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Human trajectory prediction is an essential task for various applications such as travel recommendation, location-sensitive
advertisement, and tra�c planning. Most existing approaches are sequential-model based and produce a prediction by mining
behavior patterns. However, the e�ectiveness of pattern-based methods is not as good as expected in real-life conditions, such as
data sparse or data missing. Moreover, due to the technical limitations of sensors or the tra�c situation at the given time, people
going to the same place may produce di�erent trajectories. Even for people traveling along the same route, the observed transit
records are not exactly the same. ­erefore trajectories are always diverse, and extracting user intention from trajectories is
di�cult. In this paper, we propose an augmented-intention recurrent neural network (AI-RNN) model to predict locations in
diverse trajectories. We �rst propose three strategies to generate graph structures to demonstrate travel context and then leverage
graph convolutional networks to augment user travel intentions under graph view. Finally, we use gated recurrent units with
augmented node vectors to predict human trajectories. We experiment with two representative real-life datasets and evaluate the
performance of the proposed model by comparing its results with those of other state-of-the-art models. ­e results demonstrate
that the AI-RNN model outperforms other methods in terms of top-k accuracy, especially in scenarios with low similarity.

1. Introduction

Moving records bring large opportunities and challenges for
mining knowledge about public transit behavior in many
location-based-service applications, such as travel recom-
mendations, location-sensitive advertisement, and tra�c
planning. In contrast with other types of applications, next-
location prediction is considered a di�cult issue with un-
comfortable and inherent uncertainties that are relevant to
its unique features [1]. Transit uncertainties are mainly
caused by two things: ­e �rst is randomness due to the
nondeterministic nature of choice-behavior problems, and
the second is vagueness uncertainty due to the lack of fa-
miliarity with road networks and the linguistic information
of the network attributes [2]. Based on these two choice-
behavior models and according to their study on a million
users, Song et al. give the points where the movement
patterns of users can easily appear random and unpre-
dictable [3].

In particular, the dissimilarity of movement behavior
in massive-scale data is an obvious problem in real-life
scenarios. For example, in Figure 1, we collect user urban
travel behavior by using Wi-Fi sensors in the city, thereby
acquiring both geographical and temporal information.
We evaluate the regularity of travel patterns of people by
using similarity algorithms (e.g., Jaccard similarity) and
�nd that the places visited by di�erent residents di�er
completely in daily life. Even more, primary daily tra-
jectories from the same user are di�erent. Based on our
experiment results, we conclude that most users do not
have regular daily transit patterns—less than 20% of
people have consistent patterns.

According to the large-scale observational study men-
tioned above, more recent developments turn to statistical-
or pattern-based methods, which assume that user behavior
patterns are repeatable and predictable, thereby ignoring the
randomness and vagueness in real-life scenarios. Below, we
list three key challenges of next-location prediction:
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(i) First, the quality of moving data depends on user
activities and technical limitations. For example,
taxi trajectories recorded by GPS devices are con-
tinuous and high precision. Although people ac-
tively post the places they visit to location-based-
service applications to mark their track, these data
are of low sample rate and accuracy. Another reason
that user activities may be missed is because of
technical limitations, e.g., a Wi-Fi sensor cannot
capture mobile MAC information if it is off or if the
device is in airplane mode.

(ii) Second, existing work leverages sequential models
of point levels to capture movement regularities.
However, mining-mobility patterns are complex
and time sensitive and depend on public transport
systems, activity time, weather conditions, and
other possible emergencies. All of these factors
interact to complicate predictions.

(iii) .ird, residents living in different areas in a city
have different trajectories, but the intent behind
these completely different activities may be similar.
Finding the underlying semantic context for each
trajectory based on the points is a difficult but
important task for predicting next location.

.ese challenges are illustrated in Figure 2, where tra-
jectory a is an actual path with six nodes
(O1, O2, O3, O4, O5, O6). Trajectories b and c are two paths
observed by the Wi-Fi sensors. For trajectory b, node O3 is
lost due to technical limitations or user activities. For tra-
jectory c, the user went through nodes O1 and O5, as
recorded by nearby sensors C1 and C2, and the observed
trajectory is (C1, O2, O3, O4, C2, O6). .erefore, the tracks b
and c only present parts of actual paths with some errors,
which degrades the capability of the statistical and pattern-
based prediction models.

In past decades, probability models and fuzzy models
have been used to deal with the problems of randomness and

vagueness. Researchers now use hybrid models to interpret
incomplete or discrete datasets, as exemplified by, e.g., the
FLOWSIM travel-choice model [4], the LCML model [2],
the AHP model [5], and the FITAmodel [6]. However, all of
these approaches are based on predefined features, such as
distance, speed, parking conditions, and comfort level, which
are not available in the present study. Furthermore, neural
network models perform better for predicting general lo-
cations [7, 8], and graph neural networks (GNNs) use
structural interpretation for classification. Our intuition and
motivation to build our model are based on these previous
studies.

We thus propose herein an augmented-intention re-
current neural network model (AI-RNN) for location pre-
diction in randomness and vagueness situations. In the AI-
RNN model, we use a graph structure of nodes to build
intent for each user through their historical transit logs in

Figure 1: Urban travel records collected by Wi-Fi sensors. A trajectory is a sequential model of related movement records sorted in time
series, including geography, time stamps, and MAC information.
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Figure 2: Problem andmotivation for our model AI-RNN, where a
is the ground true route, while b and c are the observed routes in
different situations.
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which each position node is embedded and combine the
features of its adjacent nodes. .erefore, AI-RNN can de-
scribe the distinct characteristics of different locations and
leverage GCN models to extend the semantic context of
points. To choose suitable nodes to generate transit inten-
tion, we also propose three selection strategies to explain
each trajectory for special transit scenarios. We then use a
GCN to augment the vector of each point in the trajectory
and use a RNN with these augmented intention points to
predict the next location.

.e contributions of this work are summarized as
follows:

(i) We propose an AI-RNN model to capture the
randomness and vagueness difficulties over a large
scale of transit records. AI-RNN is thus an end-to-
end trajectory-prediction approach that considers
both trajectory graph structure and sequential
patterns.

(ii) We design three context-selection strategies to
augment user intention, including random selec-
tion, path-direction-oriented selection, and path-
probability selection, which refer to various situa-
tions of user movement. We evaluate these strate-
gies for various trajectories and determine which
selection strategy works best in special scenarios.

(iii) We do extensive experiments on two real-life
datasets: our urban travel dataset and the public
Foursquare dataset. .e results show that the AI-
RNNmethod outperforms other statistical methods
and the RNN method [7–9] for accuracy in top-k
categories. Furthermore, compared with randomly
selected nodes, a clear business strategy could find
some nodes related to the current trajectory se-
mantic and improve the accuracy.

.e rest of the paper is organized as follows: we first
formulate the problem and introduce the concepts used in
the AI-RNN in Section 2. Section 3 gives the architecture of
the AI-RNN and proposes three selection strategies. Next, in
Section 4, we discuss experiments with two real-life datasets
and evaluate the performance of the proposed model by
comparing its results with those of the existing methods.
Related work is discussed in Section 5, and Section 6 con-
cludes the paper.

2. Preliminaries and Motivation

First, we formally propose the location-prediction problem
under diverse trajectories and then briefly introduce the
RNN gated recurrent unit (GRU) and graph convolution
networks (GCNs). Finally, we discuss the motivation and
present an overview of our solution.

2.1. Problem Formulation

Definition 1. A trajectory sequence is a concept of a spatial-
temporal sequence generalized as P � O1⟶ O2⟶
· · ·⟶ On, where Oi � (lngi, lati, timei), 1≤ i≤ n. Trajectory

sequence contains geographical information like longitude
lngi and latitude lati and other information about trajectory
like timestamp timei.

For given trajectories, two preprocessing steps are done:
data cleaning to remove potential precision errors of Wi-Fi
probes and trajectory compression to deal with redundant
data acquired during data collecting.

Definition 2. .e concept of regularity represents the
similarity of a given user’s trajectories. For example, user u
has several trajectories P1,P2, . . . ,Pn. For each trajectory
Pi, we calculate the regularity simi by comparing Pi with
other trajectories via sequence similarity functions. .e
regularity of user u is defined as diversity � 􏽐

n
i�1simi/n.

Definition 3. .e trajectory intention is a representation of
the semantic information for a trajectory. Given a trajectory
P, we can extract a set of features as this trajectory’s in-
tention. Formally, Intention�TrajectoryLength, Trajector-
yComplexity, Speed, Duration Time, etc. Analyzing a
trajectory intention is not only beneficial to models based on
statistics but also provides valuable features as input for
models and plays a significant role in understanding the
potential semantics information of users.

Definition 4. Location-prediction problem: given the first
few n points in a trajectory, O � O1, O2, . . . , On, then for
each location in the trajectory we make k prediction about
top-k next location. To find out the correctness of predic-
tions, we check whether the real next location exists in k

predictions. For instance, we have a length of 10 trajectory
sequence O � O1, O2, . . . , O10 and next-location prediction
Opredk

� Ok1, Ok2, . . . , Ok10. .e true next point sequence is
Otrue � O2, O3, . . . , O11, and then for each point in Otrue,
check if it exists in prediction Opredk

, k ∈ (1, 5, 10, 20).

2.2. Gated Recurrent Unit. GRU is a gating mechanism in
recurrent neural networks, introduced in 2014 by Cho et al.
[10] to make each recurrent unit adaptively capture de-
pendencies of different time scales. GRU has gating units
that modulate the flow of information inside the unit. It has
three major parts, which are reset gate, update gate, and
activation unit. First, the reset gate rj is computed by

rj � σ Wrx􏼂 􏼃j + Urh(t− 1)􏽨 􏽩
j

􏼒 􏼓. (1)

Similarly, the update gate zj is computed by

zj � σ Wzx􏼂 􏼃j + Uzht− 1􏼂 􏼃j􏼐 􏼑. (2)

.e activation h
j
t of the GRU at time t is a linear in-

terpolation between the previous activation h
j
t− 1 and the

candidate activation 􏽢h
j

t :

h
j
t � 1 − z

j
t􏼐 􏼑h

j
t− 1 + z

j
t
􏽢h

j

t . (3)

GRU was first introduced in machine translation, which
shows that this kind of model learns a semantically and
syntactically meaningful representation of linguistic phrases.
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Analogy to trajectory prediction, it can not only remember
what happen before but also learn its internal semantics of
each user’s trajectories to get a better understanding.

2.3. Graph Neural Networks. GNNs have been first intro-
duced in the study of Gori et al. [11] and modified by
Scarselli et al. as a form of RNN [12]. .e idea of GNNs is
using the graph structure and node features to learn a
representation vector of a node, improved by Li et al. [13] by
introducing a modern useful strategy for RNN training to
the original GNNs. .is strategy is borrowed from the idea
of aggregation and combination, where it iteratively updates
the representation of a node by aggregating representations
of its neighbors.

Spectral approaches work with a spectral representation
of the graphs and have been successfully applied in the node
classification problem. While Bruna et al. [14] first intro-
duced the convolution operation is defined in the Fourier
domain by computing the eigendecomposition of the graph
Laplacian, it demands great computational complexity and
lacks spatially localized filters. Fortunately, these issues were
addressed in [15, 16]. And Kipf and Welling [17] presented
the most widely used GCN model, which is designed for
semisupervised learning in transductive settings, and it
integrates the operations of aggregation and combination
and also applies element-wise mean pooling, which suc-
cessfully reduces the number of parameters and can also
scale to large graphs. Formally, the model of GCN is

Z � f(X, A) � softmax 􏽢AReLU 􏽢AXW
(0)

􏼐 􏼑W
(1)

􏼐 􏼑. (4)

2.4.MotivationOverview. .e trajectory of an individual is a
sequence of records of movements with geographical and
temporal information. .us, a suitable sequence model such
as a RNN could resolve the sequential-prediction problem.
However, end-to-end prediction methods depend on the
quality and quantity of data. In real-life cases with diverse
and sparse trajectories, the prediction accuracy would
rapidly degrade. .e main reason for the limitation of
mobility prediction in the single-point view is that we cannot
capture the complete intention of the trajectory because of
the user’s frequent activities or because of the technical
limitations described in Figure 2. .erefore, we need to
repair the context of the point and determine the user’s
trajectory intention before using sequential-prediction
methods.

Our motivation is to find the “relevant” points of each
point via the user’s historical trajectory and let the target
point fuse the information of the relevant points to form a
fuzzy vector representation, as represented in the last chart
of Figure 2. We call this process an “intent augment” and
merge it into our prediction task to improve the
representation.

3. Augment Intent Neural Network Framework

Figure 3 presents the architecture of AI-RNN, which
comprises three key components: the intention-argument

module, semantic-selection module, and sequential-pre-
diction module.

3.1. Intention-AugmentModule. Due to the randomness and
vagueness of trajectories, we should merge richer semantic
information to represent user intention. Here, the graph
neural network-related models could be utilized to describe
the relation of points by users’ historical records [18].

Inspired by a relational inductive model based on graph
neural networks that provide a straightforward interface for
manipulating structured knowledge and producing struc-
tured behaviors [19], we design the intention-augment
module to promote semantic of trajectories. We conduct
tuple G � (u, V, E), where u is the user, V � vi􏼈 􏼉 is the set of
nodes, and each vi is a point in historical trajectories. E �

(ek, sk, tk)􏼈 􏼉 is the set of edges, where ek is the weight of edge,
sk is the source node, and tk is the target node.

Intention augment of a point p is a trajectory context by
past visited points, which could be an edge-weighted graph.
After that, GCN-based methods would fuse related points to
augment the semantic of point p.

3.2. Context Generation Strategy. .e critical part of AI-
RNN is how to build the semantic context for each tra-
jectory. .e intention of a trajectory has two key charac-
teristics: the time sensitiveness and the scenario
sensitiveness [1]. We propose three selection strategies to
represent travel semantic, including random selection
strategy, direction-oriented strategy, and maximum proba-
bility strategy. All of these strategies could be cooperated
with graph-based learning models such as [20] or [21].

3.2.1. Random Selection Strategy. .e naive idea for the
selection approach is to choose part of nearby points at
random. Since more points merged for computing the richer
semantic of a trajectory could be represented, here we could
draw context between the minimum level min (i.e., the point
node itself ) and the maximum level max (i.e., all the
neighborhood nodes). We define a threshold c whether or
not to consider a point as an augmented information by the
following equation.

c � w × random seed( ), (5)

where w represents the weight of each node which is defined
by the number of each node’s neighborhoods, the function
of random seed is a random function which outputs a
number ∈ [0, 1], and c is a threshold, deciding whether we
consider this point as an expanded branch. In this paper, we
chose c � 0.6 which provides the best result in our
experiment.

Candidate points are selected from historical behaviors
but should follow several criteria as shown in Algorithm 1. In
Figure 4(a), we augment information of point O1 by merging
C2 (red dashed line), as well as point O2.

3.2.2. Direction-Oriented Strategy. .is strategy is intuited
by the idea that most of the people traveling in the city prefer
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a simple but straightforward path. .erefore, we could
choose those nodes which keep the direction of the original
path with two criteria.

First of all, the selected segments are in an individual’s
historical trajectories, which means the probability of
transiting through these paths is relatively high. Secondly,
the direction of the observed path and the additional path is
similar, which means the direction difference between those
two paths should be less than a threshold.

For example, as Figure 4(b) presents, given a trajectory
segment O2O3 in graph G, the direction of O2O3, denoted by
θ(O2, O3), is defined to be the angle of the anticlockwise
rotation from the x-axis to a vector from O2 to O3. And we
find a point C2 from historical trajectories and get the di-
rection of O2, C2 as well. .e “angular difference” is defined
to be the minimum of the angle of clockwise and anti-
clockwise rotations from θ1 to θ2. .e criterion of direction-
oriented strategy is to filter those points whose angular
difference between current trajectories is greater than and
equal to σ:

θ Oi, Oj􏼐 􏼑 � OiOj,

Δ θ1, θ2( 􏼁 � min θ1 − θ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, 2π − θ2 − θ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯< σ.
(6)

3.2.3. Maximum Probability Strategy. .is model mainly
demonstrates the probability that a user choosing to follow a
certain path. In a given segment (Om, Ct, On), Om is a
previous node, Ct is a candidate node, and On is the aug-
mented point.

In maximum probability strategy, we first split whole
trajectory into separated consecutive points and calculate the
probability of each pair p(Oi, Oi + 1). After getting all the two-
point segment selection probabilities, we could calculate the
three-point segment by the following equation. It should be
noted that we assume that all segments are independent for
simple. Of course, more complex methods could be used to
calculate the selection probability of the composited trajectory:

p Om, Ct, On( 􏼁 � p Om, Ct( 􏼁 × p Ct, On( 􏼁. (7)

In reality, due to the limitation of techniques, some user
traces are ignored. According to this strategy, trajectory
semantics could be compensated by past behavior proba-
bilities. For instance, as Figure 4(c) represents, for two
candidate nodes (C1 and C2), we compare probability value
of two composited segments p(O2, C1, O3) and
p(O2, C2, O3). If the path through C2 has higher confidence,
we put C2 into our augmented structure.

3.3. Training Algorithm. Algorithm 2 outlines the training
process of AI-RNN. AI-RNN works in an end-to-end
manner without requiring human business features. We
could choose one of three strategies to augment user
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Input: current trajectory Pu
i for user u

Output: A dict for candidate nodes Du

(1) initialize: Du⟵{}, time thr⟵30, dis thr⟵500
(2) for each node Oi ∈ P

u
i do

(3) for each node Oj ∈ adjacent nodes of Ni do
(4) if distance between Oi and Oj <dis thr

(5) and (Oi(t) − Oj(t))< time thr then
(6) Du[Oi]⟵Oj

(7) end if
(8) end for
(9) end for

ALGORITHM 1: Selection of candidate nodes.
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intention (lines 3–5), fusion semantic context, and utilize
recurrent neural network to predict next location.

4. Performance Evaluation

4.1. Dataset. We collect two representative real-life spatio-
temporal datasets to evaluate the performance of the pro-
posed model. .e first one is urban travel data (https://
github.com/jincanghong/next_place_prediction) collected
by Wi-Fi sensors all over the city. .e second one is the
public Foursquare check-in data. Since the characteristics of

spatiotemporal data in these two datasets are quite different,
we describe detail operations as follows.

4.1.1. Urban Travel Data. Our real-life dataset is collected by
Wi-Fi sensors installed in eastern city of China, which in-
cludes MAC address, timestamp, and geo-information. We
select minipart of residents and remove the private prop-
erties for our experiment. Since our study focuses on the
mobility pattern of trajectories, we need to do preprocess to
choose actual residents by three steps. First, according to the
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Figure 4: .ree augmentation selectors: (a) random selector, which chooses the parts of candidate nodes ci randomly with parameter ω,
(b) direction-oriented selector, which chooses the candidate nodes ci by considering the intersection angle of paths, and (c) probability
selector, which chooses ci under maximum probability of path.

Input: trajectory: Pu1 ,Pu2 , . . . ,Pun{ }, candidate nodes: Du1 ,Du2 , . . . ,Dun{ }, window size: W

Output: trained model M
(1) for each user u ∈ u1, u2, . . . , un do
(2) for each traj. Pi ∈ P

u do
(3) strategy 1: random selection
(4) strategy 2: based on angle
(5) strategy 3: based on conditional probability
(6) //Use one of the above strategies applied on each traj.
(7) Initialize: parameters θ
(8) for each batch nodes W ∈ Pi do
(9) Ou⟵ Pi(O1),Pi(O2), . . . ,Pi(OW)􏼈 􏼉

(10) M⟵Neural Network (GCN ({Points: Ou, Adj_Points: Du}))
(11) end for
(12) end for
(13) end for

ALGORITHM 2: Location prediction algorithm.
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top-10 best-selling and most popular phone in China, we
check if the MAC belongs to those android brands as fol-
lows: Huawei, OPPO, Vivo, Xiaomi, Meizu, Gionee, Sam-
sung, Letv, and Lephone, which accounted for over 75
percent market in 2017. And then, we select those residents
who have enough activity track records in total number and
have at least two-week data in a month. Finally, we generate
trajectories according to the criterion that distance and time
interval between any two consecutive trajectory points is less
than 1 kilometer and 30 minutes. We calculate the visited
number n of each node and then draw the heat map with log
function as shown in Figure 5.

4.1.2. Foursquare Check-In Data. .is dataset contains
check-ins in NYC and Tokyo collected for about 10 months
(from 12 April 2012 to 16 February 2013). It contains
227,428 check-ins in New York city and 573,703 check-ins in
Tokyo. Each check-in is associated with its timestamp, GPS
coordinates, and semantic meaning (represented by fine-
grained venue categories). Since the moving records are not
continuous, we set the time interval to 3 days to generate
trajectories.

Besides representing the statistic values of three datasets
in Table 1, we measure the regularity of trajectories by the
Jaccard function. In Figure 6, we note that most paths are
short (less than 50 points), and the longer the path, the lower
the value of regularity.

4.2. Experimental Setup

4.2.1. Platform. All the experiments are conducted in two
environments. First one is a Cloudera platform with 24
physical machines, which is used to preprocess and generate
the dataset. .e other platform is a Dell server 64-bit system
(16 core CPU, each with 2.6GHz, GPUGTX 1080ti, and 32G
main memory). .e algorithms and models in our paper
were implemented by Python 3.

4.2.2. Evaluation Criteria. We calculate precision@k to
measure the performance, which means that the correct
point gets to be in the top-k probabilities for it to count as
“correct.” Given the trajectory with n nodes, the top-k ac-
curacy of trajectory is calculated as the average accuracy
value of all nodes. .e experiments are conducted in terms
of the test-train model, where the first 70 percent of tra-
jectories are chosen for training and the remaining 30
percent for testing.

4.3. Models and Performance Results. To evaluate the ac-
curacy of our model, we compare the proposed model with
some classical and state-of-the-art methods: (1) .e sta-
tistic model is simple, which chooses the next node by the
largest frequency value of user in the historical record. (2)
.e Markov model is widely used to predict location in
decades, which sets up a spatiotemporal mixture model to
cover the prediction task [9]. (3) .e RNN model treats
locations in trajectory as a sequential model and focuses on

modeling the continuous spatiotemporal information. .e
original model as RNN works like sequence prediction, and
the updated model DeepMove [7] adds historical attention
to recurrent neural network, since the result has been il-
lustrated that DeepMove has better performance than
original RNN. In this experiment, we select DeepMove as
state-of-the-art RNN model to compare with. We imple-
ment all the three submodels of DeepMove with different
parameters as (max , dot) (mean, dot), and (max , concat).
(4) AI-RNN is our proposed model that considers related
external nodes to augment intention via RNN models. .e
first three models deal with prediction based on a series of
concrete and complete nodes. Our model, on the opposite
side, assumes that the observed nodes in trajectory are not
complete and finds out latent intention during the pre-
diction process.

.e parameters of our model are set as follows: learning
rate lr is [3e− 4, 3e− 3], the decay of ls is [1e− 5,1e− 4], em-
bedding size of each location is 500, embedding size of time
section is 48, and finally embedding size of user is 10.

4.4. Performance Comparisons. From Table 2, we have
several interesting observations that confirm our research
motivation. First, the RNN-based methods outperform the
statistics model and the Markov model in the urban travel
dataset. Our AI-RNN model is higher than DeepMove
nearly 5–10 percent. In contrast, in Foursquare NY and
Foursquare TKY datasets, the performance of Markov is
somehow better but is still lower than those of DeepMove
and AI-RNN when k is growing.

Moreover, DeepMove and AI-RNN have similar results
in the Foursquare dataset, which shows that the function of
augmented intention is not so effective. Observations show
that if the time interval or distance in the trajectory is large,
the intention will be blurred, thereby reducing the effec-
tiveness of the AI-RNN. For AI-RNN, interestingly, the
accuracy of the maximum probability strategy is better than
the other two strategies in the Foursquare dataset, which
demonstrates that in those LBS check-in applications, users
are more likely to choose the place of interest rather than the
place along the way.

4.5. Case Study and Insight Analysis. In this section, we
visualize several points on the city map and illustrate the
difference of semantic context in a trajectory.

Figure 7 provides examples of representative trajectory
context by different strategies. Figure 7(a) represents the
historical paths of the given user, in which each trajectory
has a different color and the geographical dimensions are
demonstrated on the city map. We can see that Figure 7(b) is
the actual path (O1, O2, . . . , O7) and Figure 7(c) selects
nodes O8, O9, and O10 randomly which cannot draw a clear
travel intention. Figure 7(d) shows that users are one way or
round trip with clear directions, where points
O11, O12, andO13 are merged for computing. As visualized
in Figure 7(e), points O10 and O14 are generated alternate
paths for prediction.
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Besides Figure 7, we further evaluate the performance
under different conditions and discuss model variations via
three strategies.

We first analyze the prediction result on different user
groups. From Figure 6, we find that regularity of movement

pattern is completely diverse in users. According to the
statistical value, we select two user groups by their trajectory
similarity: the Jaccard value of the regular group is larger
than 0.4, while the irregular group user has the Jaccard value
less than 0.2. .e results are presented in Table 3, which
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Figure 5: Heat map of visited location.
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Figure 6: Regularity of trajectories in different datasets. .e x-axis is the length of trajectory and y axis-is the Jaccard similarity value.
(a) Urban travel. (b) Foursquare.

Table 1: Statistic of the dataset.

Dataset Urban travel Foursquare NY Foursquare TKY
Duration 3 months 8 months 8 months
Users 1079 845 1964
Distinct points 3861 26635 40538
Trajectories 22785 7709 20397
Length of trajectory 8.60 10.74 10.87

8 Wireless Communications and Mobile Computing



suggests that regular user is much easier to predict as ob-
served in life.

Besides, we evaluate the model performance in different
time sections of day. We divide trajectories into various
groups by their attributes: date, time, distance, duration, and
length. .ere is no difference in prediction score between the
work day and holiday groups. When we move to analyze the
time influence of the prediction performance as Figure 8
shows, we find that trajectories during late evening and early
morning are more predictable than other time sections, but
it is not easy to predict during the working hours. It means

that the user transits during night time withmore clear travel
intention.

According to the statistic value and power law distri-
bution shown in Figure 6, the majority length of trajectory
for urban travel dataset varies from 5 to 50. Figure 9 plots the
prediction accuracy obtained by all three AI-RNN models.
Evaluation results demonstrate that the accuracy value varies
significantly but has the same trend on all models. .e
performance trend is increased with the growth of the
length, which is contrary to the overview of the article [7]
mentioned.
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Figure 7: Case study: (a) presents the historical trajectories of the user, (b) is the actual path, and (c–e) are three separate selection strategies
for prediction.

Table 2: Accuracy of top k results with various prediction methods.

Dataset Urban travel Foursquare NY Foursquare TKY
Methods acc@1 acc@5 acc@10 acc@20 acc@1 acc@5 acc@10 acc@20 acc@1 acc@5 acc@10 acc@20
Statistics 22.69 36.71 39.42 41.20 9.22 17.91 21.43 25.22 12.06 21.46 24.72 28.62
Markov chain 15.42 36.52 44.32 51.48 9.78 22.24 27.08 29.10 11.76 23.68 29.61 34.53
DeepMove (max, dot) 24.94 43.79 52.06 59.60 9.35 23.62 29.76 34.57 10.30 24.84 32.21 38.76
DeepMove (mean, dot) 23.73 42.55 51.13 56.71 9.87 23.03 28.86 31.32 9.37 22.66 30.18 34.35
DeepMove (max, concat) 24.09 43.17 51.76 59.88 10.16 21.98 26.99 30.96 10.44 24.55 31.53 36.74
AI-RNN (RS) 27.13 51.80 62.43 71.18 12.04 23.78 27.78 32.08 11.36 23.36 28.46 33.02
AI-RNN (DO) 27.65 52.42 62.87 71.95 10.23 22.19 26.45 31.72 11.07 22.87 27.08 32.13
AI-RNN (MP) 27.14 51.89 62.19 70.90 12.67 23.98 28.02 35.36 12.24 25.56 32.15 35.89

Table 3: Performance of AI-RNN in the urban travel dataset with different regularities.

Group Strategy acc@1 acc@5 acc@10 acc@20
Regular life RS 73.21 94.18 96.57 97.40
Regular life DO 76.12 94.29 96.77 97.82
Regular life MP 74.14 94.29 96.68 97.40
Irregular life RS 26.26 50.66 61.16 70.05
Irregular life DO 26.65 51.22 61.70 70.51
Irregular life MP 26.04 50.71 61.03 69.80
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5. Related Work

Works close to our task can be classified into two categories:
pattern-based methods and graph-based methods. In what
follows, we provide a brief overview of related work in these
fields.

5.1. Pattern-Based Methods. A large number of approaches
for trajectory prediction using statistics, like probability-
based approach, time series, and Markov predictors, have
been proposed before the rise of deep learning. Wiest et al.
[22] introduced probabilistic modeling, Gaussian mixture
models, which can not only get the prediction result but also
learn a whole distribution over the future trajectories.

Similar approaches were introduced in [23, 24]. Scellato et al.
[25] introduced a spatiotemporal prediction framework
based on nonlinear time series analysis [26, 27], which can
estimate future times of arrival and residence times in the
different significant places and where the user will be after a
given time interval. Markov-based techniques have also been
applied to the prediction of the destinations (geographical
locations) of vehicles using, for example, partial trajectories
[28]. Gambs et al. and Mathew et al. [29, 30] developed
prediction location models with the Markov chains and
hidden Markov models, respectively.

5.2. Relation InductiveModel. Graph-based semisupervised
learning methods are used to classify the nodes and
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Figure 8: AI-RNN prediction results in different time sections. According to the human daily activities, we divide a day into four sections.
Sections A(morning rush hour): 6 am to 9 am, B(working hours): 9 am to 16 pm, C(evening rush hours): 16 pm to 20 pm, and
D(late evening and earlymorning): 20 pm to 6 am. (a) acc@top-1 and (b) acc@top-5.
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Figure 9: AI-RNN prediction results vary with trajectory length. (a) acc@top-1 and (b) acc@top-5.
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interpret the relationship between nodes [19, 31]. More-
over, since graphs are often related to other disciplines by
their structures, the deep learning model for graph is
critical towards decision-making problem. Researchers in
articles [18, 32] summarized how to use GNNs and GCNs
for relational reasoning using a unified framework called
graph networks, and Lee et al. [33] reviewed the attention
models for graphs. Based on the above structural learning,
Yao et al. proposed a cluster-based model for location
prediction, which aims at discovering groups of similar
trajectories and revealing movement patterns [20]. .e
article [21] introduces a CNN-based approach for rep-
resenting semantic trajectories and predicting future
locations.

6. Conclusion

In this paper, we proposed the AI-RNN model with graph
neural network and recurrent neural network. By aug-
menting the latent semantic of trajectory via suitable
strategies, AI-RNN could improve the accuracy of next-
location prediction in randomness and vagueness travel
behaviors in the city. Compared with existing sequential-
prediction algorithms, AI-RNN enjoys the advantage of
partly utilizing the context information for every node in
trajectory during the training phase. Experimental results
based on real-world urban travel dataset and LBS check-in
dataset show that AI-RNN outperforms the state-of-the-art
baselines when the trajectories are continuous with short
time interval. Additional experimental results illustrate that
the duration and the distance could also make an effective
influence on the performances.
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