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The Fifth Generation (5G) of wireless communication is envisioned to comprise heterogeneous applications, different radio access
technologies (RATs), and a large demand formobile traffic. In this respect,Wireless Virtualization (WV) and Cognitive Radio (CR)
are put forward as 5G enablers for providing additional spectrum resources through dynamic spectrum access (DSA) techniques,
besides dealing with heterogeneity with no hardware modification. By empowering the synergy between CR andWV, we visualize
an environment denoted as Cognitive Radio Virtual Networks Environment (CRVNE) that encompasses VWNs with different
access priorities, called Primary Virtual Networks (PVNs) and Secondary Virtual Networks (SVNs) that may be deployed in an
overlay manner. In this scenario, the SVNs users (SUs) access the resources opportunistically, which naturally raises challenges
towards the SVN mapping. In this paper, we revisit our previous letter that models the interactions between PUs and SUs in a
CRVNEand analyzes a proposed formulation for collision probability during the SVNmapping process.The currentwork is pioneer
as it presents a comprehensive approach to the SVNs mapping problem; models, validates, and analyzes additional performance
metrics such as SU blocking and SU dropping probabilities and joint utilization; formulates the SVNs mapping as a multiobjective
problem; and proposes an evolutionary scheme based on Genetic Algorithms (GAs) to solve it. The results show that the proposed
scheme outperforms the alternative method in terms of collision, SU dropping, SU blocking probabilities, and joint utilization
under different primary and secondary loads.

1. Introduction

The Fifth Generation (5G) of wireless communication is
envisioned to comprise three service categories—enhanced
mobile broadband (eMBB), massive machine-type commu-
nication (mMTC), and ultra-reliable and low-latency com-
munication (URLLC)—that have different requirements in
terms of Quality of Service (QoS), Quality of Experience
(QoE), and security [1]. To tackle this heterogeneity, Wireless
Virtualization (WV) is put forward as a key technology
[2], since virtual wireless networks (VWNs) with different
services may share the same wireless infrastructure.

Wireless Virtualization comprises both spectrum and
infrastructure sharing (e.g., base stations and access points).
Spectrum sharing focuses on the air interface virtualization,

i.e., how to schedule the spectral resources for VWNs. Some
works such as [3, 4] address spectrum sharing but consider
a strict resource allocation; i.e., the resources allocated to a
VWN are not shared with another during operation, which
may cause resource underutilization and revenue losses for
the Mobile Network Operator (MNO), the owner of the
physical resources. In this respect, opportunistic resource
sharing has been raised in [5, 6] as an alternative for solving
such problem as it enables multiple flows from different
VWNs to share common resources. However, little flexibility
at the PHY and MAC layers has been achieved, since the
VWNs mapping is tied to specific radio access technologies
(RATs) [3]; that is, the RAT adopted by VWNs is limited
to that employed by the wireless infrastructure. In addition,
there is no difference amongVWNs in terms of access level to
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the resources (e.g., high and low priority VWNs). Therefore,
these approaches do not address VWNs with different access
priorities or RATs on the same wireless infrastructure.

Due to the mobile traffic increase, by 2020 it is expected
that the demand should be two hundred times greater than
the current moment [7]. Hence, the scarce electromagnetic
spectrummust bemade available and used efficiently to allow
attending our future needs. Cognitive Radio (CR) has been
envisioned as an enabler for the deployment of 5G systems
as it focuses on the smart use of the spectrum through the
dynamic spectrum access (DSA) techniques [8].

By combining Wireless Virtualization and CR, the deep-
est level ofWireless Virtualization can be achieved (spectrum
based virtualization [9]).This combination provides isolation
among VWNs at a low level [10] and better resource uti-
lization through DSA and grants VWNs with different RATs
coexisting on the same wireless infrastructure with no hard-
ware modification. By empowering the synergy between CR
and WV, we visualize an environment denoted as Cognitive
Radio Virtual Networks Environment (CRVNE), in which
VWNs with different access priorities to the resources, called
Primary Virtual Networks (PVNs) and Secondary Virtual
Networks (SVNs), may be deployed in an overlay manner
and share the same cognitive radio substrate.The SVNs users
known as secondary users (SUs) only have access to the
resources when the PVNs users, i.e., primary users (PUs), are
not using them, avoiding to cause harmful interference to the
PVN communication.

The PVNs are managed by Primary Service Providers
(PSPs) and could offer any application type supported by
wireless substrate such as multimedia and real time appli-
cations. Since the SVNs, which are managed by Secondary
Service Providers (SSPs), may suffer preemption, they show
some limitations on the supported types of application. In
this respect, delay sensitive (e.g., URLLC services) or real
time services might not work as expected on this type
of network. On the other hand, best-effort services such
as P2P downloading and web browsing could be offered.
This scenario raises new challenges, ranging from mapping
to operation, with this paper focusing on the first (SVNs
mapping).

Mapping VWNs onto wireless substrate (i.e., reserv-
ing/allocating physical resources from MNO to the VWNs)
is a NP-hard problem [11] and current approaches only
consider VWNs with homogeneous access priorities to the
resources [3–5] or do not take into account opportunistic
resource sharing [3, 4]. Our problem is more challenging as
it involves an environment composed of PVNs and SVNs
that share common resources. In order to provide reasonable
Quality of Service (QoS) to the SUs and avoid interference
to the PVN transmission, the SVN mapping must not only
consider the SVNs demand (e.g., bandwidth) but also the
PVN activity. Differently from nonvirtualized scenarios in
which the resources are shared among individual users[9]
and focus on channel selection/channel-user assignment
in the network operation phase, the current environment
addresses the resource allocation to multiple virtual wireless
networks (group of users) during the dimensioning stage.

This paper deals with the SVN mapping problem. It
revisits our previous letter [12] that models the interac-
tions between PUs and SUs in a CRVNE and analyzes the
proposed formulation for collision probability during the
SVNmapping process. However, the current work is pioneer
as it (1) presents a comprehensive approach to the SVNs
mapping problem; (2) formulates, validates, and analyzes
additional performance metrics such as SU blocking and SU
dropping probabilities and joint utilization (to be used in
the SVNs mapping); (3) formulates the SVNs mapping as
a multiobjective problem; and (4) proposes an evolutionary
scheme based on Genetic Algorithm (GA) to solve this
problem and evaluates it in terms of collision, SU dropping,
SU blocking probabilities, and joint utilization. Due to its
versatility, scalability, and computational simplicity, GA has
been widely adopted for solving optimization problems in
wireless networks [13–17] and solutions to reduce its conver-
gence time have been proposed [18]. In this work, we assume
that theGA is adopted formapping SVNs, during theCRVNE
dimensioning, before the network becomes fully operational.
The results show that our scheme outperforms the alternative
method based on the First-Fit strategy.

This paper is organized as follows. Related works are
discussed in Section 2. Section 3 presents the Cognitive Radio
VirtualNetwork Environment and the challenges that emerge
in the SVNs mapping, highlighting the events/situations
that impair the primary and secondary communications and
that must be taken into account in the mapping process.
CRVNE modeling and formulations for the SU blocking,
SU dropping, and collision probabilities, as well as, joint
utilization are presented in Section 4. The model validation
and analysis on the SVNmapping are conducted in Section 5.
The formulation of the SVN mapping as a multiobjective
problem and a scheme based on GA to solve it are presented
in Section 6. The performance results are discussed in
Section 7. Section 8 concludes this paper and highlights the
future works.

2. Related Works

Studies have been proposed for Wireless Virtualization in
homogeneous [3] and heterogeneous wireless networks [4]
or without specifying any network technology [10, 19], but
assuming that the resources allocated to a VWN cannot be
shared during operation. This restriction may cause resource
underutilization when the VWNs experience low traffic load
periods, hindering new VWN deployments. Opportunistic
resource sharing has been raised in [5, 6] to solve the problem
as it considers the workload in a VWN to be the combination
of a permanent and a variable subworkload (following a
given probability).Thus, multiple flows from different VWNs
may share common resources, which may cause collision
and should be managed. Unlike our proposal combining CR
and WV, previous works only reckon homogeneous access
priority VWNs (e.g., no high and low priority VWNs) besides
providing little flexibility at the PHY and MAC layers, since
the VWNs mapping is tied to specific RAT.

Proposals for opportunistic sharing in nonvirtualized
Cognitive Radio Networks (CRNs) have been widely
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presented in literature; each CRN usually has its own
physical infrastructure and it is generally employed over
a primary network in a one-to-one relationship, such as
[20, 21]. In terms of resource allocation in nonvirtualized
CRNs, the focus is on channel selection/channel-user
assignment; the resources are shared among multiple parties
that are individual users [9] and this process takes place
during the network operation. By applying virtualization to
CRNs, VWNs with different services/RATs/priorities can
be mapped onto the same substrate network and easing the
no one-to-one mapping restriction. Thus, channels that are
allocated to different PVNs can be used by the same SVN,
providing better resource utilization. In this environment,
the resources are also shared among multiple parties, but
unlike nonvirtualized scenarios, these are virtual wireless
networks (groups of users).

The work developed in [5] is based on opportunistic
resource sharing. However, it does not include PUs or SUs.
In addition, there are other factors in CRVNE (apart from the
collision probability) thatmust be considered during the SVN
mapping process, such as the SU blocking and SU dropping
probabilities, both neglected in [5].

Moreover, platforms for end-to-end network virtualiza-
tion that consider cognitive radio as a component have been
proposed in [22, 23]. Yet, the authors only provide a schematic
illustration of the interaction between the elements. In [24],
a hypervisor-based architecture for intra- and inter-node
resource scheduling in virtualization-based CR networks is
presented. Similarly to [22, 23], neither the VWN mapping
nor the evaluation in terms of SU blocking, SU dropping,
and collision probabilities and joint utilization is addressed.
Differently, this work focuses on the multiobjective formu-
lation for the SVNs mapping problem and the design of an
evolutionary scheme to solve it. In addition, our scheme is
envisioned to act on the dimensioning stage, i.e., resource
allocation from infrastructure provider to VWNs.

An approach denoted as spectrum demand access as a
service is proposed in [25]. It dynamically offers spectrum
services to users and enables these to set up dynamic virtual
topologies to meet the needs of a specific application. The
authors adopt the dynamic spectrum allocation approach for
DSA, which does not distinguish between PUs and SUs.Thus,
each user has an exclusive spectrum band within a certain
time period, e.g., in the order of minutes. In addition, besides
considering only homogeneous requests, i.e., all virtual
topologies requesting the same spectrum amount (not always
the case in real scenarios), they fail to draw on any proposal in
the literature to make a comparative evaluation. Unlike [25],
our study adopts the opportunistic spectrum access (OSA)
approach for DSA, which differentiates between PU and SU.
In OSA, the SUs dynamically search and access idle PUs
spectrum bands through spectrum sensing or databases. In
view of this, we take into account the existence of the PVNs
and the heterogeneous requests on the SVNmapping process.

As it can be seen, works have proposed mechanisms
for wireless network virtualization by using strict resource
allocation, opportunistic resource sharing or spectrum
demand as a service. But, they fail with regard to flexibil-
ity at MAC/PHY layer, resource efficiency, or support to

the users/networks with heterogeneous priorities. Although
other studies have adopted cognitive radio in thewireless part
for providing end-to-endnetwork slicing, they donot address
the virtual network mapping or schemes to map virtual
networks. Differently, we combineCR andWV to tackle these
and define a new virtual environment, in which the SVN
mapping is addressed and a GA-based scheme is proposed.
The next section describes this new environment and the
challenges that emerge in the SVNs networks mapping.

3. Cognitive Radio Virtual Network
Environment (CRVNE)

The Cognitive Radio Virtual Network Environment
(CRVNE) is made up of three wireless networks types:
substrate network, PVNs, and SVNs. The substrate networks
are managed by the MNO and consist of channels, spectrum
bands, base stations, and other features that compose wireless
environment [22]. The PVNs have higher access priority to
the resources than SVN and are usually mapped without
taking into account the SVNs existence [3, 4], hence, not
supporting the concept of opportunistic sharing.

Owing to the existence of low traffic periods in the
PVNs, SVNs can be embedded through the opportunistic
access to the resources. These networks have lower access
priority to the resources and will only use them when the
PVNs are idle. The adoption of SVNs can provide better
resource utilization (e.g., spectrum) and increase revenue for
the provider infrastructure, as more VWNs can be admitted.

The introduction of cognitive radio in Wireless Virtual-
ization allows new players to emerge in the business model.
Without CR, game is basically composed of two players:
the service provider (SP), which leases the virtual wireless
networks, programs them, and offers end-to-end services
to users, and the Mobile Network Operator (MNO), which
owns the network infrastructure (e.g., radio access networks,
backhaul, transmission networks, licensed spectrum and core
networks) [9]. When CR is considered, the SP is split into
two players: Primary Service Provider (PSP) and Secondary
Service Provider (SSP) [26]. The former offers its services
via PVNs, which have higher access priority. Hence, they
could offer any type of application supported by wireless
substrate such as voice service, multimedia, and real time
applications.The secondmanages SVNs that could offer best-
effort services such as P2P download and web browsing.
Figure 1 illustrates the CRVNE.

The resources allocation in CRVNE raises several chal-
lenges; for instance, since the SVNs perform opportunis-
tic access, their mapping must take into account both
the demand requested by the SVN (e.g., the number of
users/requested bandwidth) and the primary activity. In this
respect, both protecting the primary communication from
the SU interference and meeting the SVN requirements are
relevant, requiring awareness of the resources usage pattern
by the PVNs and which situations/events could impair the
primary and/or secondary communications in the CRVNE.

The collision between PU and SU is one of these events. It
happens when a PU returns to a channel that is being used by
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Figure 1: Cognitive Radio Virtual Networks Environment (CRVNE).

a SU. PU collides with SU and both communications suffer
degradation. Moreover, as PU has higher priority of access to
the resources than SU, the SU has to vacate the channel and
find another available channel to resume its communication.
A collision between PU and SU is shown in Figure 2. In this
example, a PVN was mapped onto channels (Ch) 1, 2, and
3 and shares these channels with the SVN. Ch 2 is occupied
by PU2 (i.e., the channel is in ON state). Thus, the channel 2
cannot be used by users from the SVN at this moment. SU1 is
performing its communication in the channel Ch 1, which is
denoted asOFF state due to the fact that the PU is not using it.
At this moment, when PU1 arrives at PVN and accesses Ch 1,
which is occupied by SU1, a collision occurs and the primary
communication suffers interference from the secondary one
and vice-versa. Consequently, SU has to vacate channel 1 and
find another available channel to resume its communication
(e.g., Ch 3). Avoiding or keeping this interference below a
threshold is a feature that must be taken into account in the
SVNs mapping.

When a SU tries to access the SVN and there are
not enough resources to its communication, it is blocked/
rejected, which damages the secondary communication.
Thus, admitting as many SU as possible dimensioned for
each SVN, i.e., reducing the SUs blocking probability is an
important goal in the SVNs mapping. A situation in which a
SU is blocked due to resource scarcity is shown in Figure 3.
PVN shares channels 1 and 2 with the SVN. Users PU2 and
PU3 are occupying channels 2 and 3, respectively. Here, there
are two secondary users (SU1 and SU2) arriving at SVN,
but there is only one channel available (Ch1) to be used for
communication.Thus, only one SU can be admittedwhile the
other is rejected.

A third situation that can affect the quality of service of
the secondary communication is when the SU is dropped
from SVN, due to a returned PU to the channel occupied by

an SU while an extra channel is not available in its current
SVN.An examplewhere the SUdropping happens is depicted
in Figure 4. There are two primary users (PU2 and PU3) in
the PVN, which are using channels 2 and 3, represented as
channels ON (in ON state). Ch 1 is not being used by PVN,
which is represented as a channel OFF (in OFF state), but
the SU 1 is using it in an opportunistic way. When a new
PU arrives at PVN, SU1 is preempted from channel 1 and
it searches for another one to resume its communication.
However, as there is no available channel in its SVN, SU1 is
dropped from the SVN. This event forces the termination of
the secondary communication prematurely.

In the next section, we model the interactions between
PUs and SUs in CRVNE by using queuing theory and
formulate the probabilities for the collision (Section 4.1), SU
blocking (Section 4.2), and SU dropping (Section 4.4) events,
as well as the resource joint utilization (Section 4.3), which
are considered in the SVNs mapping problem.

4. CRVNE Model

In a CRVNE, the PSP requests the creation of and manages 𝐿
Primary Virtual Networks (PVNs). Given that the substrate
network is composed of 𝑀 channels and that the mapping
algorithm divides the resources between the PVNs according
to percentage 𝑞𝑗, with 𝑗 = 1, 2, 3, . . . , 𝐿, 0 ≤ 𝑞𝑗 ≤ 1
and ∑𝐿𝑗=1 𝑞𝑗 = 1, then for each PVN 𝑗 is allocated |𝑄𝑗| =
⌊𝑀 ∗ 𝑞𝑗⌋ or ⌈𝑀 ∗ 𝑞𝑗⌉ channels, where 𝑄𝑗 means the set of
channels allocated to PVN 𝑗, ⌊𝑥⌋ and ⌈𝑥⌉ are the ceil and floor
functions, respectively.

We assume that the PUs arrive at channel 𝑖 (𝐶𝑖) of virtual
network 𝑗, with 𝐶𝑖 ∈ 𝑄𝑗, following a Poisson process with
arrival rate 𝜆𝑃𝑈,𝑖,𝑗, and the user holding time is given by an
exponential distribution with mean 1/𝜇𝑃𝑈,𝑖,𝑗. In addition, we
consider each channel has capacity to satisfy one PU.
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Figure 2: An example of collision when the PU arrives in a channel occupied by SU.
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Figure 3: An example of SU blocking when there is no enough available resource in the SVN to admit a new secondary user.
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Figure 4: An example of SUdroppingwhen the PU returns and there is no available resource in the SVN for resuming the SU communication.
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Given that 𝑁 channels were allocated to the PVN 𝑗, i.e.,|𝑄𝑗| = 𝑁, the total PU arrival rate may be obtained by (1).

𝜆𝑃𝑈,𝑗 = ∑
𝐶𝑖∈𝑄𝑗

𝜆𝑃𝑈,𝑖,𝑗 (1)

The SVNs provide their services by opportunistically
using the resources. In CRVNE, there is no one-to-one
mapping between PVNs and SVNs as in nonvirtualized CRN
[20, 21]. Thus, channels allocated to different PVNs can be
allocated to the same SVN.

We consider that the SSPs requests𝑍 SVNs to be mapped
onto cognitive radio substrate. In each SVN 𝑙 (𝑆𝑉𝑁𝑙), with 𝑙 =1, 2, . . . , 𝑍, the SUs arrival follows a Poisson distribution with
rate 𝜆𝑆𝑈,𝑙 users per second (users/s) and the SU holding time
is exponentially distributed with mean 1/𝜇𝑆𝑈,𝑙 seconds [27].
Similarly to PVN, we consider that the bandwidth requested
by each SU can be satisfied by one channel.Hence, the average
number of SUs in the 𝑆𝑉𝑁𝑙 and the amount of resources
requested by SUs considering each channel with bandwidth𝑤 bps are calculated by (2) and (3), respectively.

𝑁𝑆𝑈𝑙 = 𝜆𝑆𝑈,𝑙 ∗ 1
𝜇𝑆𝑈,𝑙 (2)

𝐵𝑤𝑟𝑒𝑞,𝑙 = 𝜆𝑆𝑈,𝑙 ∗ 1
𝜇𝑆𝑈,𝑙 ∗ 𝑤 = 𝑁𝑆𝑈𝑙 ∗ 𝑤 (3)

Given that the mapping of the SVN 𝑙 onto CR substrate
adopted a set of 𝑁 channels, 𝑆𝐶𝑙 = {𝐶1, 𝐶2, . . . , 𝐶𝑁}, with𝑆𝐶𝑙 ⊂ ⋃𝑗 𝑄𝑗, and 𝑆𝐶𝑙 ∩ 𝑆𝐶𝑢 = ø, for all 𝑙 ̸= 𝑢, where𝑙, 𝑢 = 1, 2, . . . , 𝑍 are SVN identifiers, and that the PU service
rate is homogeneous and denoted as𝜇𝑃𝑈,𝑙, i.e.,𝜇𝑃𝑈,𝑙 = 𝜇𝑃𝑈,𝑖,𝑙 =𝜇𝑃𝑈,𝑑,𝑙, ∀𝐶𝑖, 𝐶𝑑 ∈ 𝑆𝐶𝑙, the interaction between PVN and SVN
may be modeled as an M/M/N/N queue with preemptive-
priority service, where PUs and SUs compete for𝑁 channels
[12]. In this system, resources are limited and no queue is
allowed to form.Moreover, a SU can be forcibly terminated if
a PU arrival occurs when there is no other available channel
in the 𝑆𝑉𝑁𝑙.

In our model, each state (𝑖, 𝑗), with 0 ≤ 𝑖, 𝑗 ≤ 𝑁 and0 ≤ 𝑖 + 𝑗 ≤ 𝑁, means that there are 𝑖 PUs and 𝑗 SUs in
the system (𝑆𝑉𝑁𝑙). The states (𝑖, 𝑁 − 𝑖) denote a full system,
where all resources are being used by PUs or SUs. Specifically,
when𝑁− 𝑖 ≥ 1, these states model situations where the SU is
dropped from SVNdue to PU arrival and there is no available
channel to resume its communication. Figure 5 presents the
state transition diagram of our CRVNE model. Horizontal
flows to right (left) mean PU arrival (departure) and vertical
flows to top (down) represent SU arrival (departure).

4.1. Formulation for Collision Probability. In the SVNs map-
ping, it is important to consider other factors apart from the
demand for these networks. As the channels adopted by the
SVNs are shared with the PVNs, it is necessary to ensure
minimum interference to PVNs, which can be defined as a
threshold, based on the service level agreement (SLA) from
the PVNs, for example. A collision (between PU and SU)
happens when a PU returns to a channel that is being used by

SU, damaging both primary and secondary communications.
It is noted that the PU arrival in the 𝑆𝑉𝑁𝑙 certainly leads to
a collision with SU when the 𝑆𝑉𝑁𝑙 is full and there is at least
one SU active, i.e., for states (𝑁 − 𝑗, 𝑗), with 𝑗 > 0. Thus, the
probability sum of these states (see (4)) bounds the collision
probability.

𝑃𝑐𝑖𝑛𝑓,𝑙 =
𝑁∑
𝑗=1

𝑃 (𝑁 − 𝑗, 𝑗) (4)

When the 𝑆𝑉𝑁𝑙 is not full and at least one active SU is
present, the PU arrival does not necessarily lead to a collision,
since the PUmay have returned to a channel that is not being
occupied by SU. States (𝑖, 𝑗), with 𝑗 > 0 and (𝑖+𝑗) < 𝑁, model
this situation and the probabilities sum of these states (Δ𝑐𝑜𝑙𝑗,
in (5)) denotes the probability of such event taking place.

Δ𝑐𝑜𝑙𝑙 =
(𝑖+𝑗)<𝑁∑
𝑖=0,𝑗=1

𝑃 (𝑖, 𝑗) (5)

In order to calculate the collision probability, it is nec-
essary to know which channels the PUs and SUs are using.
However, this specific information is not available in the
mapping process, since it just deals with the allocation of a set
of channels to eachVWN.Generally, this kind of information
may be obtained during the network operation, because it
involves channel-user allocation, which is not represented by
this model.

For states (𝑖, 0), with 𝑖 ≥ 0, the PU arrival does not trigger
a collision because there are no SUs in the 𝑆𝑉𝑁𝑙. In this
respect, a collision might only take place in the previous two
cases and we may use (6) to estimate its probability. It uses
(4) as an inferior bound and (5) multiplied by a 𝛽 factor as an
increment. The 𝛽 factor expresses how likely a collision may
occur when the 𝑆𝑉𝑁𝑙 is in the states (𝑖, 𝑗), with 𝑗 > 0, and(𝑖 + 𝑗) < 𝑁.

𝑃𝑐𝑙 = 𝑃𝑐𝑖𝑛𝑓,𝑙 + 𝛽 ∗ Δ𝑐𝑜𝑙𝑙 (6)

The 𝛽 factor is given by (7), which represents the average
probability that the PU returns to the channel while the SU
is using it. So, for each channel 𝑖 allocated to 𝑆𝑉𝑁𝑙, the
probability that a PU returns to the channel during the SU
communication (𝑃𝑏𝑎𝑐𝑘, 𝑖) is computed, i.e., the probability
of the OFF time (time in which the PU is absent) being lower
than the SU service time.

𝛽 = ∑𝑁𝑖=1 𝑃𝑏𝑎𝑐𝑘,𝑖𝑁 (7)

Given that the PU arrival rate in a channel 𝑖 is modeled
as a Poisson process with rate 𝜆𝑃𝑈,𝑖 and that the PU service
time follows an exponential distribution with rate 𝜇𝑃𝑈,𝑖, the
channel’s mean OFF period is given by (8).

𝑇𝑂𝐹𝐹𝑖 = 1
𝜆𝑃𝑈,𝑖 −

1
𝜇𝑃𝑈,𝑖 (8)
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Figure 5: State transition diagram of the CRVNE model.

Assuming that the SU service time is exponentially
distributed with rate 𝜇𝑆𝑈, the 𝑃𝑏𝑎𝑐𝑘, 𝑖 is given by (9), where
𝜆𝑂𝐹𝐹𝑖 = 1/𝑇𝑂𝐹𝐹𝑖. The proof for (9) is given in [12].

𝑃𝑏𝑎𝑐𝑘,𝑖 = 𝜆𝑂𝐹𝐹𝑖𝜆𝑂𝐹𝐹𝑖 + 𝜇𝑆𝑈 (9)

4.2. Formulation for SU Blocking Probability. As well as
protecting the PUs, the SVNs mapping process must provide
reasonable quality of service for the SUs.Thus, itmust provide
high level of SU admission, i.e., low SU blocking probability.
As stated in Section 3, the SU blocking occurs in the SVN
when all channels are busy during a SU arrival. Hence, the SU
blocking probability on the 𝑆𝑉𝑁𝑙 is given by (10), which is the
probability sum of the states that represent the full system.

𝑃𝑏𝑆𝑈,𝑙 =
𝑁∑
𝑖=0

𝑃 (𝑁 − 𝑖, 𝑖) (10)

4.3. Formulation for Joint Utilization. As well as seeking to
admit as many users as possible, providing better resource
utilization is also a goal of both SVN mapping and cogni-
tive radio technology through opportunistic access to the
resources, besides increasing the revenue for theMNO.Given
the set of𝑁 channels 𝑆𝐶𝑙 = 𝐶1, 𝐶2, . . . , 𝐶𝑁 used in the 𝑆𝑉𝑁𝑙
mapping, the joint utilization (primary and secondary usage)
of these channels is given by (11), which is the ratio of the

average number of channels occupied by PUs or SUs to the
number of channels allocated to 𝑆𝑉𝑁𝑙.

𝑢𝑡𝑖𝑙𝑙 = 𝑁𝑃𝑈𝑙 + 𝑁𝑆𝑈𝑙𝑁 (11)

where 𝑁𝑃𝑈𝑙 is the average number of PU in channels
shared with 𝑆𝑉𝑁𝑙, calculated by (12) and𝑁𝑆𝑈𝑙 is the average
number of SUs, which can be obtained by (13).

𝑁𝑃𝑈𝑙 =
𝑁∑
𝑖=0

𝑁−𝑖∑
𝑗=0

𝑖 ∗ 𝑃 (𝑖, 𝑗) (12)

𝑁𝑆𝑈𝑙 =
𝑁∑
𝑗=0

𝑁−𝑗∑
𝑖=0

𝑗 ∗ 𝑃 (𝑖, 𝑗) (13)

4.4. Formulation for SU Dropping Probability. The SU block-
ing probability is the rejection level of new SUs in the
SVN. Once the SUs are admitted, some events triggered by
PU activity can affect their QoS. Among these events, the
SU dropping happens as a result of the PU return to the
channel occupied by SU and inexistence of available channel
in its SVN. The SU dropping causes great degradation to
secondary communication, as the SU has its communication
abruptly terminated. With a full network, each collision
between PU and SU leads to a SU preemption. Thus, the SU
preemption rate from 𝑆𝑉𝑁𝑙 is numerically equal to the rate
of PUs that suffered collision, which is given by (14), where
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the summation considers the states that represent the full
network and there is at least one active SU.

𝑅𝑑𝑆𝑈,𝑙 = 𝜆𝑃𝑈,𝑙 ∗
𝑁∑
𝑗=1

𝑃 (𝑁 − 𝑗, 𝑗) (14)

By dividing the rate of SU preempted from 𝑆𝑉𝑁𝑙 by the
rate of admitted SUs, the SU dropping probability is given by
(15).

𝑃𝑑𝑆𝑈,𝑙 = 𝑅𝑑𝑆𝑈,𝑙(1 − 𝑃𝑏𝑆𝑈,𝑙) ∗ 𝜆𝑆𝑈,𝑙 (15)

The next section presents the model validation and ana-
lyzes the behavior of the collision, SU blocking, SU dropping
probabilities, and the joint utilization regarding a mapping
scenario with different PU and SU loads.

5. Model Validation

A Matlab simulation model was used to validate the work
presented in Section 4. We considered a scenario with two
channels, whichwere shared by a SVN and PUs (fromPVNs).
The PU and SU service rates were defined as 1 and 0.1
(users/s), respectively. PU arrival rate (in users/s) in each
channel was varied (from 0.1 to 0.9) in order to analyze the
model behavior when in different PU loads. Similarly, the
model was evaluated considering different SU arrival rates
(ranging from0.2 to 2.5 users/s), i.e., under different SU loads.

We performed 10 simulation instances for each evaluated
point. The simulation time was 10,000 seconds and the
average results are presented considering a 95% confidence
level, which were obtained by the Bootstrap method [28],
with ‘resample’ size and number of (re)samplings equal to 10
and 1000, respectively. In Figures 6, 7, 8, 9, and 10, ‘Model’ and
‘Sim’ mean results obtained through the analytical model and
simulation, respectively.

The results for the SU blocking probability are presented
in Figure 6, where the analytical model followed the simula-
tion. It is noted that initially the SUblocking probability tends
to decrease when the PU arrival rate increases. This behavior
occurs until a certain PU arrival rate value. Beyond this, the
PU arrival rates increase enables more SU blocking events.
Considering an SU arrival rate equal to 0.2, we note that the
SU blocking probability changes its behavior (decreasing to
increasing) when PU arrival rate is about 0.2. Similarly, when
we consider SU arrival rates equal to 0.4 and 0.6, the change
happens in the points where the PU arrival rate is about 0.4
and 0.6, respectively. In these points, we observe that there is a
range where the PU arrival rate increase does not necessarily
lead to a SU blocking probability boost. This initial decrease
occurs due to cases where the SU is dropped from the SVN,
and the PUonly uses the channels for a short time, releasing it
afterwards. Therefore, a new SU can be accepted in the SVN,
which might experience the same situation.

For the cases where the SU arrival rate is equal to 1.0, 1.5,
2.0, or 2.5, it was observed that the SU blocking probability
decreases when the PU arrival rate increases in the interval[0.1, 0.9]. For this region, as the SU arrival rate is higher than

PU arrival, i.e., the SU interarrival time is shorter than the
PU inter-arrival time, the SU can access the channel when
it is idle (in OFF state). But, as its service time is larger (on
average) than the channel’s OFF period, it is preempted due
to the PU return.

In turn, a PU arrival raise causes the SU blocking increase
and the consequent opportunistic access reduction. This is
observed when SU arrival rate is equal to 0.2, 0.4, or 0.6.
Moreover, it is shown in Figure 6 that when SU arrival rate
increases, the SU blocking increases as well because the same
resource amount is considered to satisfy an increasing SU
demand.

Figure 7 depicts the joint utilization results for both the
model and simulation, which present the same behavior. The
joint utilization is similar to the SU blocking probability.
Initially, it decreases and later it starts to increase with the
PU arrival rate escalation. In order to analyze such behavior,
it is highlighted that the joint utilization is obtained by taking
into account the primary and secondary utilization. As the
primary user has higher access priority to the channels, the
resource utilization provided by the primary communica-
tion is not influenced from the secondary communication.
Therefore, it increases when the PU arrival rate increases, as
shown in Figure 7. On the contrary, the secondary utilization
is impacted by the PU communication; hence, when the
PU arrival rate increases, the secondary utilization decreases
once there are fewer chances for opportunistic access to the
channels.

According to Figure 8, the secondary utilization is depen-
dent of the PU arrival rate. In some cases, the secondary
utilization reduction is compensated by the primary utiliza-
tion, leading to a joint utilization increase. This can be noted
in the cases where the SU arrival rate is equal to 0.2, 0.4,
or 0.6, for example, (see Figure 7), whereas in other cases,
the primary utilization cannot compensate the secondary
utilization reduction. Hence, the joint utilization tends to
decrease, which is noted in the cases where the SU arrival
rate is higher than 0.6 as shown in Figure 7. Moreover, in
Figure 7, the joint utilization increases together with the SU
arrival rate, which is expected since the SU load is higher,
leading to a secondary utilization increase (see Figure 8).

The SU dropping probability results are depicted in
Figure 9, which illustrates that both model and simulation
present a similar behavior. We note that the SU dropping
increases when the PU arrival rate increases.This is expected,
since a higher PU arrival rate implies a shorter PU interarrival
time, which boosts the chances of an admitted SU to be
preempted. Moreover, it is observed that the SU dropping
probability also increases due to the SU arrival rate raise (see
Figure 9), while resource amount is kept the same.

The results for the collision probability are presented
in Figure 10, and although (6) expresses an approximation
for such metric, the results obtained are similar to those
ones from our simulation. In addition, the figure shows that
when the PU arrival rate increases, the collision probability
decreases. At first, it seems as an odd conclusion, once when
the PU arrival rate increases, the PU load also increases and
thereforewewould expect that the collision probabilitywould
also increase.This is true when we are addressing collision in
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Figure 6: Results obtained by model and simulation in terms of SU blocking probability.
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Figure 7: Results obtained bymodel and simulation in terms of joint
utilization.

a media access control situation, where the users compete for
channel access, and a higher user arrival rate leads to a greater
collision amount. However, for a collision between PU and
SU to occur in a CRVNE (Section 3), the following condition
has to be satisfied: the SU is using the channel towhich the PU
will return during this period. From this condition, we note
that SU needs access opportunities for a collision to happen.
If these are reduced, the collision number also tends to be

reduced. Therefore, in Figure 10, when the PU arrival rate
increases, implying less opportunity for the SUs, the collision
probability decreases. Moreover, as the SU service time is
higher (on average) than the channelsOFF time (the PU is not
currently using it), when the SU gets the access to the channel,
it is very likely that the SUwill still be using the channel when
the PU returns.

6. Formulation Problem and Proposed Scheme

This section presents the formulation of the SVN mapping
as a multiobjective problem, which takes into account the
objectives discussed in the previous section. Moreover, it
proposes a scheme based on Genetic Algorithms to solve
the problem, detailing its structure, parameters values, and
operation.

6.1. Formulation of the SVN Mapping Optimization Problem.
As shown in previous sections, several objectives must be
considered in the SVN mapping process. The following
optimization problem (see (16)) is formulated as follows:
given a set of 𝑍 SVN requests and the channel usage pattern
for the primary networks, to perform the SVNs mapping,
i.e., to determine the set of channels to be allocated to each
SVN, in order to minimize the average collision (𝑃𝑐), SU
blocking (𝑃𝑏𝑆𝑈 ), and SU dropping (𝑃𝑑𝑆𝑈) probabilities and
maximize the average joint utilization (𝑢𝑡𝑖𝑙). Two constraints
must be satisfied: the resource amount allocated to each SVN
cannot be less than the requested demand and a common
channel cannot be allocated to different SVNs. This last
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Figure 9: Results obtained by model and simulation in terms of SU
dropping probability.

constraint aims to provide interslice isolation among SVNs
[10]. Formally,

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃𝑐, 𝑃𝑏𝑆𝑈, 𝑃𝑑𝑆𝑈
𝑎𝑛𝑑 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑢𝑡𝑖𝑙

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑅𝑎𝑙𝑙𝑜𝑐𝑙 ≥ 𝐵𝑤𝑟𝑒𝑞,𝑙, 𝑙 = 1, 2, . . . , 𝑍
𝑆𝐶𝑙 ∩ 𝑆𝐶𝑢 = ø,

𝑙 ̸= 𝑢, 𝑙, 𝑢 = 1, 2, . . . , 𝑍

(16)

where𝑅𝑎𝑙𝑙𝑜𝑐𝑙 and 𝑆𝐶𝑙 are the amount of resources and the
set of channels allocated to 𝑆𝑉𝑁𝑙, respectively. A challenging
problem arises if the SVN mapping is focused on a specific
objective: it may deteriorate other SVN’s performance goals.
To mitigate such effect, our evolutionary scheme (based on
genetic algorithms) is proposed in the next subsections.
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Figure 10: Results obtained by model and simulation in terms of
collision probability.

6.2. Chromosome Structure and Fitness Function. GA is a
search algorithm based on the principles of natural selection.
It relies upon evolving a set of solutions, represented by the
so-called chromosomes. Eventually, through the GA opera-
tors (selection, crossover, and mutation) a good solution will
be found by combining different solutions [13].

Some GA characteristics such as versatility, scalability,
and computational simplicity are suitable for the SVN map-
ping problem. GA handles many solutions simultaneously
at each interaction and evolves them to achieve better
solutions. Thus, many possible mappings are evaluated at
each interaction. In general, GA is flexible enough to tackle
many objectives or constraints and can be combined with
classical approaches [29] to deal with this kind of problem. In
addition, GA has been widely adopted for solving optimiza-
tion problems in wireless networks [13–17] and solutions to
reduce its convergence time have been proposed [18]. In this
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Figure 11: Chromosome Structure.

work, it is assumed that the GA is adopted for the CRVNE
dimensioning phase,i.e., before the network becomes fully
operational.

In our GA-based proposed scheme, the individual or
chromosome 𝑋𝑗

𝑙
is represented by a sequence of 𝐾 bits (see

Figure 11), where 𝐾 is the number of available channels
that can be used to meet the requested 𝑆𝑉𝑁𝑙, and 𝑗 =1, 2, 3, . . . , 𝑆, where 𝑆 is the population size. Each gene (bit) in
the chromosome refers to an available channel for allocation.
If the gene value is equal to 1, then the respective channel is
selected for the SVN mapping. Otherwise, the channel is not
selected. In the individual shown in Figure 11, channels 1 and
k are selected for mapping the requested SVN. Our proposal
considers the intrinsic parallelism of the GA when seeking to
find an optimal or suboptimal mapping for each SVN.

It should be noted that there is an equivalence between
an individual in the GA and a set of channels. Thus, given
an individual 𝑋𝑗

𝑙
, it is possible to know the set of channels

represented by it (𝑆𝐶𝑗
𝑙
) and vice-versa. (17) describes how to

obtain the set of channels represented by an individual𝑋𝑗
𝑙
in

theGA,where𝐴𝐶𝑙 is the set of available channels formapping
the SVN 𝑙 and 𝐶𝑖 is the channel associated with the gene 𝑥𝑖.
The gene (bit) 𝑥𝑖 composes the chromosome𝑋𝑗

𝑙
.

𝑆𝐶𝑗
𝑙
= {𝐶𝑖 ∈ 𝐴𝐶𝑙 | 𝑥𝑖 ∈ 𝑋𝑗

𝑙
and 𝑥𝑖 = 1} (17)

In our scheme, the SVNs are mapped sequentially, so a
population is created for each SVN and evolves to obtain a
final solution represented by a set of channels that can be
allocated to the respective SVN.

To evaluate the individuals (solutions), we defined the
fitness function given in (18). In order to handle the multiob-
jective problem of SVNs mapping and reduce its complexity,
we adopted the classical approaches such as weighted sum,𝜖-constraint, and programming method [29]. In this respect,
two expressions defined our fitness function. The weighted
sum method was adopted to compose the first part of the
fitness function, where the collision and SU dropping prob-
abilities were taken into account, which are mainly related
to primary and secondary communications, respectively. In
addition, the 𝜖-constraint method was also used in this
part, where 𝑇𝑏𝑙𝑜𝑐𝑘 and 𝑇𝑢𝑡𝑖𝑙 were the constraints defined to
SU blocking probability and joint utilization, respectively.
Thus, the first part of our fitness function aims to reduce
the collision and SU dropping probabilities while keeping
the joint utilization and SU blocking within certain limits.
The 𝜖-constraint method should have constraints defined
in a feasible region, otherwise no solution will be found.
However, it is hard to do so for all possible SVN mapping
scenarios, since the constraint values may or may not be in
a feasible region. Therefore, the second part of our fitness
function adopts the goal programming method along with
the expression given by weighted sum (𝑓𝑚𝑎𝑖𝑛).

Thus, target values were defined for SU blocking prob-
ability and joint utilization, which are also represented by𝑇𝑏𝑙𝑜𝑐𝑘 and 𝑇𝑢𝑡𝑖𝑙, respectively. The second expression (in (18))
adopts the average between Δ 𝑏𝑙𝑜𝑐𝑘 and Δ 𝑢𝑡𝑖𝑙 as a penalization
factor for 𝑓𝑚𝑎𝑖𝑛. Δ 𝑏𝑙𝑜𝑐𝑘 is the relative difference between the
SU blocking probability and its target value. Similarly, the
relative difference between the joint utilization and its target
value isΔ 𝑢𝑡𝑖𝑙.They are expressed in (20) and (21), respectively.
In our approach, 𝑇𝑏𝑙𝑜𝑐𝑘 and 𝑇𝑢𝑡𝑖𝑙 were set up as 0.1 and 0.8,
respectively.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑋𝑗
𝑙
) = {{{{{

𝑓𝑚𝑎𝑖𝑛, 𝑖𝑓 𝑃𝑏𝑆𝑈,𝑙 ≤ 𝑇𝑏𝑙𝑜𝑐𝑘 𝑎𝑛𝑑 𝑢𝑡𝑖𝑙𝑙 ≥ 𝑇𝑢𝑡𝑖𝑙
(1 − (Δ 𝑏𝑙𝑜𝑐𝑘 + Δ 𝑢𝑡𝑖𝑙)2 ) ∗ 𝑓𝑚𝑎𝑖𝑛, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (18)

where 𝑓𝑚𝑎𝑖𝑛 is defined in (19).

𝑓𝑚𝑎𝑖𝑛 = 100 ∗ [(1 − 𝑃𝑐𝑙 (𝑋𝑗𝑙 )) + (1 − 𝑃𝑑𝑆𝑈,𝑙 (𝑋𝑗𝑙 ))] (19)

Δ 𝑏𝑙𝑜𝑐𝑘 (𝑋𝑗𝑙 ) =
{{{{{

(𝑃𝑏𝑆𝑈,𝑙 − 𝑇𝑏𝑙𝑜𝑐𝑘)(1 − 𝑇𝑏𝑙𝑜𝑐𝑘) , 𝑖𝑓 𝑃𝑏𝑆𝑈𝑙 > 𝑇𝑏𝑙𝑜𝑐𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(20)

Δ 𝑢𝑡𝑖𝑙 (𝑋𝑗𝑙 ) =
{{{{{
(𝑇𝑢𝑡𝑖𝑙 − 𝑢𝑡𝑖𝑙𝑙)𝑇𝑢𝑡𝑖𝑙 , 𝑖𝑓 𝑢𝑡𝑖𝑙𝑙 < 𝑇𝑢𝑡𝑖𝑙
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(21)

It is noted that (20) and (21) have values different from
zero when the collision probability or joint utilization values
provided by a given mapping (individual) are worse than the
targets. In addition, the greater the collision and utilization
are from the target values, the greater the penalty in the
individual’s fitness of the individual will be. Both expressions
in (18) aim to achieve a good tradeoff between the objectives
of the optimization problem presented in Section 6.1.

Although there are GA approaches for solving multiob-
jective problems such as Multiobjective Generic Algorithms
(MOGA) and Nondominated Sorting Genetic Algorithm
(NSGA) [30], for instance, in our scheme (as shown in
(18)), the classical methods were used to deal with multiple
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Figure 12: Test case results for GA.

objectives. With this approach, the complexity of the multi-
objective problem is reduced and just handled in the fitness
function. Moreover, it does not require any changes to the
basic GA mechanism. In addition, the literature includes
studies that have successfully used this approach in a multi-
objective optimization [13, 31]. The next section presents the
GA operators and parameters adopted in our evolutionary
scheme.

6.3. Genetic Operators and Parameters. We adopted the
roulette wheel as the selection operator, which involves
selecting individuals for the crossover process based on their
fitness values. It simulates the natural selection mechanism,
which acts on biological species [32]. Hence, individuals
with the highest fitness values are best suited for the next
generation.

A uniform operator was employed for the crossover oper-
ation, which selects genes (bits) from parents’ chromosomes
and creates a new offspring. A bit mutation was used as the
mutation operator; i.e., it randomly changes the newoffspring
[32].

Two key parameters are the crossover (pc) and mutation
(pm) probabilities since they express the frequency with
which the crossover and mutation operations are carried out,
which have great impact on the GA performance [13].

In this way, multiple tests were conducted to define
the probability values (pc and pm) that could be used in
our GA-based scheme. We have employed 8 test values
within the interval [0.1 0.8] for the crossover probability
(pc) and 8 test values within the interval [0.01 0.8] for the
mutation probability (pm), as shown in Table 1. Combined,
these meant 64 test cases. For each test case, 5 simulation
instances were performed. The test scenario was composed
of 40 channels; PU service rate equals 1 for all channels
and PU arrival rate in each channel defined within the
interval [0 1]. Moreover, the SU arrival rate and average SU
service time were uniformly distributed in [1 3] and [1 4],
respectively.

We have selected the highest average fitness value for
the last generation’s population (Figure 12). Test case 49
displayed the best performance for the GA, having crossover
and mutation probabilities equal to 0.7 and 0.01, respectively.
In addition to crossover and mutation probabilities, the
population size (S) and number of generations (G) were
defined as being equal to 100 and 200, respectively; all GA
parameter values are summarized in Table 2.

Table 1: Test case values.

Pc 0.1/0.2/0.3/0.4/0.5/0.6/0.7/0.8
Pm 0.01/0.03/0.05/0.1/0.3/0.5/0.7/0.8

Table 2: GA parameters.

Parameter Value
Number of generations (G) 200
Population size (L) 100
Crossover rate (Pc) 0.7
Mutation rate (Pm) 0.01

6.4. Execution Flow of the Scheme. The execution flow of our
SVNmapping GA-based scheme is as follows (see Figure 13).
Given a SVN request, the population (which might be used
for mapping the SVN) is randomly generated so as to
provide candidate solutions. The information about channel
availability is considered to create feasible solutions. Then,
the individuals are evaluated in accordance with the adopted
fitness function that takes into account the SU blocking
probability, joint utilization, SU dropping probability, and
collision probability for computing each individual’s fitness
value.Thereupon, the individuals are submitted for selection,
together with the crossover and mutation operators, and
moreover, an elitist strategy is employed to ensure the best
fitness individuals will not be lost during the selection
process. Finally, a new generation of candidate mappings
will be created and the stop criterion, which is determined
by the number of generations (G), is evaluated. If the stop
criterion is not satisfied, the process is repeated in the fitness
evaluation stage. Otherwise, the best individual is chosen as
the final solution.This represents the set of channels that will
be allocated to the requested SVN. In this way, the pool of
available channels is updated.

7. Scheme Evaluation

This section presents the scenarios andmetrics adopted in the
performance evaluation of the proposed scheme. It analyzes
the results achieved in comparison to those of the First-Fit
strategy, as well as the GA convergence.

7.1. Evaluated Metrics. For evaluation purposes, four metrics
were employed: collision probability, SU blocking probability,
SU dropping probability, and joint utilization (see Section 3).
They aim to show the mapping impact that was carried out,
on both primary and secondary communications and on the
resource utilization.

7.2. Evaluation Scenarios. Three evaluation scenarios were
defined to analyze the proposed scheme. Each scenario has an
evaluation focus, which are presented in Table 3. In the first
scenario, the SU arrival rate varied from 4 to 16 with a step of
4, which shows the behavior of the proposed scheme under
different SU loads. The 𝜆𝑃𝑈,𝑚𝑖𝑛 and 𝜆𝑃𝑈,𝑚𝑎𝑥 were defined as 0
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Figure 13: Execution flow of the scheme based on GA.

Table 3: Evaluation scenarios.

Scenario Focus

1 To evaluate the schemes considering
different SU loads

2 To evaluate the schemes considering
different PU load

3 To evaluate the schemes considering
more than one SVN request

and 1, respectively, and the substrate network was composed
of 50 channels.

To evaluate the performance of the scheme in cases where
the environment has different PU loads and, hence, distinct
possibilities of opportunistic use, in the second scenario, two
cases (intervals for 𝜆𝑃𝑈,𝑖) were defined. In the first, 𝜆𝑃𝑈,𝑚𝑖𝑛
and 𝜆𝑃𝑈,𝑚𝑎𝑥 were set as 0 and 0.5, respectively. Thereupon,
the channels that compose this scenario are more susceptible
to opportunistic use because of the low primary activity. In
the second case, a new the PU rate interval of [0.5 1] was
specified. It represents scenarios with high PU load, which
reduces the possibility of opportunistic use. Additionally, the
SU arrival rate was changed to 5 users/s.The channel number
and SVN requests were the same as the previous case and the
remaining parameters are as described in the first paragraph
of this section.

The goal in the two first scenarios was to analyze the
proposed scheme under different PU and SU loads.Thus, the
number of SVNs to be mapped was one SVN in both cases.

Table 4: Parameter values adopted in the scenarios.

All Scenarios
Parameter Value
𝜆𝑃𝑈,𝑖 U [𝜆𝑃𝑈𝑚𝑖𝑛,𝜆𝑃𝑈𝑚𝑎𝑥 ]𝜇𝑃𝑈,𝑖 1 user/s
𝜆𝑆𝑈,𝑙 1 user/s

Scenario 1 Scenario 2 Scenario 3
[𝜆𝑃𝑈𝑚𝑖𝑛,𝜆𝑃𝑈𝑚𝑎𝑥 ] [0 1] [0 0.5] and [0.5 1] [0 1]
𝜆𝑆𝑈,𝑙 4/8/12/16 5 U[2 4]
#Channels 50 50 80
#SVN 1 1 4

On the contrary, the third scenario evaluated the scheme’s
performance when more than one SVN had to be mapped.
Hence, the number of SVN requests was set up to 4. For
this experiment, the SU arrival rate was uniformly distributed
between 2 and 4 users/s, the substrate network was composed
of 80 channels and similarly to the first scenario, the PU
arrival rates were uniformly distributed within [0 1].

In all scenarios, the primary (for all channels) and
secondary service rates were defined as 1 user/s, along with
the PU arrival rate of each channel 𝑖 (𝜆𝑃𝑈,𝑖) that was set
within the interval [𝜆𝑃𝑈,𝑚𝑖𝑛, 𝜆𝑃𝑈,𝑚𝑎𝑥], with 𝜆𝑃𝑈,𝑚𝑖𝑛 ≤ 𝜆𝑃𝑈,𝑚𝑎𝑥.
Table 4 shows the chosen parameter values.

A First-Fit strategy (similar to that used in [6]) was
also built for further comparison. It maps the SVNs sequen-
tially, in the same way the GA scheme does. First, all the
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Table 5: Average number of channels adopted by the schemes to
map the SVN considering the scenario 1.

𝜆𝑆𝑈,𝑙 First-Fit GA
4 17.9 11.5
8 26.7 16.8
12 34.9 22.9
16 40.8 30
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Figure 14: Average fitness of the population over the generations.

SVN requests are sorted in a descending order in terms
of requested demand and are placed in a queue. Next,
the First-Fit strategy is employed to sequentially allocate
channels for each SVN in the sorted queue. It takes the
next available channel (not being used by other SVNs) to
map the current SVN, aiming to achieve the lowest collision
probability. Similarly to the GA scheme, the First-Fit strategy
encompasses the restrictions defined in (16).

Next, the GA convergence and a comparison between the
GA-based and the First-Fit are drawn. For each evaluated
point, 30 instances were performed and the average results
are presented considering a 95% confidence level, which were
obtained by using the Bootstrapmethod [28], with ‘resample’
size and number of (re)samplings equal to 30 and 1000,
respectively. No bars were drawn due to a small difference
between upper and lower bounds.

7.3. GA Convergence. Before evaluating the GA considering
all the scenarios and metrics defined in previous subsections,
its convergence was examined with regard to the population
average fitness. To this end, the scenario 1 with 𝜆𝑆𝑈,𝑙 equal
to 4 was taken into account. Moreover, we extended the
GA’s evolution process by adopting 250 generations to verify
whether the average fitness would change significantly after
the number of generations defined in Table 2.

Figure 14 shows the evolution of the population’s average
fitness. It can be noted that in the first 100 generations the
average fitness increases sharply as consequence of the GA’s
exploration process in which it searches for new solutions
and explores the search space. In the next 50 generations,
the population fitness rises softly, indicating that the GA is
refining already existing solutions to improve their fitness
(exploitation). About generation 150, the average fitness of
the population becomes stable and no significant changes
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Figure 15: Average blocking probability when the SU arrival rate
varies.

take places, denoting that the individuals have similar fitness
values. It is worth observing that other GA-based works such
as [14], which performs resource allocation during network
operation and, thus, has a critical time scale, converge
significantly later than our GA-based scheme.

7.4. Results for Scenario 1. This section presents the results
obtained by the schemes when the SVN experiences different
SU loads. In terms of SU blocking probability, they achieved
similar performance (there are intersections between the
confidence intervals), with slight superiority for the First-Fit,
when SU arrival rate is 8, 12, or 16 (see Figure 15). On the other
hand, the GA-based scheme showed a stable performance
under different SU loads in the SVN. Besides, it selected the
appropriate channels to meet each demand, which allowed
the SU blocking probability to be lower than 0.1.

As shown in Figure 15, both approaches presented similar
SU admission levels; however, the First-Fit adopted more
channels than ourGA-based scheme (see Table 5).This shows
that the proper selection of channels is more important than
the number of channels to be allocated, since they have
different primary usage patterns. Likewise, an intersection
was observed between the two schemes when the SU arrival
rate varies from 4 to 6 (see Figure 15). For the first value,
the First-Fit adopts channels that provide a higher user per
channel density, which leads to a higher SU blocking proba-
bility than our GA-based scheme. When the SU arrival is 6,
the First-Fit allocates much more channels (sequentially) in
order to reduce the collision probability.Withmore channels,
the possibility of opportunistic access by SU increases and,
consequently, the SU blocking probability reduces.

For collision probability, the GA-based scheme outper-
formed the First-Fit for all SU arrival rates (see Figure 16).
In the first three cases (𝜆𝑆𝑈,𝑙 equals 4, 8, or 12), the average
reduction in the collision probability was 38.57% (on average)
and even when in a high SU load (𝜆𝑆𝑈,𝑙 equals 16), our
GA-based scheme obtained a performance gain of 24.01%.
In brief, the GA approach was superior to the First-Fit for
various SU loads in up to 39.08%; i.e., it largely reduced the
interference caused to PU communication, providing better
protection to the PU.
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Figure 16: Average collision probability when SU arrival rate varies.
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Figure 17: Average SU dropping probability when SU arrival rate
varies.

In order to achieve a low collision probability in this
scenario, the First-Fit scheme allocated more channels to
the SVN than the GA scheme (see Table 5). However, this
did not ensure a low collision probability. The PU load of
the selected channels must be observed to properly select
the channels that will provide less interference. As the GA
evaluatesmultiple solutions in each generation and composes
the final solution by using building blocks, it provided a lower
collision probability even adopting fewer channels.

The average SU dropping probability got by the schemes
is illustrated in Figure 17. Similarly to the previous metric,
our GA-based scheme also outperformed First-Fit. It signif-
icantly reduced the SU dropping probability in up to 62.13%
compared to the First-Fit. These results were achieved when𝜆𝑆𝑈,𝑙 was 4 but even in the worst case, when 𝜆𝑆𝑈,𝑙 was 16, it
reduced the SU dropping probability by 32.46%. On average,
the GA-based scheme reduced the SU dropping probability
by 48.90% compared to the First-Fit. Therefore, a reasonable
QoS could be achieved by enabling the admitted SUs a better
chance to finish their communications.

Results for the channel’s joint utilization are shown in
Figure 18. As opposed to previous evaluations, the First-
Fit had a slightly better performance than the GA scheme,
mainly where the SU arrival rate is considered low, such as for
4 and 8 users/s. In these cases, it achieved a performance gain
of 13.65% and 6.71%, respectively. On the other hand, both
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Figure 18: Average joint utilization when SU arrival rate varies.

Table 6: Average number of channels adopted by the schemes to
map the SVN considering the scenario 2.

PU Arrival Rate First-Fit GA
[0 0.5] 35.6 10.6
[0 5 1] 5 27.3

behaved similarly when there was a high load of SUs, such
as with 𝜆𝑆𝑈,𝑙 equal to 12 or 16, where the absolute difference
between them was 3.44% and 1.85%, respectively.

Although First-Fit achieves better joint utilization, this
does not imply that the secondary utilization is higher
than that provided by the GA-based scheme. Since both
approaches are similar in terms of SU blocking and our
scheme is better than First-Fit (when the SU dropping is con-
sidered), the secondary utilization achieved by GA strategy
is probably higher than that obtained by the competitor. In
this scenario, the First-Fit achieves a high joint utilization
by selecting high PU load channels, which reduces the
possibility of opportunistic access and, consequently, highly
impacts on the secondary utilization.

7.5. Results for Scenario 2. This section analyzes the results
obtained by the schemes when the substrate networks are
composed of channels with high or low PU load, leading to
different opportunistic access possibilities.

Figure 19 presents our findings considering a lowPU load.
The First-Fit scheme achieved approximately zero blocking
and dropping probabilities for the SUs, by allocating more
channels than the GA scheme (see Table 6). As the channels
have low PU load (PU arrival rate defined between 0 and
0.5), the opportunistic access possibilities increased and, as a
consequence, the SU blocking and SU dropping probabilities
were greatly reduced. On the other hand, although the Fist-
Fit scheme had achieved a low collision probability, our
GA scheme has outperformed it, by reducing the collision
probability by 24.32%.

The probability of having active SUs increases when the
First-Fit is adopted as more SUs are admitted in the SVN.
Also, when more channels are allocated and each one has
a PU load, the total PU arrival rate increases. However,
as noted, lower collision probability cannot be achieved by
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Figure 19: Results obtained by schemes when the PU arrival rates
are within the [0.0 0.5].
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Figure 20: Results obtained by schemes when the PU arrival rates
are within the [0.5 1.0].

simply allocating more channels to SVN. Moreover, the way
of mapping used by the First-Fit significantly impairs the
joint utilization, as shown in Figure 19, where it had 38.79%.
Contrarily, the GA-based scheme provided a reasonable
tradeoff between the adoptedmetrics. It has selected themost
appropriate channels to map the SVN and although both

SU blocking and SU dropping probabilities are higher than
those offered by the First-Fit, the values obtained by GA-
based scheme were also low and it achieved a higher joint
utilization, with a gain of 51.40%.

The GA-based scheme also presented better results
towards the blocking probability, considering the PU arrival
rate defined between 0.5 and 1.0 (high PU load), as shown
in Figure 20. With GA, the blocking probability was reduced
by 88.55% compared to the First-Fit scheme, which has
a high blocking probability under heavy PU load. Such
behavior occurs because the First-Fit scheme allocates fewer
channels for the SVNs in order to achieve lower collision
probability, thus reducing the SU access to the SVN. On
the other hand, it increases the user per channel density,
which impacts on the blocking probability and, conse-
quently, on the SU admission. This shows that the First-
Fit scheme is not able to provide a reasonable service to
the SUs when the channels are submitted to high primary
loads.

In terms of collision probability, Figure 20 shows that the
First-Fit had a slightly superior performance in comparison
to our scheme. The absolute difference between their perfor-
mances was 3.79%, which means a reduction of 6.17% in the
collision probability. Although this may suggest the First-Fit
scheme’s superiority, it achieved a lower collision probability
because it allocated fewer channels to SVN (see Table 6)
and its SU blocking probability was high (see Figure 20),
similar to what was described in the previous paragraph.
With fewer admitted SUs, the collision probability tends to
be lower. Hence, the result obtained by the First-Fit scheme
was masked by its high blocking probability and this way
of providing protection to PU communication significantly
impairs the secondary network. The GA-based scheme, in
turn, provided a similar protection to PU and a reasonable
service to SVN.

The results for the SUdropping probability are also shown
in Figure 20, where the GA scheme surpassed the First-Fit,
with gain of 64.47%, on average. Hence, our scheme provided
better service to the secondary communication, by admitting
more SUs and by reducing the chances of communication
flaws due to the forced termination process.

In terms of joint utilization, the First-Fit strategy outper-
formed the GA by 6.68% (in absolute value). It has selected
fewer channels to map the SVN (see Table 6) and, therefore,
presented higher user per channel density. However, this
caused an adverse effect in the secondary communication,
since more SUs were rejected or dropped. Briefly, the joint
utilization achieved by the First-Fit does not mean a higher
secondary usage. On the contrary, our scheme achieved
a similar joint utilization but provided more secondary
opportunities. In addition, it reached the goal defined for SU
blocking probability and a close result to that defined for joint
utilization (see Section 6.2).

7.6. Results for Scenario 3. The third scenario’s challenge was
map multiple SVNs with maximum efficiency. As shown in
Figure 21, the GA-based scheme had better lower blocking
probability value, ensuring the secondary access to the SVNs.
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Figure 21: Results obtained by schemes when 4 SVNs are mapped.

In brief, when 4 SVNs were mapped, the First-Fit achieved
an average blocking probability of 0.4783 while the GA had
0.0693. In other words, the GA approach reduced blocking
probability by 85.51%.

In terms of collision probability, the GA-based scheme
also outperformed First-Fit (see Figure 21). It has been found
that the GA reduced the collision probability by 10.85%
when compared to the First-Fit scheme; i.e., the GA-based
scheme provides more protection for PU communication.
Furthermore, it should be stressed that our scheme can
provide a higher protection degree for the PU and ensure a
low SU rejection rate for the SVN simultaneously, which is
not the case for the First-Fit.

The SU dropping probability results are also drawn in
Figure 21. For such metric, our scheme outplayed the First-
Fit with an impressive reduction of 77.95%.Thus, our scheme
does not only admit more secondary users in the SVN, but
also provides better quality for secondary communication, as
the possibility of the secondary communication dropping is
largely mitigated.

For the joint utilization (see Figure 21), it was noted
that the First-Fit had the best value, with performances
gap of 13.53% (absolute value). However, this does not
necessarily mean higher secondary utilization or QoS. Again,
it is possible to infer that our scheme in fact provides
higher secondary utilization, as the achieved SU blocking
and SU dropping probabilities were lower than the First-
Fit. Therefore, as in the first scenario, in order to achieve a
higher joint utilization, the First-Fit selected channels with
higher primary load to map the SVNs, meaning that the
primary utilization was dominant on the joint utilization
result.

8. Conclusion

We have combined two key technologies for 5G networks
(Cognitive Radio and Wireless Virtualization) in order to
provide enhanced resource utilization besides dealing with
heterogeneous applications andwireless technologies with no
hardware modification. By empowering the synergy between
them, a new scenario, denoted as CRVNE, has been presented
and modeled to address the SVNs mapping onto cognitive
radio substrate as a multiobjective problem. A GA-based
scheme was suggested as an alternative to a known solution
named First-Fit strategy. It was found that our approach
provided reasonable protection to the primary communica-
tion and an efficient tradeoff between the SU blocking and
dropping and joint resource utilization. Besides, we have also
few situations where the First-Fit had apparently beaten our
scheme, such as for the joint utilization metric.

The GA’s intrinsic parallelism and the use of fitness
functions that encompass multiple objectives enable many
solutions to be handled, improved, and evaluated simulta-
neously. During the mapping process, the proposed scheme
not only deals with the collision probability, SU dropping
probability, and SVN demands, but also takes a broad view of
the SU blocking probability and joint utilization, which also
composes the defined objectives for the mapping problem.

Several practical implications emerge fromour results; for
instance, it was found that it is possible to share spectrum
resources (e.g., channels) between different access priority
users while meeting individual demands. Thus, a business
model that offers a layered service type (e.g., primary and
secondary) can be deployed, for example, by assigning a price
menu to virtual network communications depending on their
access level, being managed by different service providers:
PSPs and SSPs.

When sharing resources between virtual networks (PVNs
and SVNs) with different access levels, it is important to
ensure that their demands and restrictions are met, for
example, a PVN that imposes inflexible restrictions regarding
interference to its communication. This condition must be
satisfied during the mapping process and in a similar way,
during the SVN mapping, so that the SVN can opportunis-
tically access the resources, preventing starvation, despite the
PU load. In brief, we have sought to show that our GA-
based scheme can simultaneously meet the restrictions and
demands from PVNs and SVNs.

Regarding the future development of this work, some
possibilities may be explored. The first involves designing
other bio-inspired approaches to the same problem while the
second relates to the model extension through the support
for heterogeneous secondary user scenarios (e.g., SVNs with
different QoS requirements), considering SU handover and
channel aggregation technology, and the combination of
spectrum access approaches such as opportunistic spectrum
access (OSA) and spectrum leasing.
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