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Mobile edge computing (MEC) enables battery-powered mobile nodes to acquire information technology services at the network
edge. These nodes desire to enjoy their service under power saving. The sampling rate invariant detection (SRID) is the first
downclocking WiFi technique that can achieve this objective. With SRID, a node detects one packet arrival at a downclocked rate.
Upon a successful detection, the node reverts to a full-clocked rate to receive the packet immediately. To ensure that a node acquires
its service immediately, the detection performance (namely, themiss-detection probability and the false-alarm probability) of SRID
is of importance. This paper is the first one to theoretically study the crucial impact of SRID attributes (e.g., tolerance threshold,
correlation threshold, and energy ratio threshold) on the packet detection performance. Extensive Monte Carlo experiments show
that our theoretical model is very accurate. This study can help system developers set reasonable system parameters for WiFi
downclocking.

1. Introduction

Mobile edge computing (MEC) [1] aims to provide com-
puting resources and information technology services at
the network edge. In MEC, various battery-powered mobile
nodes (such as smartphone) will access these resources and
services viaMEC application servers such as LTE base station
and wireless access point (AP).These battery-powered nodes
desire to enjoy their service under power saving.

In this paper, we assume that a number of battery-
powered nodes access an AP (acting as an MEC application
server) via a WiFi network. These devices adopt a novel
algorithm called sampling rate invariant detection (SRID) [2]
for power saving. SRID is the first downclocking mechanism
(adopted in WiFi). With SRID, a node detects one packet
arrival at a downclocked rate. Upon a successful detection,
the node reverts to a full-clocked rate to receive the packet
immediately. For each detection, there are two types of typical
errors: miss-detection (i.e., the AP sends a packet but the
node does not detect it) and false-alarm (i.e., the AP sends
nothing but the node detects a packet mistakenly). To ensure

that a node acquires its service immediately, the detection
performance (namely, the miss-detection probability and
the false-alarm probability) of SRID is of importance. This
paper is concerned with the detection performance. Our
contributions are summarized as follows:

(i) To the best of our knowledge, this paper is the first one
to theoretically analyze the detection performance
of WiFi downclocking. Our theoretical model char-
acterizes the crucial impact of SRID attributes (e.g.,
tolerance threshold, correlation threshold, and energy
ratio threshold) on the packet detection performance
(i.e., the miss-detection probability and the false-
alarm probability).

(ii) We run extensive Monte Carlo experiments to verify
that our theoretical model is very accurate. We show
that as the downclocked rate decreases, the false-
alarm probability increases significantly, which will
lead to a serious adverse impact on packet detection.

This study can help system developers set reasonable system
parameters for WiFi downclocking.
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Figure 1: (a) AP’s𝑀-preamble transmission and (b) node’s𝑀-preamble detection in SRID.

So far, downclocking has received great attention [2–13].
Among the most relevant works, [2] is the first paper that
brought downclocking to low-power WiFi networks and
proposed the SRID algorithm, which was considered as one
of the most classical amendments on power saving of 802.11
protocols [12, 13]. In WiFi, the dominant source of energy
consumption is the idle listening operation [7, 8], where
a node needs to frequently detect unpredictably arriving
packets or assess a clear channel with high power. Therefore,
SRID reduced the power consumption by allowing a WiFi
node to downclock its sample rate in idle listening mode.
SASD [3] was proposed to reduce the power consumption
in SRID further by allowing nondestination nodes in idle
listening to enter a doze state. AS-MAC [4] was proposed
to avoid contention and reduce delay by asynchronously
scheduling the wake-up time of neighboring nodes via
a downclocking mechanism for wireless sensor networks.
SloMo [5] was proposed to allowWiFi nodes to operate their
radios at lower clock rates when receiving and transmitting
at low bit rates. Sampleless [6] allowed energy-constrained
devices to scale down their sampling rates regardless of
channel conditions. The above works mainly focused on the
hardware implementation of the downclocking mechanism
or evaluated its performance via simulation. In contrast, this
paper is the first one tomodel the impact of downclocking on
the packet detection performance theoretically.

The rest of this paper is organized as follows. Section 2
gives an overview of SRID. Section 3 theoretically analyzes
the detection performance of SRID. Section 4 presentsMonte
Carlo results that reveal the crucial impact of SRID attributes
on the detection performance. Section 5 concludes this paper.

2. Overview of SRID

In the downclockingmechanism, one basic problem is how to
detect unpredictably arriving packets at a downclocked rate,
so that the node can revert to a full-clocked mode to receive
the arriving packets.

The SRID that adopts the downclocking mechanism is
designed for WiFi networks. With the help of Figure 1, we
specify how SRID works. Assume a WiFi network consisting

of one access point (AP) and a number of nodes. The AP
is always in the active mode, while each node is in the
downclocked mode by default. When the AP has a packet
to transmit toward a node, the operations of the AP and the
node are as follows.

(i) The AP first transmits an additional preamble called
𝑀-preamble, and then a sequence of dummy bits,
and finally a conventional 802.11 packet. Here, the𝑀-
preamble is used to notify the node of the arrival of an
expected packet. The dummy bits are used to provide
a guard interval that allows the node to revert to the
full-clocked mode from the downclocked mode.

(ii) The node continuously detects its 𝑀-preamble via
self-correlation and then reverts to the full-clocked
mode upon a successful detection.

In the next two subsections, we detail the construction
and the detection of an𝑀-preamble.

2.1. Construction of 𝑀-Preamble. In SRID, an 𝑀-preamble
consists of 𝐶 (𝐶 ≥ 2) duplicated versions of a complex gold
sequence (CGS), the length of each CGS sequence being
𝑇𝐵 + 𝑛𝐷𝑚. Figure 1(a) shows an example of 𝑀-preamble,
where 𝐶 = 3. Thus the total length of𝑀-preamble 𝑇 can be
expressed as

𝑇 = 𝐶 (𝑇𝐵 + 𝑛𝐷𝑚) , (1)

where 𝑇𝐵 represents the minimum length of the CGS (used
for𝑀-preamble). The integer 𝑛 represents the address of the
node in SRID, which is assigned by the AP. 1/𝐷𝑚 is the min-
imum downclocking factor of radio hardware. For example,
assume that the full-clocked frequency is 20MHz. Then the
minimum downclocked frequency is 20 ∗ (1/𝐷𝑚)MHz.

2.2. Detection of𝑀-Preamble. In SRID, a node continuously
performs self-correlation to detect its 𝑀-preamble. Assume
that a node operates with a downclocking factor of 1/𝐷 ∈
[1/𝐷𝑚, 1].

Let 𝑧(𝑘) denote the sampling value of the node at the
sampling point 𝑘.
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Figure 2: Illustration of 𝐶, 𝛿 𝑇1 and 𝑇2.

Let 𝑅(𝑘) denote the self-correlation result of the node
at the sampling point 𝑘. To detect its 𝑀-preamble, at each
sampling point 𝑘, the node with address 𝑛 performs the self-
correlation between the latest 𝑇1 samples and the previous
𝑇1 samples (offset by 𝛿). Therefore, 𝑅(𝑘) can be calculated
by

𝑅 (𝑘) =
𝑘+𝑇

1
−1

∑
𝑖=𝑘

𝑧 (𝑖) 𝑧 (𝑖 − 𝛿) , (2)

where 𝑇1 = 𝑇𝐵/𝐷 is the size of the self-correlation window
(in sampling points) and 𝛿 = (𝑇𝐵 + 𝑛𝐷𝑚)/𝐷 is the number
of sampling points of a CGS when the downclocking factor is
1/𝐷. Note that 𝑇1 and 𝛿 are shown in Figure 2.

Let 𝐸(𝑘) denote the energy level at sampling point 𝑘,
which can be calculated by

𝐸 (𝑘) =
𝑘+𝑇

1
−1

∑
𝑖=𝑘

|𝑧 (𝑖)|2 . (3)

We say that an𝑀-preamble is successfully detected if the
total number of successfully detected points, 𝑁𝑠, is greater
than𝐻1𝑇2; namely,

𝑁𝑠 ≥ 𝐻1𝑇2, 𝐻1 ∈ (0, 1) , (4)

where𝐻1 is the tolerance threshold and 𝑇2 = (𝐶 − 1)𝛿 is the
total number of sampling points (from the 2nd CGS to the
𝐶-th CGS), as shown in Figure 2.

We say that a sampling point is detected successfully if the
following two conditions are satisfied.

Condition 1. At sampling point 𝑘, the correlation result |𝑅(𝑘)|
normalized by 𝐸(𝑘) is between𝐻 and 1/𝐻; namely,

𝐻 < |𝑅 (𝑘)|
𝐸 (𝑘) < 𝐻−1, 𝐻 ∈ (0, 1) , (5)

where𝐻 ∈ (0, 1) is a predefined threshold.

Condition 2. At sampling point 𝑘, the energy ratio (in dB) of
𝐸𝑎(𝑘) and 𝐸𝑎(𝑘 − 𝐶𝛿) exceeds a threshold𝐻𝑠; namely,

10 ⋅ log10 𝐸𝑎 (𝑘)
𝐸𝑎 (𝑘 − 𝐶𝛿) ≥ 𝐻𝑠, (6)

where 𝐸𝑎(𝑘) = 𝑇−11 𝐸(𝑘) + (1 − 𝑇−11 )𝐸𝑎(𝑘 − 1) represents a
moving average of energy level, with a window size equal to
𝑇1. The reason of introducing Condition 2 is to reduce the
probability that Condition 1 is satisfied but no𝑀-preambles
are transmitted.

3. Detection Performance Analysis

In this section, focusing on the downlink traffic from the
AP to nodes, we theoretically analyze the crucial impact of
SRID attributes (namely, tolerance threshold𝐻1, correlation
threshold𝐻, and energy ratio threshold𝐻𝑠) on the detection
performance.

Due to the downclocked rate and the noise, each SRID
detection result is associated with four mutually exclu-
sive minievents: (a) successful detection: AP sends an 𝑀-
preamble and the node detects it successfully, (b) miss-
detection: AP sends an 𝑀-preamble but the node does not
detect it, (c) false-alarm: AP does not send an 𝑀-preamble
but the node detects it mistakenly, and (d) Null: AP does
not send an 𝑀-preamble and the node detects nothing. To
study the detection performance, we only need to calculate
the successful detection probability 𝑃𝑑 = Prob(successful
detection) and the false-alarm probability 𝑃fa = Prob(false-
alarm), because Prob(miss-detection) = 1 − Prob(successful
detection) and Prob(Null) = 1 − Prob(false-alarm).

We note that each detection result is determined depend-
ing on whether the AP sends an 𝑀-preamble. Below, we
introduce two competing hypotheses:

H0 : 𝑧 (𝑘) = 𝑛 (𝑘) , 𝑘 = 0, 1, . . . , 𝐶𝛿
H1 : 𝑧 (𝑘) = ℎ𝑥 (𝑘) + 𝑛 (𝑘) , 𝑘 = 0, 1, . . . , 𝐶𝛿, (7)

where H0 is referred to as the null hypothesis (i.e., AP does
not send an𝑀-preamble to a node) andH1 as the alternative
hypothesis (i.e., AP sends an𝑀-preamble to a node). Under
hypothesisH0, at the sampling point 𝑘, the node receives the
noise, and therefore its sample value is 𝑧(𝑘) = 𝑛(𝑘), where
𝑛(𝑘) is the Gaussian white noise. Under hypothesisH1, at the
sampling point 𝑘, the node receives the 𝑀-preamble signal
and the noise, and therefore its sampling value is 𝑧(𝑘) =
ℎ𝑥(𝑘) + 𝑛(𝑘), where 𝑥(𝑘) represents the sampling value on
the𝑀-preamble and ℎ represents the channel coefficient.

3.1. Expression of 𝑃𝑑. We now express 𝑃𝑑. According to (4),
we have

𝑃𝑑 = 𝑃 {𝑁𝑠 ≥ 𝐻1𝑇2 | H1} . (8)

The sampling process is a Bernoulli process, where a sampling
point is marked success if Conditions 1 and 2 (specified
in Section 2.2) are satisfied. Therefore, the number of suc-
cessfully detected points in 𝑇2 trials, 𝑁𝑠, follows a binomial
distribution. Thus 𝑃𝑑 is expressed by

𝑃𝑑 =
𝑇
2∑

𝑖=𝐻
1
𝑇
2

𝐶𝑖𝑇
2

(𝑃1𝑃ER1)𝑖 (1 − 𝑃1𝑃ER1)𝑇2−𝑖 , (9)
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//Input: SNR, 𝐶, 𝑇𝐵, 𝑛𝐷𝑚, 𝐻1, 𝐻,𝐻𝑠, ℎ, 𝐷, 𝑇, 𝑇2
//Output: 𝑃𝑑
//We run the code below for 100000 times.
(1) 𝑖 ←󳨀 0
(2) while (𝑖 < 100000)
(3) Generate a CGS randomly
(4) 𝑥(0, 1, . . . , 𝑇) ←󳨀 [CGS, CGS,. . .,CGS]1×𝐶(5) 𝑦(0, 1, . . . , 𝑇) ← awgn(𝑥(1, . . . , 𝑇), SNR, “measured”)
(6) 𝑧(0, 1, . . . , 𝐶𝛿) ← Sample 𝑦 every𝐷 points
(7) Calculate 𝑅(0, 1, . . . , 𝐶𝛿) and 𝐸(0, 1, . . . , 𝐶𝛿)
(8) 𝑁1 ← the total number of sampling points that satisfy Condition 1.
(9) 𝑃1 (𝑖) ←󳨀 𝑁1

𝐶𝛿(10) 𝑁2 ← the total number of sampling points that satisfy Condition 2.
(11) 𝑃ER1(𝑖) ←󳨀 𝑁2

𝐶𝛿(12) 𝑖 ←󳨀 𝑖 + 1
(13) end
//We first calculate avg(𝑃1) and avg(𝑃ER1), then 𝑃𝑑.
(14) 𝑃𝑑 ←󳨀

𝑇2∑
𝑖=𝐻1𝑇2

𝐶𝑖𝑇2 [avg(𝑃1)avg(𝑃ER1)]𝑖 [1 − avg(𝑃1)avg(𝑃ER1)]𝑇2−𝑖

Algorithm 1: Calculation of 𝑃𝑑 based on the Monte Carlo method.

where 𝑃1 is the probability of Condition 1 being satisfied
under H1 and 𝑃ER1 is the probability of Condition 2 being
satisfied underH1.

Expression of 𝑃1. According to (5), 𝑃1 can be written as

𝑃1 = 𝑃 (H1;H1) = 𝑃{𝐻 < |𝑅 (𝑘)|
𝐸 (𝑘) < 𝐻−1 | H1} . (10)

In (10), 𝑃(H𝑖;H𝑗) represents the probability of deciding
H𝑖whenH𝑗 is true. Let𝑈1 denote the normalized correlation
result at sampling point 𝑘 under H1. Then 𝑈1 can be
expressed as 𝑈1 = ∑𝑘+𝑇1−1

𝑖=𝑘
|(ℎ𝑥(𝑖) + 𝑛(𝑖))(ℎ𝑥(𝑖 − 𝛿) + 𝑛(𝑖 −

𝛿))|/∑𝑘+𝑇1−1
𝑖=𝑘

|ℎ𝑥(𝑖) + 𝑛(𝑖)|2. Thus 𝑃1 is expressed by

𝑃1 = 𝑃 {𝐻 < 𝑈1 < 𝐻−1} . (11)

Note that𝑈1 is complicated, because it is a function of 2𝑇1
random variables (i.e., 𝑛(𝑘−𝛿), 𝑛(𝑘+1−𝛿), . . . , 𝑛(𝑘+𝑇1−1−𝛿)
and 𝑛(𝑘), 𝑛(𝑘+1), . . . , 𝑛(𝑘+𝑇1−1)). In Section 3.3, we calculate
𝑃1 via the Monte Carlo method [14].

Expression of 𝑃ER1. According to (6), 𝑃ER1 can be written as

𝑃ER1 = 𝑃{10 ⋅ log10 𝐸𝑎 (𝑘)
𝐸𝑎 (𝑘 − 𝐶𝛿) ≥ 𝐻𝑠 | H1} . (12)

UnderH1, 𝐸𝑎(𝑘) and 𝐸𝑎(𝑘−𝐶𝛿) are expressed as follows.
𝐸𝑎 (𝑘) = 𝑇−11 𝐸 (𝑘) + (1 − 𝑇−11 ) 𝐸𝑎 (𝑘 − 1)

= 𝑇−11
𝑘+𝑇

1
−1

∑
𝑖=𝑘

|ℎ𝑥 (𝑖) + 𝑛 (𝑖)|2

+ (1 − 𝑇−11 ) 𝐸𝑎 (𝑘 − 1)

𝐸𝑎 (𝑘 − 𝐶𝛿) = 𝑇−11 𝐸 (𝑘 − 𝐶𝛿)
+ (1 − 𝑇−11 ) 𝐸𝑎 (𝑘 − 𝐶𝛿 − 1)

= 𝑇−11
𝑘+𝑇

1
−1

∑
𝑖=𝑘

|𝑛 (𝑖)|2

+ (1 − 𝑇−11 ) 𝐸𝑎 (𝑘 − 1) .
(13)

Note that 𝐸(𝑘 − 𝐶𝛿) = ∑𝑘+𝑇1−1
𝑖=𝑘

|𝑛(𝑖)|2, because AP transmits
one𝑀-preamble (which consists of𝐶𝛿 sampling points only)
for each packet, and thereby the node only receives the noise
before the𝑀-preamble. Similar to 𝑃1, we can calculate 𝑃ER1
via the Monte Carlo method.

3.2. Expression of 𝑃fa. We now express 𝑃fa. Similar to 𝑃𝑑, 𝑃fa
can be expressed as follows:

𝑃fa = 𝑃 {𝑁𝑠 ≥ 𝐻1𝑇2 | H0}
=
𝑇
2∑

𝑖=𝐻
1
𝑇
2

𝐶𝑖𝑇
2

(𝑃2𝑃ER2)𝑖 (1 − 𝑃2𝑃ER2)𝑇2−𝑖 , (14)

where 𝑃2 = 𝑃(H1;H0) = 𝑃{𝐻 < |𝑅(𝑘)|/𝐸(𝑘) < 𝐻−1 | H0}
is the probability of Condition 1 being satisfied underH0 and𝑃ER2 = 𝑃{10 ⋅ log10(𝐸𝑎(𝑘)/𝐸𝑎(𝑘 − 𝐶𝛿)) ≥ 𝐻𝑠 | H0} is the
probability of Condition 2 being satisfied underH0.

3.3. Calculation of𝑃𝑑 and 𝑃fa viaMonte CarloMethod. In the
previous two subsections, we give expressions of 𝑃𝑑 and 𝑃fa.
However, they involve 2𝑇1 randomvariables and therefore are
hard to solve. Belowwe adopt theMonteCarlomethod [14] to
calculate them. Algorithm 1 lists the computation process in
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Figure 3: (a) 𝑃𝑑 and (b) 𝑃fa vary when the SNR varies.

terms of 𝑃𝑑, which is given by (9). Similarly, we can calculate
𝑃fa.

In Algorithm 1, we input the SRID parameters and output
the value of 𝑃𝑑. In the algorithm, we run Monte Carlo
experiment for 100000 times.Wenowdetail each experiment.

(i) In lines (3) to (4), we generate an 𝑀-preamble of 𝑇
samples points, which simulates theAP’s𝑀-preamble
transmission.

(ii) In line (5), we invoke theMatlab function, awgn(⋅), to
simulate the additive white Gaussian noise (AWGN)
channel and then the node’s received signal is the
result that theAP’s𝑀-preamble signal passes through
the AWGN channel.

(iii) In line (6), we obtain the downclocked sampling
sequence 𝑧(⋅) under the downclocking factor of 1/𝐷.

(iv) In line (7), we calculate self-correlation result𝑅(⋅) and
the energy level 𝐸(⋅).

(v) In lines (8) to (9), we calculate 𝑃1 in this experiment.
(vi) In lines (10) to (11), we calculate 𝑃ER1 in this experi-

ment.

Finally, after we finish 100000 runs, we first calculate the
average of𝑃1, avg(𝑃1), and the average of𝑃ER1, avg(𝑃ER1), and
then calculate 𝑃𝑑, as shown in line (14).

4. Model Verification

In this section, we present theMonteCarlo results to illustrate
the crucial impact of SRID attributes and SNR on the detec-
tion performance (namely, the successful detection proba-
bility 𝑃𝑑 and the false-alarm probability 𝑃fa). The default
parameter settings are set by [2] and are shown in Table 1.

Table 1: Parameter settings in simulation.

Parameters Description Values
𝐶 Number of CGS 3
𝑇𝐵 Basic length 64 sampling points
𝑛𝐷𝑚 Additional length 64 sampling points
𝐻1 Tolerance threshold 0.6
𝐻 Correlation threshold 0.9
𝐻𝑠 Energy ratio threshold 4 dB
SNR Signal-to-noise ratio 9 dB
ℎ Channel coefficient 1

In Figures 3 and 4, eachMonte Carlo result is on average over
100000 runs. In addition, we use “SRID(1/𝐷)” to denote the
SRID detection with the downclocking factor of 1/𝐷. In all
figures, the labels “ana” and “sim”, respectively, denote the
theoretical and simulation results.

Figures 3(a) and 3(b), respectively, plot 𝑃𝑑 and 𝑃fa as the
SNR varies, when 1/𝐷 = 1/2, 1/4, 1/8, 1/16. From Figure 3,
we have the following observations.

(i) Given 1/𝐷, 𝑃𝑑 increases and 𝑃fa decreases gradually
as the SNR increases.

(ii) Given SNR, as 1/𝐷 decreases, 𝑃𝑑 decreases slightly
while𝑃fa increases significantly. For example, for SNR
= 5 dB, when 1/𝐷 decreases from 1/2 to 1/16, 𝑃fa
grows from 0.0098 to 0.0301 significantly, while 𝑃𝑑
just drops from0.9997 to 0.9754 slightly.Thiswill lead
to a serious adverse impact on packet detection.

(iii) Thedetection performance is almost perfect (i.e.,𝑃𝑑 =1 and 𝑃fa = 0) when SNR = 10 dB, which is easy to
achieve in real environments [15].
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Figure 4: (a) 𝑃𝑑 and (b) 𝑃fa vary when𝐻1 varies.

Figures 4(a) and 4(b), respectively, plot 𝑃𝑑 and 𝑃fa as 𝐻1
varies, when 1/𝐷 = 1/2, 1/4, 1/8, 1/16. From Figure 4, we
have the following observations.

(i) Given 1/𝐷, as 𝐻1 increases, 𝑃𝑑 always decreases, but𝑃fa first decreases to 0 and then remains unchanged.
The reason is as follows: increasing 𝐻1 will decrease
the successful detection probability from (9) as well
as the false-alarm probability from (14).

(ii) Give𝐻1, as 1/𝐷 decreases, 𝑃𝑑 decreases significantly,
while 𝑃fa decreases gradually.

Finally, from these figures, the close match between
the theoretical and simulation curves manifests that our
performance model is very accurate.

5. Conclusion

In mobile edge computing, various battery-powered mobile
nodes desire to acquire information technology services at
the network edge under power saving. WiFi downclocking
is such a promising technique. In this paper, we investigate
a novel WiFi downclocking technique called SRID and first
theoretically study the impact of SRID attributes (namely,
tolerance threshold, correlation threshold, and energy ratio
threshold) on the detection performance of packet arrival.
This study is helpful in designing better WiFi downclocking
protocols.
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