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With the rapid growth of network of devices with embedded technology, mobile crowdsensing (MCS) has been gaining increasing
popularity. The development of 5G network services is prompting further growth in crowdsensing applications. However, MCS
participants risk their privacy when reporting data with their actual sensing positions. To address this issue, the concept of
differential privacy (DP) can be adopted to provide a theoretical guarantee for participants’ privacy in MCS services. In this study,
we design a new DP crowdsensing scheme with game theory. Based on the multilevel interactive game model, MCS server, DP
controllers, and mobile devices are regarded as rational individual decision makers that aim to maximize their own payoffs. For
these decision makers, the proposed game approach analyzes suitably the competitive and coordinative MCS environments. The
main novelty possessed by our control scheme is to capture the dynamics ofMCS system operations with the privacy consideration.
Compared with other existing protocols, performance evaluation shows the advantages of our proposed scheme in terms of the
sensing task success ratio, MCS participating ratio, and normalized payoff of participating devices. Finally, we provide the guidance
on the future research direction of MCS services including other issues.

1. Introduction

A large number of network devices are being connected at
an unprecedented rate realizing the idea of the Internet of
Things (IoT).The interconnections of these devices enable us
to collect and exchange data for offering various applications,
such as product tracking, environment monitoring, patient
surveillance, and home automation. It opens the door to
innovations that facilitate new interactions among ‘things’
and human and provides new opportunities for applications
and services that improve the quality of our daily life. Cisco
predicts that 50 billion devices would connect to the Internet
by 2020; this number would reach 500 billion by 2025. In the
future, IoT will lead to a significant change in our life patterns
in the way we live and interact with multiple devices [1–4].

For the IoT implementation,mobile crowdsensing (MCS)
is an appealing paradigm and has gained growing attention
in the last years. MCS refers to the technology that uses
mobile network devices to sense and collect the informa-
tion of surrounding environments and then report this
information to the MCS server. With built-in data storage

and intelligent functional ability, the MCS server analyzes
statistical characteristics and mines the data to reveal hidden
attributes based on the mass of collected information. Taking
advantage of the ubiquitous presence of powerful mobile
devices, that is, smartphones or sensor-embedded actuators,
MCS has become an appealing technique to commercial
businesses that wish to collect data without making large-
scale investments. In the recent years, famous companies use
the MCS technique to offer services based on the big data
collected [5]

The performance of MCS depends on the contribution of
participating devices. However, mobile devices acting MCS
services have to sacrifice their energy and time. To stimulate
cooperative actions among selfish devices, the MCS server
should pay the price for each participating device. It can
induce devices to provide full sensing efforts while ensuring
the sensing quality. More specifically, each individual device
is motivated to transmit accurate sensing information, if the
expected payment from the MCS server exceeds its sensing
cost [6]. Otherwise, it has nothing to gain by reporting the
MCS information. Therefore, adaptive pricing policy is a key
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challenge in the MCS system to balance the profits between
the MCS server and individual devices.

As a mathematical tool, game theory has been used
to investigate the interaction between the MCS server and
mobile devices. Game theory is the study ofmodels of conflict
and cooperation between intelligent rational decisionmakers
[7]. In this paper, we develop a new gamemodel to formulate
the operation of MCS system. Our proposed game model is
understood to achieve greater and reciprocal advantages for
selfish network agents, who can strengthen their competitive
advantages by using the multilevel interactive approach. In
addition, to get a desired game outcome, learning algorithms
are used in competitive environments. During the iterative
learning process, three key steps are performed by game
players: (i) observing the current system environment, (ii)
estimating the prospective payoff, and (iii) selecting a best
strategy to reach an effective solution.

Traditionally, people value their privacy and they cer-
tainly do not want their personal information to be accessible
to just anyone at any time. But recent advances in technology
threaten privacy and open up the possibility of a range of
negative consequences as a result of access to personal data.
During MCS operations, the collected information can be
sensitive to individuals, revealing personal data such as indi-
vidual commuting routes and locations. Therefore, ensuring
the privacy and security of personal information collected
through MCS is important and necessary. Therefore, privacy
protection mechanism has been considered an essential
requirement for the MCS system. However, until now, the
principal privacy issue in the MCS system has not yet been
well addressed; few existing work systematically investigates
the privacy protection problem considering the tradeoff
between privacy preservation and sensed data accuracy [8–
11].

In 2006, C. Dwork et al. introduced the concept of dif-
ferential privacy (DP), which is a mathematical definition for
the privacy loss that results to individuals when their private
information is used in the creation of a data product. The
main idea of DP is that a network agent perturbs its original
data by adding carefully designed random noises and then
directly transmits the noisy data to a data collection server.
Finally, the data collector is able to compute population
statistics. The DP approach can limit the increased privacy
risk resulting from inclusion of private data in a statistical
database and makes it possible to provide very accurate
statistics from the database while still ensuring high levels
of privacy protection. Therefore, DP ensures that the privacy
of data is protected because the data collector cannot access
the original data [12, 13]. In real-world environments, DP-
based data collection is first implemented in Google Chrome
browser to collect and track the client-side information [14].

Motivated by the above discussion, we have adopted
the DP mechanism to design a new practical MCS control
scheme. For dealing with the DP-based MCS situation, our
scheme focuses on the three control issues: MCS price deci-
sion, privacy level selection, andMCS contribution handling.
In the MCS price decision process, the MCS price is decided
by a novel learning algorithm. In the privacy level selection
process, mobile devices dynamically select their privacy

levels to maximize their profits. In the MCS contribution
handling process, the sensed data amount of each device
is adjusted using another online learning algorithm. Based
on the interactive feedback mechanism, control decisions in
each process are made in a distributed manner and cause
cascade interactions while balancing the payoff among selfish
system agents. Finally, we can reach the most profitable
solution in the MCS system.

1.1. Related Work. Considerable state-of-the-art research has
been conducted on the design of DP-based MCS schemes.
Reference [15] investigates the influence of sensing data
correlation on DP protection and explores different correla-
tion models to describe the relationship from two different
perspectives. From a protector’s view, Bayesian network is
used to model the probabilistic relationship among sensing
data, and a corresponding DP is given. From an adversary’s
view, the Gaussian correlation model is used to describe the
data correlation structure, and a new algorithm to compute
Bayesian DP leakage is presented. Finally, the extensive
simulations show the influence of the size of maximum
correlated group in all of participants on Bayesian DP [15].

Jian Lin and others designed the Privacy-Preserving
Mobile Crowdsensing (PPMC) scheme to achieve approx-
imate computational efficiency, individual rationality, and
social cost minimization [16]. First, authors consider a single-
bid model in which each user can only submit a set of
tasks and then develop another multibid model in which
each user can submit a bid for each task in its task set.
One important component of both models is a platform-
defined score function for selecting users. In particular,
two score functions, that is, linear and log functions, are
developed to realize the two models. Extensive numerical
results demonstrate that the PPMC scheme can achieve bid-
privacy preservation though sacrificing social cost [16].

Reference [17] proposes a new DP aggregation protocol
to resist collusion attacks without incurring extra error.
This protocol ensures that the accumulated error in the
sum statistics is only a copy Laplace noise required for
DP, but the magnitude of the noise incorporated to each
party’ data is not large enough to the data privacy. Another
feature of the proposed protocol is that it needs not to
have a priori estimation of those colluded parties to make it
secure under insecure communication channels. In addition,
authors design an efficient aggregation encryption scheme to
support MCS applications and also make some extensions to
make the proposed protocol more applicable in realities, such
as the fault tolerant and supporting parties’ dynamic joins or
leaves [17].

Reference [18] proposes a new anonymized data-
collection scheme that can estimate data distributions more
accurately. In particular, authors propose two methods:
Single to Randomized Multiple Dummies (S2M) and S2M
with Bayes (S2Mb), both of which can make a better tradeoff
between privacy and utility. And then, they develop an
algorithm that calculates optimized values of the parameters
that constitute S2M and S2Mb. The optimized parameters
satisfy DP and minimize the expected values of mean
squared errors and Jensen-Shannon divergence, which are
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the popular utility metrics. Finally, this study provides the
implementation results of synthetic and real datasets and
proves that S2M and S2Mb methods outperform existing
schemes [18].

Leye Wang and others designed the Sparse Differential
Location Privacy (SDLP) scheme to provide a theoretical
guarantee for participants’ location privacy regardless of an
adversary’s prior knowledge [19]. For the privacy preserv-
ing, this scheme includes three functions: data adjustment,
optimal location obfuscation, and uncertainty aware infer-
ence functions. The data adjustment function is used to fit
the original sensing data to the obfuscated location. The
optimal obfuscation function minimizes the uncertainty in
data adjustment under the constraints of DP and evenly
distributed obfuscation. The uncertainty aware inference
function improves the inference accuracy for the obfuscated
data. The SDLP scheme explores how to balance three key
functions for space MCS applications. Empirical evaluation
with real-world datasets shows that the SDLP scheme can
provide adequate privacy protection with reduced data qual-
ity loss [19].

Some earlier studies [15–19] have attracted considerable
attention while introducing unique challenges in handling
theMCS control problems. In this paper, we demonstrate that
our proposed scheme significantly outperforms these existing
PPMC [16] and SDLP [19] schemes.

1.2. Contribution. For the MCS process, there is little work
that has perfectly resolved the tradeoff between efficiency
and privacy. In order to strike the appropriate performance
balance among contradictory requirements, we take a first
step towards addressing the DP-based MCS control problem
by presenting a multilevel game model. Our game process
is operated according to the step-by-step repeated game
manner while harnessing the synergies among MCS agent
interactions. Based on the novel multilevel game approach,
the proposed scheme achieves effective advantages to adapt
to dynamically changing MCS environments. Although sev-
eral MCS algorithms including the DP concept have been
proposed, no systematic study including the strategic control
issues has been conducted.

1.3. Organization. The remainder of this article is organized
as follows. In the next section, we describe the principal
platform of the MCS system and present our multilevel game
formulation. And then, we explain the proposedMCS control
algorithms in detail and their properties. Section III provides
the simulation scenario and the experimental results. By
means of a comparison with existing PPMC [16] and SDLP
[19] schemes, we validate the performance excellency of the
proposed scheme. Finally, we present our conclusion and
discuss the remaining open challenges in this research area
along with possible solutions.

2. The Proposed MCS Control Algorithms

In this section, we first give the formation of multilevel game
model and notations of important parameters. After that we

present the proposed MCS control algorithms with neces-
sary assumptions. Finally, the proposed scheme is described
strategically in the nine-step procedures.

2.1. MCS System Architecture and Multilevel Game Model.
In this study, we consider the MCS infrastructure with the
DP-management platform. It is consisting of mobile devices,
MCS server, andDP controllers.TheMCS server gets sensing
data and pays the price through the DP controllers.There are
multiple sensing tasks requesting from theMCS server, which
delivers a final service to MCS customers by analyzing the
obtained information. As MCS participants, mobile devices
sense independently the information data while deciding
their level of privacy protection and the amount of MCS
contributions. When a mobile device chooses a higher level
of privacy protection or smaller amount of sensed data, its
service payment is reduced; the service payment of each
individual mobile device is proportional to his contribution.
Therefore, each rational mobile device needs to tradeoff
between his own preference and the payoff maximization.

DP controllers control the exchange of sensed data
between multiple devices and the MCS server. According
to the level of privacy protection, there are multiple DP
controllers. EachDP controller has been assigned as a specific
privacy level and works as a mediator to collect the sensed
data with the same DP level. With their selected privacy
levels, mobile devices report the sensed data to the corre-
spondingDP controller. According to their contributions, the
MCS server pays the service price to DP controllers and each
individual DP controller redistributes the allocated price to
its corresponding mobile devices. The general platform of
hierarchical MCS system is shown in Figure 1.

DP is a privacy definition that was originally developed
by Dwork, Nissim, McSherry, and Smith, with major con-
tributions by many others over the years. It is one of the
most important privacy metrics and has been widely studied
in data-mining research publications. In cryptography, the
DP aims to provide the accuracy of queries from statistical
databases while minimizing the chances of identifying its
records. Simply, the DP concept is satisfied if the distribu-
tion of the output does not change observably when one
mobile device’s information in the dataset is changed [18].
Specifically, a common mechanism adds the random noise
generated from a Laplace distribution to the query result.
It must guarantee that the contribution of each individual
device’s information to a query result is limited according to
the 𝜀 parameter, which is a positive real number [14, 20].

Originally, DP was designed for the data sharing scenario
inwhich a trusted data server holds a dataset where each tuple
is collected from a device without perturbation and releases
perturbed information from the dataset using a randomized
algorithm [20]. However, this traditional DP approach is
not adaptable to implement the DP-based MCS service. If
the DP controller is untrusted, then each individual device
would have to perturb his tuple to protect privacy before it is
collected by the DP controller. In this case, the tuple owned
by each mobile device is regarded as a singleton dataset,
and we require that the perturbation algorithm T should
locally ensure theDP conceptwhen such a singleton dataset is
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Figure 1: The general architecture of a multilevel MSC system platform.

given as the input. This variant of DP is referred to as 𝜀-local
differential privacy (𝜀-LDP) [14, 20]. In this study, we focus
on the 𝜀-LDP instead of the original notion of 𝜀-DP; the 𝜀-
LDP approach provides a much stronger degree of privacy
protection for each mobile device against the DP controller.

During the MCS system operations, system agents, that
is, MCS server, DP controllers, and mobile devices, make
decisions individually. In this situation, a main issue for each
agent is how to perform well by considering the mutual-
interaction relationship. To develop a new dynamic MCS
control scheme, we design a new multilevel game model to
balance conflict of interests among system agents. At the
upper level, the MCS server pays the price to multiple DP
controllers by using a proportional-split sharing manner. At
the lower level, DP controllers and mobile devices are game
players. Each DP controller redistributes the obtained price
to mobile devices, and mobile devices dynamically select
their correspondingDP controllers tomaximize their payoffs.
At the global level, the MCS server and mobile devices are
game players; they interact with each other to get a well-
balanced MCS system performance. At each level, game
players dynamically adjust their decisions to maximize their
own profits. For the implementation practicality, our multi-
level game model (G) is designed in an entirely distributed
and self-organizing interactive fashion. Mathematically, G
can be defined as G = {N = {S,C,D},A,E,S ={𝑆S, {𝑆C𝐶𝑖∈C}, {𝑆D𝐷𝑗∈D}}, U = {𝑈S, {𝑈C

𝐶𝑖∈C
}, {𝑈D
𝐷𝑗∈D

}}, 𝑇} at
each time period 𝑡 of gameplay.

(i) N = {S,C,D} is the finite set of game players where
S represents one MCS server, C = {𝐶1, . . . , 𝐶𝑙} is a
set of multiple DP controllers, andD = {𝐷1, . . . , 𝐷𝑛}
is a set of MCS participating mobile devices.

(ii) A = {𝐴1 ⋅ ⋅ ⋅ 𝐴V} is the set of MCS sensing application
tasks.

(iii) E = {𝜀𝐶1 ⋅ ⋅ ⋅ 𝜀𝐶𝑙} is the discrete DP levels ofMCS; 𝜀𝐶1≤𝑖≤𝑙
in E represents the DP level of DP controller 𝐶𝑖.

(iv) S = {𝑆S, {𝑆C𝐶𝑖∈C}, {𝑆D𝐷𝑗∈D}} is the finite strategy set
of different game players. 𝑆S = {(P𝑘,p) | P𝑘 ∈{P1 ⋅ ⋅ ⋅P𝑀} and p = [P𝐶1 ⋅ ⋅ ⋅P𝐶𝑙]} is the strategy
combination of the MCP server where P𝑘 is the
MCS service price per sensing data bit, and p is
the price distribution vector for DP controllers. For
simplicity,P𝑘 is defined as a discrete value, andP1,P𝑀
are the minimum and maximum prices, respectively,
and P𝐶𝑖,1≤𝑖≤𝑙 is the assigned price per bit for the
DP controller 𝐶𝑖 where P𝑘 = ∑𝑙𝑖=1P𝐶𝑖 . Therefore,
the MCS price payment P is shared by multiple DP
controllers.

(v) 𝑆C𝐶𝑖∈C = {𝛼𝐶𝑖1 ⋅ ⋅ ⋅ 𝛼𝐶𝑖𝑀} is the strategy set of 𝐶𝑖; 𝛼 rep-
resents a proportional-split parameter. For simplicity,𝛼 is also defined as a discrete value, and 𝛼1, 𝛼𝑀 are
the minimum and maximum 𝛼 values, respectively.
Using the 𝛼𝐶𝑖 value, the 𝐶𝑖 redistributes the obtained
P𝐶𝑖 price to its corresponding mobile devices.

(vi) 𝑆D𝐷𝑗∈D = {(A𝐷𝑗𝑘 , 𝜀𝐷𝑗) | A𝐷𝑗𝑘 ∈ {A𝐷𝑗1 ⋅ ⋅ ⋅A𝐷𝑗𝑀 }, 𝜀𝐷𝑗 ∈ E}
is the strategy combination of the𝐷𝑗 whereA𝐷𝑗𝑘 is the𝐷𝑗’s sensing data amount for theMCS service and 𝜀𝐷𝑗
is the 𝐷𝑗’s DP level. For simplicity, A is also defined
as a discrete value, andA1,A𝑀 are theminimum and
maximumA values, respectively.

(vii) U = {𝑈S, {𝑈C
𝐶𝑖∈C

}, {𝑈D
𝐷𝑗∈D

}} is the utility function set
of game players.𝑈S,𝑈C

𝐶𝑖
, and𝑈D

𝐷𝑗
represent the utility

functions of the MCP server, 𝐶𝑖 and𝐷𝑗, respectively.
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(viii) The 𝑇 is a time period. The G is repeated 𝑡 ∈ 𝑇 < ∞
time periods with imperfect information.

2.2. Multilevel Game Based MCS Control Algorithms. The
MCS server launches sequentially MCS tasks with specific 𝜀-
LDP levels tomultiplemobile devices. Based on his own pref-
erence, each mobile device individually decides the amount
of sensed data, and its 𝜀-LDP level, that is, (A, 𝜀). Simply, we
assume that 𝜀 values are decided based on the discrete set
E = {𝜀𝐶1 = 1.25, 𝜀𝐶2 = 1.5, 𝜀𝐶3 = 1.75, 𝜀𝐶4 = 2}. Therefore,
there are 4 DP controllers; that is, |E| = 4, in our MCS
platform and eachDP controller has its own 𝜀-LDP level. As a
mediator, the DP controller actually collects the same 𝜀-LDP
level sensed data from some mobile devices.

In this study, we implicitly decompose the MCS scheme
into three levels and present dynamic solutions for each
level control problem. To achieve a higher payoff, each
system agent performs a self-configuration mechanism in
order to identify better opportunities. Using the incentive
price, the MCS server can induce selfish mobile devices to
participate in the MCS process. At the upper level, the MCS
server pays the price to DP controllers based on the server’s
strategies P and p. At the lower level, each DP controller
redistributes the obtained price to its corresponding mobile
devices based on the 𝛼 proportional-split sharing solution.
At the same time, mobile devices choose their 𝜀-LDP levels
to adaptively respond to the DP controller decision based on
the feedback learning process. At the global level, the MCS
server and mobile devices interact and adjust their strategies,
that is, P and A𝐷, to maximize individual payoffs. Based on
this multilevel game approach, we can reach a fair-efficient
solution under dynamically changing system environments.

At the upper level, the MCS server attempts to maximize
the service outcome with the lower price payment. However,
there is a fundamental tradeoff. If the MCS service price

increases, it can induce more selfish devices to participate in
MCS services, whichwill cause a better service outcomewhile
sacrificing the cost effectiveness. Therefore, by considering
this tradeoff, the MCS server adaptively selects the most
proper price strategy. To capture this conflicting relationship,
theMCS server’s payoff is defined with the strategy combina-
tion (P,p). In (P,p), the P strategy is decided to interact with
mobile devices at the global level. Based on the P strategy,
the MCS server adjusts the price vector p for DP controllers
in the upper level. To maximize his payoff, the p is decided
according to the idea of proportional-split sharing approach.
At time 𝑡, the utility function of MCS server (𝑈S

𝑡 (P,p𝑡)) is
defined as follows:

𝑈S
𝑡 (P,p𝑡 = [P𝑡𝐶1 ,P𝑡𝐶2 ,P𝑡𝐶3 ,P𝑡𝐶4])
= 𝑖=4∑
𝑖=1

(Φ𝐶𝑖𝑡 (P𝑡𝐶𝑖) ×W [P𝑡𝐶𝑖])
s.t., W [P𝑡𝐶𝑖]

= (𝜀𝐶𝑖 × log(1 + Φ𝐶𝑖𝑡 (P𝑡𝐶𝑖)
max𝐶𝑗∈CΦ𝐶𝑗𝑡 (P𝑡𝐶𝑗)) −P

𝑡
𝐶𝑖
)

and
𝑖=4∑
𝑖=1

P
𝑡
𝐶𝑖
= P

(1)

where 𝜀𝐶𝑖 is the 𝜀-LDP value for the DP controller 𝐶𝑖, andΦ𝐶𝑖𝑡 (P𝑡𝐶𝑖) is the sensed data amount collected by the 𝐶𝑖 at
time 𝑡 with the P𝑡𝐶𝑖 payment. For the 𝑡 + 1 time period,
the P𝑡+1𝐶1 value with the strategy P is decided based on the𝜀 proportional-split sharing method:

P
𝑡+1
𝐶𝑖
(P) = P × ( 𝜀𝐶𝑖 × log (1 + Φ𝐶𝑖𝑡 (P𝑡𝐶𝑖) /max𝐶𝑗∈CΦ𝐶𝑗𝑡 (P𝑡𝐶𝑗))∑𝐶𝑘∈C (𝜀𝐶𝑘 × log (1 + Φ𝐶𝑘𝑡 (P𝑡𝐶𝑘) /max𝐶𝑗∈CΦ𝐶𝑗𝑡 (P𝑡𝐶𝑗)))) (2)

At the lower level, each DP controller redistributes the
obtained price P𝑡𝐶 to its corresponding mobile devices in a
distributed manner. According to the participating devices’
sensed data amount, the utility function of 𝐶𝑖 is defined, and

the 𝐶𝑖 selects the strategy 𝛼 to maximize his utility function;
the 𝛼 value is an element of 𝑆C𝐶𝑖 , which is a discrete set of
real numbers. At time 𝑡, the utility function of 𝐶𝑖 with the𝛼𝐶𝑖 ,𝑡𝑥 ∈ 𝑆C𝐶𝑖 strategy (𝑈𝐶𝑖𝑡 (𝛼𝐶𝑖 ,𝑡𝑥 )) is estimated as follows;

𝑈𝐶𝑖𝑡 (𝛼𝐶𝑖 ,𝑡𝑥 ) = arg max
𝛼
𝐶𝑖,𝑡
𝑥 ∈𝑆

C
𝐶𝑖

∑
𝐷𝑗∈Γ𝐶𝑖

(𝑋 ×A𝐷𝑗 ,𝑡)
s.t., 𝑋 = [𝛼𝐶𝑖 ,𝑡𝑥 × log(1 + A𝐷𝑗 ,𝑡

max𝐷𝑘∈Γ𝐶𝑖A
𝐷𝑘 ,𝑡
) − 𝑝𝑡𝐷𝑗 (A𝐷𝑗 ,𝑡V ,P𝑡𝐶𝑖 , 𝛼𝐶𝑖,𝑡𝑥 )]

(3)

where Γ𝐶𝑖 is the set of mobile devices, which are actively
participatingMCS service through the𝐶𝑖. Like the p decision

mechanism, the payment mechanism for mobile devices is
designed based on the proportional-split sharing approach.
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With the strategy 𝛼, the 𝐶𝑖 decides the service price per bit(𝑝𝑡𝐷𝑗(⋅)) for the mobile device 𝐷𝑗 ∈ Γ𝐶𝑖 . At time 𝑡, if the 𝐶𝑖
selects the𝛼𝐶𝑖,𝑡1≤𝑥≤𝑀 strategy and the𝐷𝑗 contributes to theA𝐷𝑗,𝑡V

amount of sensed data, the 𝑝𝑡𝐷𝑗(A𝐷𝑗 ,𝑡V ,P𝑡𝐶𝑖 , 𝛼𝐶𝑖 ,𝑡𝑥 ) is given by

𝑝𝑡𝐷𝑗 (A𝐷𝑗 ,𝑡V ,P𝑡𝐶𝑖 , 𝛼𝐶𝑖,𝑡𝑥 ) = P
𝑡
𝐶𝑖

× ( 𝛼𝐶𝑖,𝑡𝑥 × log (1 +A𝐷𝑗 ,𝑡V /max𝐷𝑘∈Γ𝐶𝑖A
𝐷𝑘 ,𝑡
V )

∑𝐷𝑛∈Γ𝐶𝑖 (𝛼𝐶𝑖 ,𝑡𝑥 × log (1 +A𝐷𝑛 ,𝑡V /max𝐷𝑘∈Γ𝐶𝑖A
𝐷𝑘 ,𝑡
V )))

(4)

At each time step, the 𝐶𝑖 receives the payoff as a consequence
of selecting strategy. The 𝐶𝑖 uses this information to predict
the payoff values of next time period and adjust the propen-
sities of their strategies. In this study, we adopt the modified
Roth-Erev learning mechanism to decide on the 𝐶𝑖’s strategy
[21]. At time 𝑡 + 1, the expected utility of 𝐶𝑖 with the 𝛼𝐶𝑖,𝑡𝑥
strategy (𝑈̂𝐶𝑖𝑡+1(𝛼𝐶𝑖𝑥 )) is derived as follows:

𝑈̂𝐶𝑖𝑡+1 (𝛼𝐶𝑖𝑥 ) =
{{{{{{{{{
𝑈̂𝐶𝑖𝑡 (𝛼𝐶𝑖𝑥 ) + [[Υ × (

𝑈𝐶𝑖𝑡 − 𝑈̂𝐶𝑖𝑡 (𝛼𝐶𝑖𝑥 )
max (𝑈𝐶𝑖𝑡 , 𝑈̂𝐶𝑖𝑡 (𝛼𝐶𝑖𝑥 )))]] if 𝛼𝐶𝑖𝑥 is selected at time 𝑡

𝑈̂𝐶𝑖𝑡 (𝛼𝐶𝑖𝑥 ) , otherwise

(5)

where Υ is the learning rate and 𝑈𝐶𝑖𝑡 is the actually obtained
utility for the𝐶𝑖 at time 𝑡. Based on this expected utility value,
we can calculate the propensity of each strategy (𝛼𝐶𝑖,𝑡

ℎ
∈ 𝑆C𝐶𝑖)

at the 𝑡 + 1 time period. Based on the modified Roth-Erev
learning mechanism, the propensity of 𝛼𝐶𝑖 ,𝑡

ℎ
strategy (𝜁𝐶𝑖 ,ℎ𝑡+1 ) at

time 𝑡 + 1 is defined as [21]:

𝜁𝐶𝑖 ,ℎ𝑡+1 = (1 − 𝜒) × 𝜁𝐶𝑖 ,ℎ𝑡 + Z (𝜖, 𝑈̂𝐶𝑖𝑡 (𝛼𝐶𝑖ℎ ) , 𝜁𝐶𝑖 ,ℎ𝑡 )
s.t., Z (𝜖, 𝑈̂𝐶𝑖𝑡 (𝛼𝐶𝑖ℎ ) , 𝜁𝐶𝑖 ,ℎ𝑡 )

= {{{{{{{{{

𝑈̂𝐶𝑖𝑡 (𝛼𝐶𝑖ℎ ) × (1 − 𝜖)𝜛 , if 𝛼𝐶𝑖
ℎ

is selected at time 𝑡
𝑈̂𝐶𝑖𝑡 (𝛼𝐶𝑖ℎ ) × 𝜖𝜛 , otherwise

(6)

where𝜛 and𝜒 are theweight and recency parameters, respec-
tively. The parameter 𝜖 is used to encourage the exploitation
of new actions while avoiding premature convergence on a
suboptimal action [21].

At the lower level, individual mobile device selects his 𝜀-
LDP level; it is directly related to decide on his corresponding
DP controller. In this study, there are four DP controllers.
Therefore, each mobile device has four possible strategies.
For the 𝐷𝑗, his payoff corresponds to the received outcome

minus the incurred cost. At time 𝑡, if the 𝐷𝑗 selects the𝜀𝐷𝑗 ,𝑡𝐶𝑖 strategy for his MCS service, that is, 𝐶𝑖 is selected
as 𝐷𝑗’s corresponding DP controller, the payoff of 𝐷𝑗 with
the strategies A𝐷𝑗 ,𝑡V and 𝜀𝐷𝑗 ,𝑡𝐶𝑖 (𝑈𝐷𝑗𝑡 (A𝐷𝑗 ,𝑡V , 𝜀𝐷𝑗,𝑡𝐶𝑖 )) is defined as
follows:

𝑈𝐷𝑗𝑡 (A𝐷𝑗 ,𝑡V , 𝜀𝐷𝑗 ,𝑡𝐶𝑖 )
= (A𝐷𝑗 ,𝑡V × 𝑝𝑡𝐷𝑗 (A𝐷𝑗 ,𝑡V ,P𝑡𝐶𝑖 , 𝛼𝐶𝑖 ,𝑡ℎ ))
− (𝛽 ×A𝐷𝑗 ,𝑡V )𝑄 − (𝜔 ×A𝐷𝑗 ,𝑡V )𝑞 ,

s.t., 𝑄 = ] − 1(𝜀𝐷𝑗 ,𝑡𝐶𝑖 )

(7)

To estimate the instantaneous expense for MCS services, the
cost function is defined based on the sensed data amount
A
𝐷𝑗 ,𝑡
V given by (𝛽 × A

𝐷𝑗 ,𝑡
V )𝑄and (𝜔 × A

𝐷𝑗 ,𝑡
V )𝑞 where 𝛽, 𝜔, 𝑞,

and 𝑄 are estimation parameters. With the A
𝐷𝑗 ,𝑡
V and 𝜀𝐷𝑗,𝑡𝐶𝑖

strategies, the expected utility of 𝐷𝑗 at the 𝑡 + 1 time period(𝑈̂𝐷𝑗𝑡+1(A𝐷𝑗 ,𝑡V , 𝜀𝐷𝑗 ,𝑡𝐶𝑖 )) is also derived in the same manner as
equation (7);

𝑈̂𝐷𝑗𝑡+1 (A𝐷𝑗 ,𝑡V , 𝜀𝐷𝑗 ,𝑡𝐶𝑖 ) =
{{{{{{{{{{{
𝑈̂𝐷𝑗𝑡 (A𝐷𝑗 ,𝑡V , 𝜀𝐷𝑗 ,𝑡𝐶𝑖 ) + [[𝜅 × (

𝑈𝐷𝑗𝑡 − 𝑈̂𝐷𝑗𝑡 (A𝐷𝑗 ,𝑡V , 𝜀𝐷𝑗 ,𝑡𝐶𝑖 )
max (𝑈𝐷𝑗𝑡 , 𝑈̂𝐷𝑗𝑡 (A𝐷𝑗 ,𝑡V , 𝜀𝐷𝑗 ,𝑡𝐶𝑖 )))

]] if 𝜀𝐷𝑗,𝑡𝐶𝑖 is selected at time 𝑡
𝑈̂𝐷𝑗𝑡 (A𝐷𝑗 ,𝑡V , 𝜀𝐷𝑗 ,𝑡𝐶𝑖 ) , otherwise

(8)

where 𝜅 is the learning rate and 𝑈𝐷𝑗𝑡 is the actually obtained
utility for the 𝐷𝑗 at time 𝑡. Based on this expected utility
value, we also calculate the propensity of strategy 𝜀𝐷𝑗 ,𝑡𝐶1≤𝑖≤4 ∈ E

at time +1 (𝜁𝐷𝑗 ,𝑖𝑡+1 ). It is also estimated based on the modified
Roth-Erev learning mechanism. Therefore, the 𝜁𝐷𝑗 ,𝑖𝑡+1 value is
calculated in the same manner according to (6).
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Based on the strategy propensities, we can estimate the
probability distribution for each strategy selection. In the
proposed algorithms, the softmax activation logistic function
is adopted to calculate the probability distribution [22].
Finally, at the lower level, the𝐶𝑖 and𝐷𝑗 select their strategies,
that is, 𝛼𝐶𝑖 and 𝜀𝐷𝑗 , according to these distributions. There-
fore, without any impractical rationality assumptions, players
dynamically change their current strategies while interacting
with other players and can learn how to perform well in an
effort to maximize their own goals.

At the global level, the MCS server and individual mobile
devices dynamically adjust their strategies, that is, P and A,
to maximize their payoffs. To decide on P and A strategies,
the time period of the global level (Δ𝑇) is different from
the time period (Δ𝑡) of the upper or lower level process;Δ𝑇 is larger than Δ𝑡 where Δ𝑡 ≪ Δ𝑇. From the viewpoint
of the MCS server, the expected payoff with the strategy
P𝑇1≤𝑗≤𝑀(𝑈̂S

𝑇+1(⋅)) at the 𝑇 + 1 time period can be defined
as

𝑈̂S
𝑇+1 (P𝑇𝑗 ,p(⋅)) =

{{{{{{{{{
𝑈̂S
𝑇 (P𝑇𝑗 ,p(⋅)) + [[𝜕 × (

𝑈S
𝑇 − 𝑈̂S

𝑇 (P𝑇𝑗 ,p(⋅))
max (𝑈S

𝑇 , 𝑈̂S
𝑇 (P𝑇𝑗 ,p(⋅))))]] if P𝑇𝑗 is selected at time 𝑇

𝑈̂S
𝑇 (P𝑇𝑗 ,p(⋅)) , otherwise

s.t., 𝑈S
𝑇 = ∑
𝑡∈Δ𝑇

𝑈S
𝑡 (P,p𝑡)

(9)

where 𝜕 is the learning rate and P𝑇𝑗 is the 𝑗th strategy in{P1 ⋅ ⋅ ⋅P𝑀}. p(⋅) is the set of multiple P𝐶 strategies, which
are selected during the Δ𝑇. According to the 𝑈̂S

𝑇+1 value, we

can also calculate the propensity of P𝑗 strategy (ΨS,𝑗

𝑇+1) at the𝑇 + 1 time period. In this case, ΨS,𝑗

𝑇+1 is estimated as fol-
lows:

ΨS,𝑗

𝑇+1 = ΨS,𝑗

𝑇 + [[𝜇 × (
𝑈S
𝑇 − 𝑈̂S

𝑇 (P𝑇𝑗 ,p(⋅))
max (𝑈S

𝑇 , 𝑈̂S
𝑇 (P𝑇𝑗 ,p(⋅)))) ×H (ΨS,𝑗

𝑇 , 𝜎𝑗𝑇)]]
s.t., H (ΨS,𝑗

𝑇 , 𝜎𝑗𝑇) = 𝜙 (𝜎𝑗𝑇)(1 + exp (−ΨS,𝑗

𝑇 /𝜏))
and 𝜙 (𝜎𝑗𝑇) = {{{

1, if 𝜎1≤𝑗≤𝑀𝑇 = 1
−1, otherwise

(10)

where 𝜇 is the learning rate, and 𝜏 is the control factor.H(⋅)
is the gradient of the sigmoid function with respect to the Ψ.
If the P𝑗 strategy is selected at the 𝑇 time period, 𝜎𝑗𝑇 is set to
1, that is, 𝜎𝑗𝑇 = 1; otherwise 𝜎𝑗𝑇 is set to 0 where 𝜎𝑗𝑇 = {0, 1}
[21].

With the interactionwith theMCS server, each individual
mobile device dynamically adjusts his strategyA tomaximize
the payoff. According to (7), the𝐷𝑗’s payoffwith the strategies
A
𝐷𝑗 ,𝑇
V and 𝜀𝐷𝑗 ,𝑇

(⋅)
is defined as follows:

𝑈𝐷𝑗𝑇 (A𝐷𝑗 ,𝑇V , 𝜀𝐷𝑗 ,𝑇
(⋅)
) = Ι𝐷𝑗𝑇 (A𝐷𝑗 ,𝑇V ) − 𝑐 (A𝐷𝑗 ,𝑇V , 𝜀𝐷𝑗 ,𝑇

(⋅)
)

s.t., {{{{{{{{{
Ι𝐷𝑗𝑇 (A𝐷𝑗 ,𝑇V , 𝜀𝐷𝑗,𝑇

(⋅)
) = ∑
𝑡∈Δ𝑇

𝑝𝑡𝐷𝑗 (A𝐷𝑗 ,𝑡V ,P𝑡𝐶𝑖 , 𝛼𝐶𝑖 ,𝑡ℎ )
𝑐 (A𝐷𝑗 ,𝑇V ) = ∑

𝑡∈Δ𝑇

((𝛽 ×A𝐷𝑗 ,𝑡V )𝑄 + (𝜔 ×A𝐷𝑗 ,𝑡V )𝑞)
(11)

where 𝜀𝐷𝑗,𝑇
(⋅)

is the set of multiple 𝜀𝐷𝑗 strategies, which are

selected during the Δ𝑇. With the A𝐷𝑗 ,𝑇V and 𝜀𝐷𝑗 ,𝑇
(⋅)

strategies,
the expected payoff of 𝐷𝑗 at the 𝑇 + 1 time period(𝑈̂𝐷𝑗𝑇+1(A𝐷𝑗 ,𝑇V , 𝜀𝐷𝑗 ,𝑇

(⋅)
)) is also expected according to (9). Based

on this information, we also calculate the propensity of
strategyA𝐷𝑗 ,𝑇

1≤𝑘≤𝑀
at time 𝑇 + 1 (𝜂𝐷𝑗 ,𝑘𝑡+1 ); 𝜂𝐷𝑗,𝑘𝑡+1 is also calculated

in the same manner as equation (10). Based on these strategy
propensities, that is,Ψ and 𝜂, we also estimate the probability
distributions for P and A strategies. In the same manner as
in the lower level game process, we use the softmax activation
logistic function to calculate these probability distributions.
According to these distributions, the MCS server and each
mobile device select their strategies, that is,P andA𝐷. In each
time round Δ𝑇, game players can learn the others’ responses
with incoming information and will select better strategies to
approximate the most desirable system solution.
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Table 1: System parameters used in the simulation experiments.

Sensing Tasks Total MCS cycles 𝜀-LDP value Service Duration
S1 4.5 K sensing cycles/s 0.1 3,000 sec (50 min)
S2 6.5 K sensing cycles/s 0.15 2,700 sec (45 min)
S3 9 K sensing cycles/s 0.2 2,880 sec (48 min)
S4 12 K sensing cycles/s 0.25 2,760 sec (46 min)
Parameter Value Description𝑙 4 the number of DP controllers
n 100 the number of mobile devices𝜀1, 𝜀𝑀 1.25, 2 the minimum and maximum privacy levels
P1,P2,P3,P4,P𝑀=5 1, 1.5, 2, 2.5, 3 the MCS service price per bit
A1,A𝑀=5 200, 600 cycles/s the minimum and maximum sensing data amounts𝛼1, 𝛼𝑀=4 1.2, 2 the minimum and maximum proportional sharing factorsΥ 0.1 the learning rate for DP controllers𝜒 0.9 the recency parameter to select a DP controller𝜖 0.5 the parameter to avoid a premature convergence𝜛 4 the weight parameter to select a DP controller𝛽,] 1.5, 1 the estimation parameters to calculate the DP cost𝜔, 𝑞 1.1, 0.7 the estimation parameters to calculate the service cost𝜅 1.5 the learning rate for mobile devices𝜕, 𝜇 0.1, 0.1 the learning rate parameters for the MCS servers𝜏 0.5 the control factor for the MCS server

2.3. Main Steps of Proposed Multilevel MCS Control Scheme.
In this study, we have investigated the influence of crowd-
sensing information with the privacy protection issue and
propose a novel MCS control scheme based on the multilevel
interactive gamemodel. It takes into account the desired level
of privacy protection, computational efficiency, individual
rationality, and social welfare. As game players, the MCS
server, DP controllers, and mobile devices can capture the
dynamics ofMCS system conditions and determine their best
strategies to maximize their payoffs. Through a step-by-step
online learning approach, they are able to feed back their
decisions while getting a full synergy of interactive multilevel
operations. Therefore, game players at each level adaptively
adjust their control decisions individuallywithout centralized
coordination. It is an effective and suitable way to operate
practically the real-world MCS system.The main steps of the
proposed MCS control scheme are described as follows.

Step 1. At the initial time, system parameters and sensing
tasks are characterized by the simulation scenario andTable 1.

Step 2. EachDP controller has been designated as a specific 𝜀-
LDP level.Therefore, the collected data in each DP controller
have the same 𝜀-LDP value.

Step 3. The MCS generates sequentially MCS sensing tasks,
andmobile devices actively sense and collect the information
of local environments. As mediators, DP controllers arbitrate
between the MCS server and mobile devices.

Step 4. TheMCS server selects the combination of strategies(P,p). At the global level, the MCS server decides on the P
value at each Δ𝑇 according to (9)-(10). At the upper level,

theMCS server dynamically adjusts the price vector p for DP
controllers at each Δ𝑡 according to (2).
Step 5. DP controllers redistribute the obtained price P𝐶 to
their corresponding mobile devices in the 𝛼 proportional-
split sharing approach. At the lower level, each DP controller
dynamically selects his strategy 𝛼𝐶 at eachΔ𝑡 tomaximize the𝑈𝐶 according to (3), (5)-(6).
Step 6. Individual mobile devices select the combination of
their strategies (A, 𝜀). At the global level, they dynamically
adjust their strategies A at each Δ𝑇 using (11). At the lower
level, they decide on their 𝜀-LDP values at each Δ𝑡 according
to (7)-(8).

Step 7. Based on the step-by-stepmultilevel game process, the
MCS, DP controllers and mobile devices interact with one
another and cause a cascade effect in an online distributed
fashion.

Step 8. By using the proportional-split sharing and online
learning methods, game players know how to select their
strategies while maximizing their perceived payoffs.

Step 9. Under the dynamic MCS system environment, game
players are constantly self-monitoring the current MCS
system conditions; proceed to Step 3 for the next multilevel
game iteration.

3. Performance Evaluation

In this section, we evaluate the performance of our proposed
protocol and compare it with that of the existing PPMC [16]
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and SDLP [19] schemes. Based on the simulation results, we
confirm the superiority of the proposed approach. To ensure
a fair comparison, the following simulation assumptions and
MCS system platform are used.

(i) There are oneMCS serverS, four DP controllersC ={𝐶1, 𝐶2, 𝐶3, 𝐶4} for different DP services, and one
hundred mobile devices D = {𝐷1, . . . , 𝐷100}, which
are distributed randomly in a geographical region.

(ii) There is the set of MCS sensing application tasks
where A = {𝐴1 ⋅ ⋅ ⋅ 𝐴V}. A can be categorized as four
different sensing task groups, that is, {S1,S2,S3,S4}.
Each S is specified according to the sensing require-
ments. They are generated with equal probability.

(iii) To distribute the obtained price to its corresponding
mobile devices, the strategy set of DP controller is
𝑆
C = {𝛼𝐶1 = 1.2, 𝛼𝐶2 = 1.4, 𝛼𝐶3 = 1.75, 𝛼𝐶𝑀=4 = 2}.

(iv) The 𝜀-LDP value of each sensing task application is
randomly decided among E = {𝜀𝐶1 = 1.25, 𝜀𝐶2 =1.5, 𝜀𝐶3 = 1.75, 𝜀𝐶4 = 2}.

(v) Each mobile device has a range of sensing capacityA
to proceed MCS services;A is a discrete value where
A ∈ {A1 = 200 sensing cycles/s, A2 = 300 sensing
cycles/s, A3 =400 sensing cycles/s, A4 =500 sensing
cycles/s,A𝑀=5 = 600 sensing cycles/s}.

(vi) Sensing tasks inA are generated based on the Poisson
process; the generation rate range 𝜆 is varied from 0
to 3.

(vii) The time period of the global level (Δ𝑇) is divided into
10 time periods of the upper and lower level process(Δ𝑡). In this simulation model, Δ𝑡 is assumed as one
second.

(viii) System performance measures obtained on the basis
of 100 simulation runs are plotted as functions of the
sensing task generation rate.

(ix) For simplicity, we assume the absence of physical
obstacles in the experiments.

To demonstrate the validity of our proposed method, we
measured the sensing task success ratio, MCS participating
ratio, and normalized payoff of participating devices. Table 1
shows the system parameters used in the simulation. Major
system control parameters of the simulation, presented in
Table 1, facilitate the development and implementation of our
simulator.

Figure 2 gives the performance comparison of each
scheme in terms of the task success ratio. From the viewpoint
of system operator, it is a main concern and important
performance criterion. As mentioned earlier, the MCS server
generates sequentially MCS sensing tasks. As the task gen-
eration rate increases, the task success ratio decreases. From
Figure 2, it is easy to see that the scheme which is designed
in this paper has the best performance. In the proposed
scheme, the MCS server, DP controllers, and mobile devices
make intelligent control decisions while working together
toward an appropriate system performance. Therefore, they
can respond practically to current system conditions and
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Figure 2: Sensing task success ratio.
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Figure 3: MCS participating ratio.

jointly reach a mutually acceptable agreement to complete
the request tasks; it leads to a higher task success ratio. From
low to high task generation rate, we can effectively complete
the requested task sensing applications compared with other
existing schemes.

Figure 3 presents the MCS participating ratio for each
scheme. In the proposed approach, the MCS server and
DP controllers can effectively induce selfish mobile devices
to participate in the MCS process. Based on the feedback
based online learning methods, the MCS server chooses the
most adaptable service price and DP controllers rationally
redistribute the assigned price to mobile devices. This mul-
tilevel approach can stimulate mobile devices to participate
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Figure 4: Normalized payoff of participating devices.

actively in the MCS process while revealing their private
propensities and to take appropriate actions. As game players,
the MCS server, DP controllers, and mobile devices are
mutually dependent and monitoring each other in order to
obtain the best solution for all. For this reason, the proposed
scheme can attain the better MCS participating ratio to the
existing PPMC and SDLP schemes.

The curves in Figure 4 indicate the normalized payoff of
participating mobile devices. In our scheme, mobile devices
can get payoffs according to the actual contributions forMCS
services. In particular, individual devices in the proposed
scheme dynamically select their strategies while aligning
their goals and preferences. Therefore, they can maximize
their payoffs in a self-adapting manner to meet their goals
under dynamically changeable MCS environments. During
different task generation intensities, we can see that the pro-
posed scheme achieves better devices’ payoffs. In summary,
simulation results shown in Figures 2–4 demonstrate that
the proposed scheme, which uses a multilevel game model,
can get the full synergy of MCS processing operations. In
conclusion, simulation results show that our scheme attains
an attractive MCS system performance, something that the
PPMC [16] and SDLP [19] schemes cannot offer.

4. Summary and Conclusions

In recent years, the widespread prevalence of smart devices
has enabled a new IoT paradigm, called MCS services. This
technique leverages pervasive mobile devices to efficiently
collect the big sensory data while rewarding their work.
However, they concern about the loss of individual privacy
seriously. In this paper, we design a privacy-preserving MCS
control scheme based on the multilevel game model. As
game players, the MCS server, DP controllers, and mobile
devices aim to maximize their payoffs in each level. From
the perspectives of the MCS server, DP controllers, and

mobile devices, the main concerns are to decide on the
service price, to redistribute the obtained price, and to
decide on the MCS contribution considering the privacy
preservation, respectively. To capture the dynamics of inter-
active relationships, each game player learns how to per-
form well by interacting with other players without any
impractical rationality assumptions. Using the step-by-step
repeated game process, the proposed scheme can explore
an effective solution under widely different and diversified
MCS situations. It is a practical and suitable approach in the
real-world system operation. Through extensive simulation
experiments, we evaluate the performance of our scheme
and existing protocols, and the results validate that our
proposed scheme can significantly improve performance. In
the future, we will extend the proposed approach by adding
the cooperative game concept as a negotiation bargaining
solution. Also, we plan to focus on implementing a realistic
MCS application for traffic information collection against
faked sensing attacks. Finally, we would like to take a research
opportunity to address the big datamining and deep learning
issues in the MCS system from the operator’s perspective.
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