-based approaches remove the
requirement of a TTP by using k-anonymity [10, 15], loca-
tion obfuscation and perturbation [4, 6, 9], and private
information retrieval (PIR) [14]. However, PIR may incur
high computation and communication costs unaffordable to
mobile devices and LBS server. The k-anonymity [7, 10, 15]
assumes that the adversary has no side information about the
user [11, 12], such as approximate location, mobility profile,
query frequency, and user profiles. In reality, since some
adversary (e.g., the LSP) may possess such side information,
these methods are inadequate to protect the user’s location

privacy [8]. In Figure 1(a), for example, when approximate
location knowledge (e.g., an area) is available to an adversary,
he can exploit k-anonymous CR to enhance the precision of
location knowledge of multiple users. The CR can therefore
provide additional location knowledge to the adversary,
thereby leading to a location privacy breach. As shown in
Figure 1(b), the problem can be eliminated only if the cloak-
ing regions are guaranteed to encompass the approximated
regions corresponding to each of the k users. Unfortunately,
it is difficult to judge the extent of knowledge that an
adversary possesses. Furthermore, sometime it is difficult to
find enough users in a reasonable CR. Thus, in order to
achieve the desired level of privacy, CR may be unnecessary
expansion. In the worst case, the services for users would
be denied. Local obfuscation and differential perturbation
approaches [4, 6, 9] may be used to protect user’s privacy
against an adversary with such side information, as they
consider the adversary’s knowledge and capability to better
make a trade-off between location privacy and LBS utility.
Further, the differential perturbation [9] abstracts from the
side information of the adversary, which promises strong
theoretical privacy guarantees with a bounded accuracy loss
[17]. Nevertheless, these methods are unlikely suffice for LBS
because they do not take the contextual information, such
as map information, points of interest (POIs) density, the
scale of location, and the user’s privacy requirement into
account. In real scenario, the LBS privacy protection level and
accuracy, achieved by location obfuscation and differential
perturbation approach, depend highly on the contextual
information surround a user. For instance, intuition suggests
that a LBS user should deviate from his query location in
a rural area than in a downtown area in order to achieve
the same privacy level and LBS utility. To the best of our
knowledge, how to design a TTP-free and context-aware
privacy-preserving LBS system suitable for mobile devices is
still challenging.
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In this paper, we propose a context-aware differentially
private location perturbation solution for location privacy-
preserving which operates solely on the devices and does
not require any TTP. Different from existing approaches,
our scheme considers the contextual information around
the user’s location and can prevent privacy breach against
an adversary with some side information. We first use the
modified Hilbert curve (MHC) to transform and store every
2-d geographical location in the considered map to 1-d space
in terms of the contextual information of a user’s location
and then randomly perturb the user’s location, by adding a
controlled amount of noise from a carefully selected Laplace
distribution, according to the desired level of privacy. The
perturbed value is then submitted as the user’s location to the
LSP. To address the resource limitation of mobile devices, we
use quad-tree based scheme to transform and to store users’
context as bit stream. The generated bit stream can achieve a
high compress ratio and support efficient retrieval. Ourmajor
contributions are as follows:(1) We propose a context-aware differentially private
location perturbation scheme that does not require aTTP and
can protect a user’s location privacy against an adversary with
side information.(2) We construct a MHC according to the density dis-
tribution of POIs in the considered local map and design
a differential location perturbation algorithm based on it to
protect user’s location privacy in LBSs. This scheme provides
strong privacy guarantees through the differential privacy.
Due to the dimension reduction property of the modified
Hilbert curve, the system overhead can also be reduced.(3)We provide thorough security analysis and a compre-
hensive set of experiments to demonstrate the effectiveness of
our approach to location privacy-preserving.

The remainder of this paper is organized as follows. In
Section 2, we review the related works. Section 3 introduces
some preliminaries of this paper. Section 4 presents the
details of our proposed schemes. In what follows, we give
the security and performance evaluation in Section 5. Finally,
Section 6 concludes the paper.

2. Related Works

In the last few years, various privacy threats in terms of
sharing location data have been identified in the literature.
For instance, sharing location of a user not only diminishes
his own privacy but also the privacy of others [18]. Even
sharing the locations sporadically can still make adversary
identify the user [19].

To cope with these threats, a variety of location privacy-
preserving mechanisms and metrics have been proposed. In
this section, we will review these related works.

2.1. Location Privacy Metrics. Since a location can be spec-
ified as single coordinate, to quantify the location privacy,
we should find out how accurately an adversary might infer
about this coordinate. Based on this principle, numerous
privacy metrics have been proposed for quantifying the
capability of the adversary. Location k-anonymity [3] and

its variation like l-diversity [20] and t-closeness [21] are
proposed to measure the ability of the adversary to differ-
entiate the real user from others within the anonymity set.
To overcome the drawbacks of k-anonymity in quantifying
location privacy, entropy-basedmetrics have been adopted in
[5, 13, 22, 23] for quantifying the information an adversary
can obtain from one (or a series) of location update(s).
Nonetheless, Shokri et al. [24] show a lack of satisfactory
correlation between these two metrics and the success of the
adversary in inferring the users’ actual position. Therefore,
they proposed the expected distance error metric to quantify
the degree of accuracy by which an adversary can estimate a
user’s real position. However, this metric is explicitly defined
in terms of the adversary’s side information [25]. Once the
adversary has no such side information, the expected distance
error is not sufficient for quantifying location privacy. As
a result, differential privacy [6, 26] that abstract from the
adversary’s side information has been growing popularity in
LBS privacy protection, which measures the ability of the
adversarywith arbitrary background knowledge to obtain the
user’s real location. However, as noted in [27], this metric can
be problematic if prior is taken into account.

2.2. Location Privacy Protection. In the past few years, many
approaches for protecting location privacy are proposed to
allow users to enjoy the LBSs while limiting the amount of
disclosed sensitive information [3–15, 22, 26–33]. Although,
among them, policy-based approaches and cryptography-
based approaches [14] have also been investigated, most
existingworks are based on location obfuscation. For location
obfuscation mechanisms, most of them employ well-known
location k-anonymity to protect user’s privacy by blurring
user’s exact location into a sufficiently larger CR. Because of
its simplicity, k-anonymity metric has been widely adopted
in many different methods, including IntervalCloak [3],
clique-based cloak [5], location differential perturbations [8],
game-theoretic approach [12], dummy location selection [13],
and hilbASR [28]. However, these methods suffer from the
single point of failure due to the reliance on a TTP named
anonymizer. If an adversary seizes control of the TTP, the
privacy of all users will be breached. This TTP is also a
performance bottleneck since all the submitted LBS queries
have to go through it.Moreover, thesemethods are vulnerable
to background knowledge attacks and homogeneity attacks
[20].

To avoid the use of TTP, many mobile device-based
schemes [4, 6, 9, 10, 14, 15, 29–33] are introduced into
LBS privacy protection LBS system. However, k-anonymity
based schemes [10, 13, 29–33] still need to generate CR
via exchanged information from other encountered mobile
users. Thus, they also cannot resist homogeneity attacks
and background knowledge attacks. Expected distance error
based schemes [4, 9] obfuscate user’s location by taking the
adversary’s side information into account, which also suffer
from background knowledge attacks. Differential privacy
based schemes [6, 26] have gained popularity as they abstract
from the adversary’s side information and are capable of
providing strong worst-case privacy guarantees. However,
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Figure 2: Architecture of our proposed framework.

these approaches do not take the contextual information of
the user’s location and are not sufficient to protect users from
reidentification [34].

Different from existing works, our proposed method use
MHC to store the context of the user’s location, achieving
robust privacy guarantee against the adversary with some
information. It provides desired privacy level for mobile users
without relying on any TTP.

Standard Hilbert curve (SHC) has been applied to some
privacy protection schemes (e.g., [30, 32]), which is different
from our MHC. Our MHC mapping is similar to the VHC-
mapping [15], but there are several key differences. First,
VHC-mapping is constructed from road density, but our
MHCmapping is based on the density of POIs. Second,VHC-
mapping is used to perturb a single location, but our MHC is
used to select k POIs to preserve reciprocity [28].

3. Preliminaries

In this section, we first introduce the system model and
some basic concepts used in this paper and then present the
motivation and basic ideas of our scheme.

3.1. System Model and Basic Concepts. Our system model
is composed of two parties: LBS user/device and the LBS
provider/server, as shown in Figure 2. LBS user possesses a
location-aware wireless device, capable of connecting to the
network through a wireless protocol such as WiFi, GPRS, or
3G. LBS user uses location perturbation algorithm to perturb
his location included in the LBS query, and he submits
the perturbed query to LBS provider. The LBS provider is
untrusted and considered as the adversary. He responds
to the LBS user’s requests and returns query results. He
can also obtain all the side information by monitoring the
queries issued from the LBS user. Additionally, he knows the
location perturbation algorithm and noise distribution used
in the system. Based on this information, he tries to perform
inference attacks to deduce the user’s location information.

In this paper, the side information is limited to the
approximate location knowledge of users (an area instead of
exact coordinates), which can be obtained by a variety of
means, i.e., device communication logs such as cell towers
used, public records such as parking violations, or social
engineering methods such as during a casual conversation
[8]. Unless regulated by legislations, the approximate location
knowledge can more simply be inferred directly from the

information broadcast from cell towers and wireless access
points.

3.2. Motivation and Basic Ideas. In Figure 2, location per-
turbation component perturbs the user’s location contained
in the geo-tagged query to generate the perturbed query. It
also rearranges the query results returned from the regular
query processor of the LSP, in order to provide better LBS
utility. Location perturbation is a straightforward approach to
achieve efficient location privacy-preserving. However, this
method may lead to other challenges, e.g., how to achieve
context-aware privacy protection without incurring the cost
of storing and retrieving a full-scale map in a mobile device,
and how to generate a reasonable perturbation to make a
trade-off between privacy and LBS utility. Most of existing
works generate the perturbation by adding a random noise
(to the true location) drawn from a standard probability
distribution. However, it is not a good way to protect user’s
privacy against the adversaries with side information (e.g., a
set of likely positions including the true location). With the
side information and noise distribution, the adversary can
calculate the probability of generating the observed pertur-
bation from each of the likely positions. If the probability is
significantly high for the real location, the adversary will con-
fidently infer the user real position. To enhance user privacy,
these probabilities should be within a small constant factor of
each other. Our main idea is to employ a MHCmapping and
a carefully selected Laplace distribution to achieve effective
privacy-preserving. Our approach can be presented in two
parts: (1)we use aMHC based on POIs density in considered
local map to achieve the contextual information of the user’s
location and store it as bit stream; (2) then, we employ a
carefully selected Laplace noise distribution to generate a
reasonable perturbation and transmit the perturbed value as
the user’s location to the LSP.

Specifically, we observe that in location-based applica-
tions such as nearby searches and check-in posts in geo-
social networks (e.g., Foursquare andWeChat), users tend to
query an LBS from places that are meaningful to them (e.g.,
offices and restaurants). In such places, users are most likely
to perform an activity without too much movement. We call
these places the points of interest of users and refer them
to the real POIs in local map. In addition, we assume that
users request LBSs from their POIs. LetR be the (rectangle)
boundary of the local map, Ψ be the set of all possible real
POIs in R, and Ψ𝑢 ∈ Ψ be the set of all POIs of user 𝑢. For
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Figure 3: Our modified Hilbert curve and its quad-tree storage.

simplicity, each 𝜓𝑖 ∈ Ψ𝑢 can be approximately represented
as a (𝑥𝑖, 𝑦𝑖, 𝜁𝑖), where (𝑥𝑖, 𝑦𝑖) is the location coordinate; 𝜁𝑖
represents the semantic attribute of location coordinate (𝑥𝑖,𝑦𝑖), i.e., its semantic location. In this way, user’s exposed
locations can be transformed into his exposed POIs where
he queries LBSs [35]. Indeed, it has been demonstrated that
inference of POIs leads to a sever privacy breach [36].

To protect privacy, user usually selects a perturbed POI
around him as his real location to request LBSs. Intuitively,
to achieve the same level of privacy and LBS accuracy, the
perturbed POI should be far more from his real location in
a rural area than in downtown. To capture the contextual
information in this case, we modify the standard Hilbert
curve according to the density of POIs in considering local
map and use it to fill the local map (as shown in Figure 3).
Figure 3(a) shows the standard Hilbert curve (SHC) that
covers the local map. Correspondingly, Figure 3(b) shows
the modified Hilbert curve (MHC), which projects every 2-
dimension POI of users in local map to a 1-d space. Normally,
higher density of POIs leads to finer gains such that every
point in the 1-dimension space has homogenous context (e.g.,
equal density). As we will show in the section of location
differential perturbation, this prevents a location at a high
POIs density area from receiving too large a perturbation to
remain utility for LBSs.

Because of the superior distance preserving properties of
Hilbert curve that two adjacent points in 1-dimension space
are likely to be close in the original space, and vice versa [15],
given a particular point, we can easily discover the adjacent
points around. With this property, we first project all POIs in
considering local map to 1-dimension space by using MHC.
Then we randomly perturb the user’s POI where he queries
LBS, based on a carefully selected Laplace distribution to
guarantee that the probabilities to report the same perturbed
POI from a set of likely noise POIs including the true POI
are similar. However, the distribution of these noise POIs can
affect the proximity of the perturbed POI to the true POI.
For instance, if POIs are perturbed based on the locations
of every known POI within a city, the scale parameter in
the noise distribution will become considerably high, thus
leading to heavy noise addition. To solve the problem, we
compute the perturbation from a restricted set of k POIs by
using the reciprocal framework algorithm [28]. In this way,
the probabilities of any POI in these k POIs generating the
same perturbed POI are within a small constant factor (up to𝑒𝜀) of each other.

Formally, let 𝑙1, . . . , 𝑙𝑘 represent a set of k noise POIs,
one of which is the real POI 𝑙𝑟=(𝑥𝑟, 𝑦𝑟) of query user, and𝑝(⋅) indicates the probability density function. For any two
POIs 𝑙𝑖 and 𝑙𝑗 in these k noise, the perturbed POI 𝑙𝑝=(𝑥𝑝, 𝑦𝑝)
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Input: R as the (rectangle) boundary of the map, Ψ as the set of all POIs in the map
Output: a quad-tree root node T(1) if |Ψ| inR is great than pre-determined threshold 𝜎, then(2) partitionR equally into four sub-cellsRnw,Rne,Rse,Rsw;(3) for i=nw, ne, se, sw do(4) return 0 //recursively partitionRi according to the condition |Ψ𝑖|>𝜎;(5) end for(6) else(7) return 1 //outputs quad-tree root node T;(8) end if

Algorithm 1: Modified Hilbert curve construction algorithm.

corresponding to the 𝑙𝑟 is generated in a manner such that

𝑝 (𝑙𝑝𝑙𝑖) ≤ 𝑒𝜀𝑝 (𝑙𝑝𝑙𝑗) , (1)

where 𝜀 > 0 and 𝑖, 𝑗 ∈ [1, 𝑘]. The privacy parameter 𝜀
corresponds to the strength of the privacy guarantee: smaller𝜀 yield more privacy. It has been shown that adding noise
to each coordinate independently (by applying Laplace noise
to each coordinate) provides the stronger protection than
adding noise to each point independently (by generating 2-
dimensional noise vector) [37]. Therefore, we use a Laplace
distribution with scale b>0 to perturb each coordinate of the𝑙𝑖=(𝑥𝑖, 𝑦𝑖) independently such that

𝑝 (𝑥𝑝 | 𝑥𝑖) = 12𝑏𝑒−|𝑥𝑖−𝑥𝑝|/𝑏,
𝑝 (𝑦𝑝 | 𝑦𝑖) = 12𝑏𝑒−|𝑦𝑖−𝑦𝑝|/𝑏.

(2)

The amount of noise to be added to each coordinate is given
as –b∗sign(rnd)∗ln(1-2|𝑟𝑛𝑑|), where rnd is a uniform random
value in (-1/2, 1/2). Based on the following observation, 𝑥𝑝
is generated by setting 𝑏 as (maxnxn-minnxn)/𝜀, and 𝑦𝑝 is
generated by setting 𝑏 as (maxnyn-minnyn)/𝜀. 𝑙𝑝 is obtained
as (𝑥𝑝, 𝑦𝑝).
Observation 1. Using the triangle inequality, we have |𝑙𝑗−𝑙𝑝| ≤|𝑙𝑗 − 𝑙𝑖| + |𝑙𝑖 − 𝑙𝑝|. After rearrangement, dividing by b, raising
as a power of 𝑒 and multiplying by 1/2b, we get

12𝑏𝑒−|𝑙𝑖−𝑙𝑝|/𝑏 ≤ 12𝑏𝑒−|𝑙𝑗−𝑙𝑝|/𝑏𝑒|𝑙𝑖−𝑙𝑗|/𝑏
𝑜𝑟 𝑝 (𝑙𝑝 | 𝑙𝑖) ≤ 𝑝 (𝑙𝑝 | 𝑙𝑗) 𝑒|𝑙𝑗−𝑙𝑖|/𝑏.

(3)

Therefore, for each coordinate, we have

𝑝 (𝑥𝑝 | 𝑥𝑖) ≤ 𝑒|𝑥𝑗−𝑥𝑖|/𝑏𝑝 (𝑥𝑝 | 𝑥𝑗) ,
𝑝 (𝑦𝑝 | 𝑦𝑖) ≤ 𝑒|𝑦𝑗−𝑦𝑖|/𝑏𝑝 (𝑦𝑝 | 𝑦𝑗) ,

(4)

and the power of the exponent is bounded as

𝑝 (𝑥𝑝𝑥𝑖) ≤ 𝑒|max𝑛𝑥𝑛−min𝑛𝑥𝑛|/𝑏𝑝 (𝑥𝑝𝑥𝑗) , (5)

𝑝 (𝑦𝑝𝑦𝑖) ≤ 𝑒|max𝑛𝑦𝑛−min𝑛𝑦𝑛|/𝑏𝑝 (𝑦𝑝𝑦𝑗) . (6)

Consequently, the probability of a POI generating a
certain perturbed POI is always with a factor 𝑒𝜀 of the
probability of some other POIs in the set of k noise generating
the same perturbed POI.

4. Location Differential Perturbation

In this section, we introduce the modified Hilbert curve
construction algorithm and location differential perturbation
algorithm in detail.

4.1. ModifiedHilbert Curve Filling. Without loss of generality,
we consider a set of usersU = {𝑢1, 𝑢2, . . . , 𝑢𝑛} who subscribe
certain LBSs and move in a local map. The (rectangle)
boundary R of the local map is taken as a large cell. We
recursively partition a cell into four equal-size cells if and
only if the number of POIs within the original cell is greater
than a predetermined threshold 𝜎. One can see that each
cell contains roughly 𝜎 or fewer POIs. Figure 3(b) depicts
an example of such a partition. From the figure, we can
see that each cell is either partitioned into four equal-size
square cells, or not partitioned (i.e., becoming a base cell).
The partitioning scheme can be readily represented as a quad-
tree. Figure 3(c) depicts an example of such a quad-tree for
the MHCmapping in Figure 3(b). In particular, each node in
the tree either is a leaf node (if corresponding to a base cell)
or contains four children (if further partitioned). Thus, to
efficiently store the tree, we construct a breath-first traversal
of the tree, storing 1 bit for each node indicating whether it
is a leaf node or not. Since a quad-tree with 𝑛 leaf nodes has
at most 4n/3 total nodes, the space required by the serialized
map file is at most 4n/3 bits. Thus, the total storage overhead
is O (n). One can see that MHC covers the regions of high
density of POIs with finer gains.

Algorithm 1 depicts the offline construction of MHC. In
the algorithm, we partition original map based on predeter-
mined threshold parameter 𝜎 (line (1)), recursively partition
their children according to the given conditions and store
the quad-tree into a bit stream (line (4)). The computational
complexity of Algorithm 1 is O (n).

After the partitioning process, we construct the mapped
1-d space as variation of the Hilbert space-filling curve [38]
to connect all cells in the original 2-d space. To assign a
corresponding range in the 1-d space for each base cell, we
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Input: the T obtained from Algorithm 1, starting point 𝑆0 and curve orientation 𝜃
Output: a updated quad-tree root node T(1) initializes S(T) = 𝑆0, 𝜃(T)= 𝜃,m = 0;(2) push T into the stack;(3) while (stack is not empty) do(4) N = pop the top element from the stack(5) if (N has child node) then(6) for (i= sw, se, ne, nw) do(7) set S(Ni), and 𝜃(Ni)(8) push Ni into the stack(9) end for(10) else(11) ℎN=m(12) set the values of all corresponding POIs in the node N asm(13) m =m + 1(14) end if(15) end while(16) outputs the updated quad-tree root node T.

Algorithm 2: Hilbert value generation algorithm for each base cell.

need to traverse every leaf node. To this end, we conduct a
depth-first traversal of tree T, assigning the Hilbert value in
the 1-d projected space for each leaf node according to its
visiting orders. Let S(N), 𝜃(N) be the orientation and starting
point of the Hilbert curve of the node N. The Hilbert value
corresponding to the node N is denoted by ℎN. The formal
description of our Hilbert value generation algorithm can be
found in Algorithm 2.

In Algorithm 2, we construct a depth-first traversal over
the quad-tree. In particular, we start from the root node T
(lines (1)-(2)) and determine its every child node’s curve
orientation 𝜃 and starting point 𝑆 in the manner of drill-
down according to the fractal rules used in our recent work
[39] (lines (7)-(8)). We repeat this process until reaching a
leaf node and set the Hilbert value of this leaf node as m
(line (11)). In such way, every leaf node is assigned to a
unique Hilbert value. Correspondingly, the Hilbert value of
all POIs in every leaf node is also obtained (line (12)). The
computational complexity of Algorithm 2 is O (n).

4.2. Location Perturbation Algorithm. In Section 3.2, we pro-
vide a method to generate a perturbed POI for query point
from the carefully selected k POIs by using the Laplace
distribution. As mentioned before, the k POIs should be
chosen to preserve reciprocity. That is, the same anonymous
set should be obtained irrespective of which of the k POIs
is the query point. This is achieved by using the reciprocal
framework algorithm [28], which partitions the POIs of user
into k size buckets based on theHilbert value of the POIs.The
anonymous set is selected as the bucket to which the query
point belongs. Each of the k POIs is used for perturbation and
the one having the minimum average distance to all POIs in
the anonymous set is chosen as the user’s location to issue the
query. The formal description of our location perturbation
algorithm can be found in Algorithm 3.

In Algorithm 3, we firstly index the all-possible POIs by
a quad-tree spatial index and assign the Hilbert value for
each POI (Line (1)). This step has time complexity of 𝑂(𝑛).
Then we find the mapped value based on the 1-d value range
of the base cell which contains 𝜓𝑢 (line (2)). One can see
that the retrieval process requires access at most log 𝑛 (the
depth of tree) nodes, leading to computational complexity
of O(log 𝑛). Based on the Hilbert indices of the POIs, we
determine the k size bucket to which the 𝜓𝑢 belongs by
using reciprocal framework (lines (3)-(9)), which has time
complexity of O(log 𝑛). The locality preserving properties
of Hilbert curves guarantee the formation of buckets with
POIs that are at close proximity to each other. Lines (10)-(14) compute a perturbed value corresponding to the k
POIs in the bucket by using Laplace distribution. Thus, each
coordinate 𝑐 of a POI is perturbed to c–b∗sign(rnd)∗ln(1-
2|𝑟𝑛𝑑|), where rnd is a uniform random value in (-1/2, 1/2),
and 𝑏 is set as (maxncn-minncn)/𝜀. This makes perturbation
Laplace distributed around 𝑐. In the following experiment,
the retrieval of the MHC mapping requires less than 0.1s in
our system, and the perturbation requires less than 0.5s.

4.3. Security Analysis. In this section, we provide security
analysis. In the context of location privacy, we consider two
types of adversaries: active adversary and passive adversary.
The purpose of the passive adversary is to obtain sensitive
information about a particular user by eavesdropping on the
wireless channel or compromising the LBS provider. Actually
we can use some cryptography tools such as public key
infrastructure (PKI) to cope with the eavesdropping attacks
on the wireless channel between users and other entities.
Thus, we mainly focus on how to avoid collusion attacks and
inference attacks from active adversary, both of which can
cause serious privacy problems.

Adversary may be collusion with some users or the LBS
server to capture the other user’s private information.
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Input: Query user 𝑢 with associated k, his POI 𝜓𝑢 where he queries LBSs, and the pre-
computed MHC filling file mhcFile

Output: A perturbed location 𝑙𝑝 for u(1) load a quad-tree T of the partition from mhcFile and use Algorithm 2 to assign the Hilbert
value for each POI;(2) find the leaf node N containing 𝜓𝑢;(3) while (there is non-empty node at the same level as N with < k POIs) do(4) N = parent of N //bottom-up traversal(5) end while(6) while (N is not a leaf and (each child of N is either empty or contains ≥ k POIs)) do(7) N=child of N that contains 𝜓𝑢 //top-down traversal(8) end while(9) obtain the L={𝑙1, . . . , 𝑙𝑟, . . . 𝑙𝑘} by splitting the POIs inside sub-tree of N into buckets
containing between k and 2k-1 POIs using reciprocal algorithm(10) L𝑝 =𝜙(11) for (𝑙 ∈ L) do(12) 𝑙𝑝 = l + 𝑧𝑖, where 𝑧𝑖 is additive noise generated by Laplace distribution(13) Lp = Lp ∪ {𝑙𝑝}(14) end for(15) output 𝑙𝑝 ∈ L𝑝 such that 𝑙𝑝 has minimum average distance from L.

Algorithm 3: Location perturbation algorithm.

Theorem 1. Our scheme is collusion attack resistant.

Proof. We contemplate that the collusion attack occurs
between a set of users. On the one hand, each user is
independent with others in our scheme. He only needs to
use his position and the stored Hilbert index file to generate
the perturbation instead of interacting with the other users.
On the other hand, Algorithm 3 in our scheme guarantees
that all the processes are executing locally, not dependent on
other users at all. That is, it is useless for the adversary to
capture and collude with nearby users. The best case to this
kind of adversary is that he can obtain the global information
by capturing the LBS server and all the users, but in this case
he becomes an active adversary to perform inference attack.

In our scheme, we directly contemplate the untrusted LBS
server as the active adversary to perform the inference attack.
He can get side information by monitoring all the users in
the system, including their interests, approximately location
(e.g., a set of likely positions including the true location), LBS
queries, and observed perturbation. His aim is to use this
side information to confidently infer real position of the query
user.

Theorem 2. Our scheme is inference attack resistant under 𝜀-
differential privacy.

Proof. In our scheme, users need to issue the queries to
the adversary in order to enjoy the LBSs. Ideally, due to
the perturbation, the adversary cannot construct any direct
linkage from the perturbed locations to a user. However, the
adversary knows the POIs density of the whole map, approx-
imately locations for a user and noise distribution. Based on
this information, the adversary can perform inference attacks
to gain the real location of the query user. More formally,
the adversary knows the set of all POIs, Ψ, a set of positions,𝑙1, . . . , 𝑙𝑟, . . . , 𝑙𝑘 (including query user’s real location), location

perturbation mechanism, and the noise distribution 𝑝(𝑙i). As
certain position in the adversary’s approximate knowledge is
highly unlikely to generate the observed perturbation under
the used noise distribution, the adversary can use newly
learned distribution to improve its probability of successfully
guessing the real location from these equally likely positions.
In our algorithm, the inference attack is avoided by using
reciprocity framework and 𝜀-differential privacy. First, since
the k POIs set L={𝑙1, . . . , 𝑙𝑟, . . . , 𝑙𝑘} generated by using MHC
method satisfies reciprocity, the probability of identifying
the query user’s real POI does not exceed 1/k [28]. Second,
as discussed above, due to the usage of differential privacy,
the probability to report the same observed perturbed loca-
tion 𝑙𝑝 from the positions 𝑙1, . . . , 𝑙𝑟, . . . 𝑙𝑘 is within a small
constant factor of each other. The Laplace noise added to
a POI depends on the component-wise maximum distance
between two positions. As long as the scale parameters use
these maximum, the perturbed POI (𝑥𝑝, 𝑦𝑝) will satisfy the
probability ratio. In our scheme, we use differential privacy
notion to abstract the side information and guarantee the
security efficiently. For any two POIs 𝑙𝑖 and 𝑙𝑗 in the set L,
the adversary’s side information can bemodelled by two prior
distributions 𝑝(𝑙𝑖) and 𝑝(𝑙𝑗). After observing the perturbed
POI 𝑙𝑝, the adversary could use the 𝑙𝑖 and 𝑙𝑗 as input to
differential location perturbation algorithm and compute the
conditional probabilities 𝑝(𝑙𝑝 | 𝑙𝑖) and 𝑝(𝑙𝑝 | 𝑙𝑗). For the
purpose of modelling the adversary’s observation, we use
Bayes’ rule to obtain the posterior distribution:

𝑝 (𝑙𝑖 = 𝑙𝑟 | 𝑙𝑝) = 𝑝 (𝑙𝑝 | 𝑙𝑖) 𝑝 (𝑙𝑖)
∑𝑘𝑐=1 𝑝 (𝑙𝑝 | 𝑙𝑐) 𝑝 (𝑙𝑐) ,

𝑝 (𝑙𝑗 = 𝑙𝑟 | 𝑙𝑝) = 𝑝 (𝑙𝑝 | 𝑙𝑗) 𝑝 (𝑙𝑗)
∑𝑘𝑐=1 𝑝 (𝑙𝑝 | 𝑙𝑐) 𝑝 (𝑙𝑐) .

(7)
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We use multiplicative distance to metric the distance
between two distributions as

𝑑𝑝 = sup
𝑙⊆𝐿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ln
𝑝 (𝑙𝑖 | 𝑙𝑝)
𝑝 (𝑙𝑗 | 𝑙𝑝)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀 (8)

According to the definition of 𝜀-differential privacy, the𝑑𝑝 should be at most 𝜀. Substituting formula (7) into formula
(8), we can get

𝑝 (𝑙𝑝 | 𝑙𝑖) ≤ 𝑒𝑅/𝑏𝑝 (𝑙𝑝 | 𝑙𝑗) , (9)

where 𝑅 is the radius of maximum perturbation range which
satisfies Laplace distribution, also the maximum distance
between any two noise POIs, and 𝑏 is the scale parameter of
Laplace distribution. Thus, formula (9) can be extended to
formulas (5) and (6).

As can be seen from formula (9), our scheme is inde-
pendent of the prior distribution. This is to say, the prob-
abilities that the adversary uses side information to report
the same observed perturbed location 𝑙𝑝 from the positions𝑙1, . . . , 𝑙𝑟, . . . 𝑙𝑘 are within a small constant factor of each
other. Thus, the adversary cannot use such side information
to improve its probability of successful guessing the real
location.

4.4. Query Accuracy Analysis. In this section, we provide
LBS query accuracy analysis. Using perturbed locations do
affect the accuracy of query results. However, difference in
the results may or may not exist depending on the distance
between the perturbed location and the true location. There-
fore, one has to trade-off between location privacy and LBS
utility. In order to formally analyze the query accuracy of
our location perturbation scheme, we consider three metrics
with respect to KNN query [8]: Nearness, Resemblance, and
Displacement.

(i) Nearness: it indicates the ratio of perturbation at close
proximity to the true location.

(ii) Resemblance: it depicts the accuracy rate of query
results retrieved by a KNN query related to a per-
turbed location. Let 𝑂 = {𝑜1, 𝑜2, ⋅ ⋅ ⋅ , 𝑜𝐾} be the
objects retrieved by a KNN-query relative to the
true location of user u, and 𝑂󸀠 = {𝑜󸀠1, 𝑜󸀠2, ⋅ ⋅ ⋅ , 𝑜󸀠𝐾}
be the objects retrieved relative to the perturbed
location. The resemblance is the rate of common
objects between 𝑂 and 𝑂󸀠, given as

𝑄𝐴𝑅 =
󵄨󵄨󵄨󵄨󵄨𝑂 ∩ 𝑂󸀠󵄨󵄨󵄨󵄨󵄨|𝑂| , (10)

where |𝑂| is the number of query objects in the real
results set O, |𝑂 ∩ 𝑂󸀠| is the number of common
objects between 𝑂 and 𝑂󸀠.

lp lr

Figure 4: AOI and AOR with centre 𝑙𝑟 and 𝑙𝑝.

(iii) Displacement: it captures the average difference in
distance between the actual results and real retrieval
results of a KNN-query, given as

𝑄𝑃
= {{{{{

1𝐾 [ 𝐾∑
𝑖=1

𝑑𝑖𝑠𝑡 (𝑂󸀠𝑖 , 𝑞) −
𝐾∑
𝑖=1

𝑑𝑖𝑠𝑡 (𝑂, 𝑞)] , 𝑂 ̸= 𝑂󸀠
0, 𝑂 = 𝑂󸀠,

(11)

where 𝑞 is the real query POIs of a user and the dist(⋅)
is the Euclidean distance between an object’s location
and the true location of a user. It should be noted that
the lowercase 𝑘 is used to calculate anonymous set and
the uppercase𝐾 is used to calculate KNN query.

These three metrics are used to measure the effective-
ness of our scheme. The resemblance measures the query
accuracy with respect to the perturbed location, while the
displacement measures the expected distance error between
the real query results and actual retrieval results. In this part
of theoretical analysis, we adopt the Resemblance metric as
the query accuracy measure. Nevertheless, in the following
experimental evaluation, we also evaluate the Nearness and
Displacement metrics.

As shown in Figure 4, we define the blue circle as the
query area of interest (AOI) with regard to the real location𝑙𝑟 and the orange circle as the area of retrieval (AOR) with
respect to the perturbed location 𝑙𝑝. In order to guarantee
high Resemblance (see formula (10)), ideally, the AOR should
always completely contain the AOI. Unfortunately, this con-
dition cannot be guaranteed because of the nature of our
location perturbation (note that the AOR is centred on a
randomly generated location that can be arbitrarily distant
from the real location). In order to measure the probability of
such event, we introduce the notion of accuracy. Specifically,
we use 𝑟𝐼 and 𝑟𝑅 to represent the radius of the AOI and
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(a) Road network of NA (b) MHC filling of NA with 𝜎=10

Figure 5: NA dataset.

the AOR, respectively,M to denote the location perturbation
mechanism, andC(x, r) to denote the circle with centre 𝑥 and
radius r.

Definition 3. An LBS perturbation is (c, 𝑟𝐼)-accurate iff for
all locations 𝑥 we have that C(x, 𝑟𝐼) is fully contained in the
C(M(x), 𝑟𝑅) with probability at least c.

Give a privacy parameter 𝜀 and accurate parameters
(c, 𝑟𝐼), our goal is to obtain an LBS perturbation (M, 𝑟𝑅)
satisfying both 𝜀-differential privacy and (c, 𝑟𝐼)-accurate.
As for a perturbation mechanism M, we use the Laplace
perturbation 𝑀𝜀 discussed in Section 3.2, which satisfies 𝜀-
differential privacy. As for 𝑟𝑅, we attempt to find a minimum
value validating the accurate condition. To achieve this goal,
we use the notion of (𝛼, 𝛿)-usefulness, which was introduced
in [40]. A location perturbation mechanism 𝑀 is (𝛼, 𝛿)-
usefulness if for every location 𝑥 the perturbed location z =
M(x) satisfies 𝑑𝑖𝑠𝑡(𝑥, 𝑧) ≤ 𝛼with probability at least 𝛿. In our
perturbation mechanism𝑀𝜀, we computer the perturbation
from a restricted set of k POIs that preserve reciprocal. This
guarantee that our𝑀𝜀 can generate reasonable perturbation
range. Therefore, the 𝛼 and 𝛿 values which express 𝑀𝜀
usefulness are related by –b∗sign(rnd)∗ln(1-2|𝑟𝑛𝑑|), the noise
amount of our perturbation.

Observation 2. For any 𝛼 > 0, 𝑀𝜀 is (𝛼, 𝛿)-usefulness if𝛼 < max𝑖,𝑗∈[1,𝑘]𝑑𝑖𝑠𝑡(𝑙𝑖, 𝑙𝑗), where 𝑙𝑖 and 𝑙𝑗 are determined by
–b∗sign(rnd)∗ln(1-2|𝑟𝑛𝑑|).

In the following experimental evaluation (as shown in
Table 2), we set various 𝜀 to compute the percentage of
the perturbations which are within 1km, 0.5km, and 0.1km
of the user’s true position. As our running example, our
perturbation mechanism𝑀𝜀 (𝜀-differential privacy, with 𝜀 =
0.5) generates a perturbed location 𝑙𝑝 falling within 1km of
the real position 𝑙𝑟 with probability 0.9426.

According to the definition of usefulness, if𝑀𝜀 is (𝛼, 𝛿)-
usefulness, then the LBS perturbation (𝑀𝜀, 𝑟𝑅) is (𝛿, 𝑟𝐼)-
accurate if 𝛼 < max𝑖,𝑗∈[1,𝑘]𝑑𝑖𝑠𝑡(𝑙𝑖, 𝑙𝑗). The converse also holds
if 𝛿 is maximal. By Observation 2, we have the following.

Proposition 4. The LBS perturbation (𝑀𝜀, 𝑟𝑅) is (𝛿, 𝑟𝐼)-
accurate if 𝑟𝑅 ≥ 𝑟𝐼 + 𝛿 ⋅max𝑖,𝑗∈[1,𝑘]𝑑𝑖𝑠𝑡(𝑙𝑖, 𝑙𝑗).

Therefore, it is sufficient to set 𝑟𝑅 = 𝑟𝐼 + 𝛿 ⋅
max𝑖,𝑗∈[1,𝑘]𝑑𝑖𝑠𝑡(𝑙𝑖, 𝑙𝑗).Thus, our perturbation (𝑀𝜀, 𝑟𝑅) satisfies
both 𝜀-differential privacy and (𝛿, 𝑟𝐼)-accurate.
5. Experimental Evaluation

This section evaluates the proposed differential location
perturbation algorithms. We implemented the algorithms
using Java program. All experiments were executed on an
Intel Core i7-4790 3.6GHz machine with 4G RAM and
Windows OS. The perturbation scheme indexes the all-
possible POIs of the considering local map, which are taken
from the NA dataset (available at http://www.cs.utah.edu/∼
lifeifei/SpatialDataset.htm) containing 175813 real POIs of the
North America road network (see Figure 5(a)). The parame-
ter k is set from 10 to 1000. The results are obtained by taking
the average of 100 times simulation of the corresponding
algorithms.

Several parameters are employed in our evaluation. 𝑆0 is
the starting point of Hilbert curve, and its default value is
(0, 0). The 𝜃 represents the Hilbert curve direction, and its
default value is D1 (see Figure 6) [39]. Γ is the scale factor
of Hilbert curve, and its default value is 1. k is related to
k-anonymity. Figure 5(b) shows a real MHC filling for the
North America road network with 𝜎=10. From the figure, an
intuitive observation is that the denser regions represent large
cities, while the sparse regions represent the rural areas.Thus,
MHC mapping captures the contextual information well. In
[9], Shokri proposes an optimal location privacy preservation
strategy by solving a linear program, which avoids TTP.

http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
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Figure 6: Fractal rules of Hilbert curve.

This optimal strategy computes location obfuscation proba-
bility distribution function to maximize the location privacy,
subject to service quality constraints. However, this method
depends on themodelling of adversary’s side information and
thus suffers from background knowledge attacks. As can be
seen fromprevious analysis, ourmethod abstracts adversary’s
side information. Furthermore, this optical strategy has
nothing to do with contextual information andHilbert curve.
Therefore, our method cannot be comparable to this optical
strategy. Location perturbation method in [8] is similar to
our approach and uses SHC, whereas it still employs a TTP.
For the purpose of comparing with [8], we implement the
method in [8] under the same setting as our method. To
generate the k-anonymous sets, the location perturbation
scheme in [8] employs SHC to calculate the Hilbert index
value of users’ location online. Different from the method
in [8], our scheme employs MHC to calculate the Hilbert
indices of the POIs and stores them as a binary map file. We
use the quad-tree recovered from the binary map file to find
the node where the user’s POIs are located and then generate
the k-anonymous set.Therefore, in the following experiment,
we evaluate the performance of the location perturbation by
comparing MHCmapping with SHC mapping.

5.1. Parameters Selection for MHC and SHC. During the
partitioning process, MHC and SHC employ different curve
parameters. To carry out the following experiments under
the same standard, we first examine the parameters selection
for MHC and SHC. When the geographic space is filled by
usingMHCmapping, a unique index value is assigned to each
atomic region according to the traversal order of the Hilbert
curve. The index values of the POIs contained in the atomic
region are also index value of the atomic region.Thus, we can
obtain the Hilbert index of all POIs. If some POIs are in the
same base cell, they are overlapped. We define the overlap
factor 𝜆 to describe the overlap of the POIs for each base cell
such that

𝜆 = 1𝑀
𝐻∑
𝑖=0

𝑛𝑖 (12)
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Figure 7: The relationship between 𝜎 and 𝜆.

where𝑀 is the number of base cells that contain POIs, H is
the upper bound of the Hilbert index value, and 𝑛𝑖 represents
the number of the POIs whose index value is equal to i.

Figure 7 illustrates the case that the MHC overlaps factor𝜆 changes with the division threshold 𝜎. We find that 𝜆 grows
slowly as𝜎 increases, andwhen𝜎 is 1, the overlap factor is also
1. This is determined by the definition of the overlap factor
and the division in Algorithm 2. The MHC can achieve finer
grains via setting the threshold 𝜎.

Figure 8 illustrates the relationship between the standard
Hilbert curve degree 𝐷 and the overlap factor 𝜆 when the
map of the NA dataset is divided by the SHC. As can be seen
from the figure, the larger 𝐷 is, the smaller 𝜆 is and the finer
grain that the partition leads to. Since the SHC employs the
uniform standard to divide the space, the 𝜆 changes greatly
with the changing of the 𝐷 when 𝐷 is small. In [8], the SHC
mapping technique was employed to divide the entire map
into a grid of 214∗ 214 while calculating the Hilbert indices,
which guarantees that there is not more than one user in
each division. Objects in the same division have the same
Hilbert index.This is because a larger curve degree𝐷 can lead
to a finer granularity division of spatial maps. Nevertheless,
the greater curve degree may lead to high computational
overhead unaffordable to the server.
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Table 1: Hilbert index generation time (ms).

Algorithm 𝜆 = 1 𝜆 = 1.5 𝜆 =2.7 𝜆 =4.9
𝜎=1,
D=13

𝜎=2,
D=11

𝜎=5,
D=10

𝜎=10,
D=9

SHC 1237 1067 988 903
MHC 892 521 300 214
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Figure 8: The relationship between 𝜆 and D.

The generation time of the index of POIs is an important
measure when using the spatial filling curve to divide the
considered map. We compare the index generation time of
our scheme using MHC padding algorithm HVGA with the
scheme using SHC padding algorithm EDHO in [8]. The
HVGA represents theHilbert value generation algorithm (see
Algorithm 2). The results are shown in Table 1.

As seen from the table, in the case of the same 𝜆, the
efficiency of Hilbert index generation via using the MHC
mapping technology in our scheme is significantly higher
than that via using SHC mapping technology in [8], and
with the increase of 𝜆, the result of using MHC is more
obvious. This is because the MHC partition considers the
density distribution of POIs and uses different curve degree𝐷 for different density regions, which enable the partitioning
of the lower density region not use high D, thus improving
the efficiency of index generation.

When 𝜎 ≥ 10, the MHC index generation time changes
very slowly. Therefore, in all the following experiments we
considered the 𝜆 = 4.9, 𝜎 = 10, D = 9.

5.2. Anonymous Evaluation. We compare the average anony-
mous set generation time of our scheme and the scheme in
[9] for varying k (see Figure 9).

As can be seen from Figure 10, as the 𝑘 increase, the
anonymous set generation time for MHC perturbation (see
Algorithm 3) and SHC perturbation (see [8]) does not vary
significantly.This is because, in both perturbation algorithms,
to select the k-anonymous set that satisfies reciprocitywe only
need to traverse the small subtree determined by node N in
the quad-tree T, and the data structure of the intermediate
nodes of the quad-tree T contains all the POIs in its subtree,
so there is no need to traverse their subtrees to obtain this
information. In the case of the same k, the anonymous sets
generation time of MHC perturbation is much lower than
that of SHC perturbation, with an average reduction about
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Figure 9: Anonymous set generation time for varying k.
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Figure 10: Query accuracy rate of KNN retrieval.

66%.This is because when the location index is generated, the
SHC perturbation is partitioned by the uniform granularity
for all the regions; nevertheless, the MHC is divided accord-
ing to the density distribution of the POIs.TheMHCpartition
of the sparse regions uses lower curve orders and thus reduces
the division time. That is to say, in the same case, the MHC
partition traverses fewer subtrees than the SHC partition.

5.3. Differential Location Perturbation Evaluation. In this
section, we evaluate the performance of our differential loca-
tion perturbation algorithm by comparing MHC mapping
with SHC mapping. From Section 3.2, we know that the
probability ratio of generating the perturbed position (𝑥𝑝,
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Table 2: Percentage of the generated perturbed positions that is at close proximity to true location.

𝜀 Nearness/%
d ≤1000m d ≤500m d ≤100m

0.01 2.39 0.95 0.01
0.1 28.2 16.27 8.13
0.3 89.3 61.24 7.18
0.5 94.26 62.20 11.48
1.0 99.04 73.68 27.27
2.0 99.99 91.87 33.97

𝑦𝑝) at any two POIs in the anonymous is bounded as 𝑒𝜀.
The amount of Laplace noise to be added to the position
depends on the maximum distance of the corresponding
coordinates of the two positions. As long as the Laplace scale
parameter 𝑏 uses these maximum distances, the probability
ratio of the any two POIs in anonymous set generating a
perturbed position (𝑥𝑝, 𝑦𝑝) always satisfies the bounded 𝑒𝜀.𝜀 is privacy budget and smaller 𝜀 yields more privacy, but
leading to less accuracy. In the following experiment, we
evaluate the accuracy of our scheme for a scenario, where we
issue a KNN query for nearest POIs. In particular, we use the
Nearness, Resemblance, andDisplacementmetrics to measure
LBS accuracy.(1)Nearness: for the Nearness metric, we set the different
privacy parameter 𝜀 to calculate the percentage of the pertur-
bations that resulted in the perturbed point being generated
within 1000 m, 500 m, and 100 m of the user’s true position.
The results are shown in Table 2.

As can be seen from the table, a value of 𝜀 = 0.01 indicates
that two users should have the same probability (𝑒𝜀 = 1.01) to
generate perturbations.This is difficult to achievemost values
of k. When the 𝜀 value reaches 0.5 (𝑒0.5 = 1.65), more than
90 percent of the perturbed points are within 1000 meters
of the real position. More than 60 percent of the perturbed
points are within 500m of the true position. The number
of perturbed points increases with increasing of the 𝜀 value.
However, higher 𝜀 value reduces the practical significance of
the approach. For example, the value of 𝜀 = 2.0 means that
a factor of 7 differences in the probability estimates (e2.0 =
7.39) must be accepted. Nonetheless, high nearness values
with smaller value of 𝜀 are also possible as well.(2)Resemblance and Displacement: as previously
observed in Table 2, about 95% perturbed points fall within
1km of the real position when 𝜀=0.5. Therefore, for the
resemblance metric 𝑄𝐴𝑅 and displacement metric 𝑄𝑃, we
set 𝜀 = 0.5 to generate the perturbations in the experiments.
Figures 10 and 11 show the evaluation results of the Resemble
and Displacement corresponding to different values of K (the
number of the nearest neighbour objects retrieved by KNN).

From Figure 10, we can see that increasing the number
of nearest neighbouring objects to search K enhances the
similarities of the result set. As K increases, the query
accuracy rate of KNN retrieval varies from around 60 percent
to almost 90 percent.This is because that a greater number of
retrieved results can be seen as enlarging the search radius,
in which case, an object becomes more likely in the KNN
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Figure 11: Query precision of the approximate KNN search.

set of more number of location-based queries. For example,
searching for the nearest theatres from two different locations
in a city, we can expect that these two different locations have
higher overlap in their list of 10 nearest theatres. The extent
of the overlap depends on how proximal the two locations
are to each other. Therefore, the noise added to a location is
important in this regard. Meanwhile, the retrieval accuracy
of a KNN using MHC is increased by an average 15.4%
compared with the approach using SHC. This is because the
MHC partition considered the density distribution of the
POIs, which needs only a small perturbation to achieve a high
level of privacy-preserving in a densely populated area.

The query precision indicates the average difference in the
distance between the actual results and real retrieval results of
a KNN-query based on the real location and the perturbed
position, which is more effective in measuring the quality
of retrieved results. Figure 11 shows the results of the query
precision.

From Figure 11, we can clearly see that the query precision
of aKNNretrieval related to the perturbed location generated
by using SHC perturbation varies from about 120m to 350m
and that the query precision of a KNN retrieval related to
the perturbed location generated by usingMHCperturbation
is within 50m. This shows that the query precision of a
KNN retrieval related to MHC perturbation is smaller than
that of a KNN retrieval related to SHC perturbation. The
reason is that MHC considers the contextual information
of the POIs, thereby resulting in smaller perturbation than
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SHC. The results show that the quality of a KNN retrieval
results related to MHC perturbation is higher than that of
the results related to SHC, which also corresponds with the
character that MHC conducts granularity partition of the
defined spaces according to density distribution of the POIs.

6. Conclusion

Driven by the prosperity of smart mobile devices equipped
with GPS, location-based services, as an import part of
Green Mobile Communications and Networks (GMCNs),
have become very popular recently in almost all business and
society domain. Since these services access private position
information, location privacy protection mechanisms are
mandatory to ensure the user acceptance of such services.
The location-based confounding mechanism based on the
cloaking area is awide range of research techniques to achieve
location privacy protection, but most of these technologies
rely on TTP and assume that the attacker does not have side
information, thus easy to cause location privacy disclosure.

In this paper, we proposed a context-aware differential
location perturbation technique to protect user privacy. Our
scheme, the context information of the user’s location is
considered in the event of a perturbation, and the attack
of the background information can be effectively prevented
without depending on any TTP. We use MHC mapping
technology to project each 2-d geographic location of the user
on the map into 1-d space and combine the 𝑘 anonymous
with the differential privacy techniques to randomly disturb
the user’s location, and then to submit the perturbation as
the user’s real location to the location service provider. In
order to solve the limited resources of mobile devices, we
use a quad-tree based approach to transform and to store
the users’ context to support efficient retrieval and storage.
Through the security analysis and experimental evaluation,
we can find that our scheme can resist the inference attacks
of approximate position knowledge. Using the perturbation
position will not significantly improve the attacker’s prior
knowledge about the user’s position, so it has strong privacy
protection. However, the identification of some unreasonable
perturbation is still a problem. In the future work, we will
consider abandoning the anonymity sets to address this
problem.
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