
Research Article
SFDE: Shuffled Frog-Leaping Differential Evolution and
Its Application on Cognitive Radio Throughput

Hongbo Wang ,1,2 Xiaoxiao Zhen,1 and Xuyan Tu1

1School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
2Beijing Key Lab of Knowledge Engineering for Materials Science, No. 30 Xueyuan Road, Haidian Zone, Beijing 100083, China

Correspondence should be addressed to Hongbo Wang; foreverwhb@126.com

Received 2 July 2018; Revised 11 January 2019; Accepted 10 February 2019; Published 4 March 2019

Guest Editor: Charles Yaacoub

Copyright © 2019 Hongbo Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Differential Evolution (abbreviation for DE) is showing many advantages in solving optimization problems, such as fast
convergence, strong robustness, and so on. However, when DE faces a complex target space, the diversity of its population will
degenerate in a small scope; even sometimes it is premature to fall into the local minimum. All things contend in beauty in the
world; a Shuffled Frog Leaping Algorithm (abbreviation for SFLA) has a strong global ability; unfortunately, its convergence speed
is also slow. In order to overcome the shortcoming, this article suggests a Shuffled Frog-leapingDifferential Evolution (abbreviation
for SFDE) algorithm in a cognitive radio network, which combines Differential Evolution with Shuffled Frog Leaping Algorithm.
This proposed method hikes its local searching for a certain number of subgroups, and their individuals join together and share
their mutual information among different subgroups, which improves the population diversity and achieves the purpose of fast
global search during the whole Differential Evolution. The SFDE is examined by 20 well-known numerical benchmark functions,
and those obtained results are compared with four other related algorithms. The experimental simulation in solving the problem
of effective throughput optimization for cognitive users shows that the proposed SFDE is effective.

1. Introduction

The convergence of the basic Differential Evolution (abbrevi-
ation forDE) is closely related to its control parameters.Many
researchers have worked on improving its performance in
variousways and developedmany variants. In [1], amethod of
Self-adaptive Differential Evolution algorithm with discrete
mutation control parameters (DMPSADE) is proposed. In
DMPSADE, each vector has its own mutation, cross param-
eters, and control strategies. Those original unified control
parameters and mutation strategies are divided into each
individual, so that the evolutionary granularity becomes
smaller and the performance improves. In [2], a fuzzy system
is introduced to dynamically adaptive control parameters to
improve DE. An improved DE named ADE is proposed in
[3], where the author suggests DE with two-level parameter
adaptation. The first level of control parameters FP and CRP is
used to control the global optimization ability, and the second
level of control parameters Fi and CRi corresponds with each
individual to improve the local search of the algorithm. The

main characteristic of DE is its mutation strategy. Price and
Storn proposed more than ten different differential strategies
to implement mutation operation such as DE/rand/1/bin,
DE/rand/2/bin, DE/best/1/bin, DE/rand-to-best/bin, and so
on. Among them, DE/rand/1/bin and DE/best/2/bin are the
most widely used and most successful differential strategies.
The former can maintain the diversity of the population, and
the latter pays more attention to the speed of its convergence.

Reference [4] introduces a fitness Euclidean-distance
ratio for multimodal optimization. In [5], a novel mutation
strategy, named elite/rand/1, which divides a whole popu-
lation into two subpopulations on the basis of the fitness
and then extracts the maximum information from an elite
individual. MDE in [6] includes three new steps: Opposition-
Based Learning (OBL), tournament method for mutation,
and a single population structure. A parameter adaptive
selection can dynamically evaluate their performance during
evolution and guide the direction of its development in the
next iteration process [7]. Based on the abstract convex
theory, a dynamic adaptive differential evolution algorithm

Hindawi
Wireless Communications and Mobile Computing
Volume 2019, Article ID 2965061, 18 pages
https://doi.org/10.1155/2019/2965061

http://orcid.org/0000-0002-5408-7549
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2965061

2 Wireless Communications and Mobile Computing

(DADE) is proposed in [8]. Shuffled Frog Leaping Algorithm
(SFLA) is proposed in [9], which is inspired by the individuals
learning from each other during the foraging behaviour of
frogs. In [10], a multiphase hybrid algorithm implements a
local depth search using SFLA for every cluster and readjusts
its global solutions. An improved hybrid bifurcation algo-
rithmbased on cloudmodel is proposed in [11], which focuses
on the transformation between qualitative and quantitative
computing. Reference [12] proposed crossing and variation
frog leaping algorithm (KSFLA), where the individuals of the
subpopulations vary from the ranking list before producing
new individuals instead of the poor ones. Reference [13] pro-
posed a Self-adaptive Differential Evolution algorithm with
Improved Mutation Mode (IMMSADE), which improves the
mutation model of DE and introduces some new control
parameters.

Based on the above discussion, SFLA has slow the con-
vergence, low efficiency, and precision in the high dimension
continuous optimization problems, in that its core strategy is
to continuously update the location of the worst individual.
But DE does not do anything with the worst individual.
A hybrid algorithm based on frog leaping algorithm and
Differential Evolution is suggested in this article, which
combines the advantages of SFLA and DE, in order to obtain
a significant performance on convergence speed and the
accuracy.

The rest of this paper is organized as follows. In order to
ensure the readability, the related mathematics description of
Differential Evolution and Shuffled Frog Leaping Algorithm
is summarized in Section 2. Section 3 formally definesmodels
of an improvement in a Shuffled Frog-leaping Differen-
tial Evolutionary algorithm (SFDE). Section 4 designs the
comparative experiments of well-known public benchmark
functions and analyses the related T-test and F-test results
for proof of the effective SFDE. The analysis of convergence
in SFDE is described in detail in Section 4. Simulation exper-
iments on the problem of effective throughput optimization
for cognitive users are given in Section 5. Section 6 concludes
this article with a summary and future direction.

2. The Related Work

2.1. About Differential Evolution. DE is a random search
based on population and also a heuristic swarm intelligence
algorithm. It mainly uses mutation, crossover, and selection
operations to perform an intelligent evolutionary search. DE
has five operations, which are described as follows.

(1) Initialization Operation. Initializing a population ran-
domly in the search space, the j-th parameter of the i-th
individual in the 0-th generation is initialized by formula (1):

𝑥𝑗,𝑖 (0) = 𝑥𝐿𝑜𝑤𝑗,𝑖 + 𝑟𝑎𝑛𝑑 (0, 1) ⋅ (𝑥𝑈𝑝𝑗,𝑖 − 𝑥𝐿𝑜𝑤𝑗,𝑖) , (1)

In formula (1), xUp and xLow are the upper and lower boundary
of the j-th parameter of the i-th individual, respectively.𝑟𝑎𝑛𝑑(0, 1) denotes a random number, which is limited
between 0 to 1.

(2) Mutation Operation. In DE, the most common in muta-
tion operations isDE/rand/1, which selects two individuals at
random in a population. Then the vectors are combined with
the target vector for mutating into an intermediate vector
V𝑖(𝑔). The process can be expressed as follows in formula (2):

V𝑖 (𝑔) = 𝑥𝑟1 (𝑔) + 𝐹 ⋅ (𝑥𝑟2 (𝑔) − 𝑥𝑟3 (𝑔)) (2)

Obviously, the smaller the difference between 𝑥𝑟2(𝑔) and𝑥𝑟3(𝑔) is, the smaller the difference between 𝑥𝑟1(𝑔) and V𝑖(𝑔)
is. This means that, in the initial stage, the disturbances
are large because of the far distance between individuals,
and the search range of the algorithm is large. But in the
later period of the iteration, the detective range will be a
shrink. Several commonmutation strategies are shown in the
following formulas (3), (4), and (5):

A DE/rand/2

V𝑖 (𝑔) = 𝑥𝑟1 (𝑔) + 𝐹 (𝑥𝑟2 (𝑔) − 𝑥𝑟3 (𝑔))
+ 𝐹 (𝑥𝑟4 (𝑔) − 𝑥𝑟5 (𝑔)) (3)

B DE/current-to-best/1

V𝑖 (𝑔) = 𝑥𝑖 (𝑔) + 𝐹 (𝑥𝑏𝑒𝑠𝑡 (𝑔) − 𝑥𝑖 (𝑔))
+ 𝐹 (𝑥𝑟1 (𝑔) − 𝑥𝑟2 (𝑔)) (4)

C DE/best/1

V𝑖 (𝑔) = 𝑥𝑏𝑒𝑠𝑡 (𝑔) + 𝐹 (𝑥𝑟2 (𝑔) − 𝑥𝑟3 (𝑔)) (5)

Among them, the subscript variables 𝑟1, 𝑟2, 𝑟3, 𝑟4, and 𝑟5
represent different individuals and 𝑥𝑏𝑒𝑠𝑡(𝑔) represents the
optimal vector in the 𝑔-th generation.
(3) Correcting Operation. After the mutation operation, the
algorithm must ensure that each component (gene) of the
intermediate vector satisfies the predefined boundary con-
straints. If a component (gene) of an intermediate vector
exceeds the scope, the vector individual must be corrected.
The following formula (6) is a simple but most frequently
used correction strategy:

V𝑖 (𝑔)
= {{{

min {𝑥𝑈𝑝𝑗,𝑖 , 2𝑥𝐿𝑜𝑤𝑗,𝑖 − V𝑖 (𝑔)} , 𝑖𝑓 V𝑖 (𝑔) < 𝑥𝐿𝑜𝑤𝑗,𝑖
max {𝑥𝐿𝑜𝑤𝑗,𝑖 , 2𝑥𝑈𝑝𝑗,𝑖 − V𝑖 (𝑔)} , 𝑖𝑓 V𝑖 (𝑔) > 𝑥𝑈𝑝𝑗,𝑖 .

(6)

(4) Crossover. Crossover is tomixture the 𝑥𝑗,𝑖(𝑔) and V𝑗,𝑖(𝑔) in
the 𝑔-th generation, producing test vectors. The process can
be expressed as follows in formula (7):

𝑢𝑗,𝑖 (𝑔)
= {{{

V𝑗,𝑖 (𝑔) , 𝑖𝑓 𝑟𝑎𝑛𝑑 (0, 1) ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑𝑥𝑗,𝑖 (𝑔) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7)

Wireless Communications and Mobile Computing 3

In formula (7), CR is the cross probability and 𝑗𝑟𝑎𝑛𝑑 is a
random integer of [1, 2 . . .D].
(5) Selecting Operation. By comparing the function values of
the target vectors in the test function 𝑓(𝑥𝑖(𝑔)) with the test
function values of the corresponding test vectors 𝑓(𝑢𝑖(𝑔)),
which is determined whether the test vectors can be put
into the next generation or not, the standard Differential
Evolution algorithm employs a greedy algorithm for the
selection operation. The process can be expressed as follows
in formula (8):

𝑥𝑖 (𝑔 + 1) = {{{
𝑢𝑖 (𝑔) , 𝑖𝑓 𝑓 (𝑢𝑖 (𝑔)) ≤ 𝑓 (𝑥𝑖 (𝑔))𝑥𝑖 (𝑔) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (8)

2.2. Shuffled Frog Leaping Algorithm. Suppose that there are𝑁 frogs in the n-dimensional space catching their food.
The basic Shuffled Frog Leaping Algorithm sorts all the
individuals in descending order according to the fitness of
the objective function and then puts the first frog individual
into the first group, the second frog individual into the
second group, and so forth. The first 𝑚 frogs entry own
group in order, respectively; thus each group contains a frog.
Beginningwith the𝑚+1𝑠𝑡 frog, the remaining frogs join their
own group according to the rule of Round Robin (namely,
Mod m).

In each group, 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛) represents the
current position of the 𝑖 − 𝑡ℎ frog. 𝑝𝑏𝑒𝑠𝑡𝑖 = min(𝑝𝑏𝑒𝑠𝑡𝑖1,𝑝𝑏𝑒𝑠𝑡𝑖2, . . . , 𝑝𝑏𝑒𝑠𝑡𝑖𝑜) is the optimal location in the 𝑖 −𝑡ℎ group, called the local optimal position. 𝑝𝑤𝑜𝑟𝑠𝑡𝑖 =
max(𝑝𝑤𝑜𝑟𝑠𝑡𝑖1, 𝑝𝑤𝑜𝑟𝑠𝑡𝑖2, . . . , 𝑝𝑤𝑜𝑟𝑠𝑡𝑖𝑀) is the worst in the𝑖 − 𝑡ℎ group, called the local worst position.

Let 𝑓(𝑋) be a minimal objective function, and use
formula (9) to calculate the local optimal frog location for the𝑖 − 𝑡ℎ group.
𝑝𝑏𝑒𝑠𝑡𝑖 (t + 1)
= {{{

𝑝𝑏𝑒𝑠𝑡𝑖 (𝑡) , 𝑖𝑓 𝑓 (𝑋𝑖 (𝑡 + 1)) ≥ 𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖 (𝑡))𝑋𝑖 (𝑡 + 1) , 𝑖𝑓 𝑓 (𝑋𝑖 (𝑡 + 1)) < 𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖 (𝑡))
(9)

Assume that the number of the frogs is 𝑁, and it is divided
into 𝑚 groups according to the grouping operator. The
optimal position 𝑔𝑏𝑒𝑠𝑡(𝑡) for each group is the global optimal
location, as shown in formula (10).

𝑔𝑏𝑒𝑠𝑡 (𝑡) = min {𝑓 (𝑝𝑏𝑒𝑠𝑡1 (𝑡)) , 𝑓 (𝑝𝑏𝑒𝑠𝑡2 (𝑡)) , . . . ,
𝑓 (𝑝𝑏𝑒𝑠𝑡𝑚 (𝑡))} (10)

According to the local location update operator, adjusting
the position of the worst frog in each group, the concrete
adjustment method is as follows.

The frog moving distance is as shown in formula (11):

𝑝𝑚𝑜V𝑒𝑖 = 𝑟𝑎𝑛𝑑 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑝𝑤𝑜𝑟𝑠𝑡𝑖) (11)

Update the worst frog individuals as follows:

𝑝𝑤𝑜𝑟𝑠𝑡𝑖= 𝑝𝑤𝑜𝑟𝑠𝑡𝑖
+ 𝑝𝑚𝑜V𝑒𝑖 (−𝑝𝑚𝑜V𝑒𝑚𝑎𝑥 ≪ 𝑝𝑚𝑜V𝑒𝑖 ≪ 𝑝𝑚𝑜V𝑒𝑚𝑎𝑥)

(12)

In formula (11), 𝑟𝑎𝑛𝑑 is a random number between 0 and 1.𝑝𝑚𝑜V𝑒𝑚𝑎𝑥 in formula (12) represents the maximum distance
that the frog can move during its foraging for food. If the
positions obtained from formulas (11) and (12) are closer to
the food source than the position of the worst frog in the
group, the worst frog leaps to this new position. The position
of the worst frog 𝑝𝑤𝑜𝑟𝑠𝑡𝑖 is further closer to the food source.
Otherwise, 𝑝𝑏𝑒𝑠𝑡𝑖 is replaced by 𝑔𝑏𝑒𝑠𝑡𝑖, and the worst frog
continues to search for a new leaping position as follows:

𝑝𝑚𝑜V𝑒𝑖 = rand ∗ (𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑝𝑤𝑜𝑟𝑠𝑡𝑖) (13)

𝑝𝑤𝑜𝑟𝑠𝑡𝑖 = 𝑝𝑤𝑜𝑟𝑠𝑡𝑖 + 𝑝𝑚𝑜V𝑒𝑖,
(−𝑝𝑚𝑜V𝑒𝑚𝑎𝑥 ≪ 𝑝𝑚𝑜V𝑒𝑖 ≪ 𝑝𝑚𝑜V𝑒𝑚𝑎𝑥) (14)

If the position obtained from formulas (13) and (14) is still
not closer to the food source than the worst frog in the group,
or the worst frog individual needs to skip more than the
maximum step size, the worst frog leaps to a new position at
random. Otherwise, the worst frog leaps to the new position
generated from formula (14). SFLA performs an iterative
evolution of the frogs within each group via adjusting and
updating of the worst frog.

In the evolutionary process of SFLA, each iteration
involves the local optimal solution 𝑝𝑏𝑒𝑠𝑡𝑖 and the global
optimal 𝑔𝑏𝑒𝑠𝑡. In the whole population, there exist𝑚 groups,
and therefore there are 𝑚 local optimal solutions, and there
is only one global optimal. SFLA uses a grouping operator
and a mechanism of individual integration into groups for
transmitting messages and sharing information. The group-
ing operator divides all the frogs in the population into 𝑚
groups, and then the worst frog in each group updates itself
local search strategy. When all groups finish searching, a
shuffle share information and interact with each other. This
mechanismmakes SFLA have better global search ability. The
procedure of basic SFLA is shown as follows.

Step 1. Initialize the positions of all the frogs in the population
at random, to make the frogs randomly distributed in the
search space, and initialize the population size𝑁, the number
of frogs in a group 𝑄, the number of evolution of the𝑖𝑛𝑛𝑒𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, the maximum step size of the frogs allowed
to move 𝑝𝑚𝑜V𝑒𝑚𝑎𝑥, and maximum number of iterations of
population 𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛.
Step 2. Calculate the fitness of all frogs in the population and
sorting them in descending order. 𝑔𝑏𝑒𝑠𝑡 is initialized with
the best frog position, and the frogs are sorted into𝑚 groups
according to a grouping operator.

Step 3. Adjust the worst frog in the group according to
formulas (11) and (12).

4 Wireless Communications and Mobile Computing

Step 4. If the position of the frog in Step 3 is improved, replace
the worst frog position in the group with the new position,
then skip to Step 6, or readjust the worst frog position of the
group according to formulas (13) and (14).

Step 5. If a position of the frog from Step 4 is improved,
replace the worst frog position in the group with the new
position, then skip to Step 6, or generate a new random
position instead of the worst frog position in the current
group.

Step 6. Calculate the fitness of all frogs in the group, and
sort them in descending order to determine if the internal
iteration is over. If not, skip to Step 3.

Step 7. Share shuffle information among all the frogs in the
same group.

Step 8. Judge whether the end condition meets or not. If it
does, output the optimal solution directly. If not, skip to Step 2
and it continues.

The end condition of SFLA can achieve the maximum
number of iterations or meet an error criterion, which may
be a combination of the above two. In the case where the
optimal value of the objective function and the allowable
error are determined in advance, the end condition can be set
to satisfy a certain error range. When the difference between
the objective value and the optimum is less than the setting
error, output the optimal value; otherwise it continues.

3. The Shuffled Frog-Leaping Differential
Evolutionary (SFDE)

Although combining a new algorithm with simple assembly
can improve the accuracy or convergence of the algorithm to
a certain degree, it is still far from the theoretical value of the
test function, so how to integrate the two algorithms is the
most important problem.

3.1. Integration Strategy between SFLA and DE. There are
three main steps in the integration strategy between SFLA
and DE. Step (1): initialize populations. Step (2): divide
the whole population into several groups, and integrate
within a group. Step (3): shuffle the whole population after
iterations in each group.We use the idea of dividing thewhole
population into several subpopulations and considering each
subpopulation as a group. So before dividing the whole
population into groups, individuals are sorted by the fitness
value of the test function, then a new group with the strategy
is shown as in Figure 1.

As shown in Figure 1, SFLA helps to adjust the worst
individuals in the groups. If the fitness value of the individuals
generated from formulas (11) and (12) is improved, the worst
one in the original group will be replaced. Otherwise, its
position of the group should be readjusted according to
formulas (13) and (14). If it is worse than original one; then
discard it and randomly generate a new one to replace it.Then

pworst

pbest
Updated
pworst

pmove

Figure 1: The worst individual position adjustment process in the
SFDE.

we use DE to deal with the new population. The operations
include mutation, crossover, and selection.

The evolutionary process of the individual population is
shown in Figure 2, where the sequence (1, 2, 3, 4) is the stage
number of each group evolution. (1) The worst individual
position is adjusted for each subpopulation according to
Figure 1, then the operation of the Differential Evolution for
all the individuals in the subpopulation, that is, the variation
of the evolution and the selection operation. (2)The whole
population run mutation and cross operation of Differential
Evolution stage, thus resulting in the middle of the vector
of individuals (represented in Figure 2 with a red circle of
individuals) for the latter part of the selection operation.(3) Select the operation for the generation of intermediate
individuals and original target individuals.

In Figure 2, the next generation has the intermediate
vector individuals (individual with red virtual coil) and the
original target individuals. In SFDE, the mutation strategy
uses DE/best/1/bin.

3.2. The Basic Process of Shuffled Frog-Leaping Differential
Evolutionary (SFDE). The basic SFDE can be described in
Algorithm 1.

In Algorithm 1, T is the number of subpopulation;𝑔𝑏𝑒𝑠𝑡𝑖 denotes the best individual in population; 𝑝𝑤𝑜𝑟𝑠𝑡𝑖
is the worst individual in subpopulation; pbesti is the best
individual in subpopulation; V𝑖,𝑗 denotes the current mutated
vectors.

4. Experimentation

This section compares the proposed SFDEwith twenty classic
well-known test functions.

4.1. Experimental Setting and Parameterization. Twenty test
functions with 30 high dimensions check the performance of
SFDE. The detailed definitions of them are shown in Table 1.

Experimental environment configuration: operation sys-
tem is Windows 7. Minimum memory is 4G; processor type
is Intel (R) Core (TM) i5-2370M @ 2.40GHz; development
tools and version are Matlab-R2012a.

To be fair, the initial conditions of each algorithm are
consistent. (1) Population size of all Differential Evolution

Wireless Communications and Mobile Computing 5

fw

fb

Group_1

fb

fw

Group_2

fb

fw
Group_3

gb

1 . group computing

2 .mutation and crossover

3 .selection

SFLA DE

Figure 2:The integration strategy between SFLA and DE.

algorithms is set to be 200. (2)Thenumber of subpopulations
of SFDE is set to 10. (3) The number of iterations is set
according to the complexity of the problem, but the number
of iterations of all Differential Evolution algorithms is equal
every time.

4.2. Computational Results and Discussion. We record the
optimal value obtained at the end of every computing in
30 runs. Then, the average optimal value and the standard
deviation of the optimal value are calculated by using the
30 dependently runs. And the standard deviation of the best
average value and the optimal value is inputted into the table
to facilitate the analysis of the experimental results. In order
to highlight the experimental data close to the theoretical
value of the function, we test each test function in the table
closest to the theoretical value of the experimental data
bold. The output images reflect the variation curve of the
average optimal value for each test function in 30 separate
experiments.

The convergence curves plots of five algorithms for 9
benchmark functions with 30 dimensions are drawn in
Figure 3 (Ackle,Michalwicz Function and Schwefel’s Problem
1.2), Figure 4 (Perm Function, Rastrigin, Sphere Function),
and Figure 5 (Rotated Hyper-Ellipsoid, Shifted and Zakharov
Function, Dixon-Price Function), respectively. The 9 results
confirm the good performance of SFDE.The optimal value of
the function curve is shown in Figure 3 and the full optimal
value of the function is shown in Table 2.

Schwefel’s Problem 1.2 function’s algorithm is difficult to
obtain the theoretical value on 30 dimensions (iterations:
2000 times). From the experimental results, it can be seen
that the convergence rate of SFDE is faster than that of other
algorithms, and the final accuracy is also better than other
algorithms, and even 34 units of magnitude are higher than
the accuracy of EPSDE algorithm.

Rotated Hyper-Ellipsoid is a continuous, convex single-
peak, which is an extension of the axis-parallel super-ellipsoid
function and also becomes a square sum function. From the

experimental results, SFDE is better than other algorithms,
and with the iteration of the algorithm, the accuracy of the
algorithm is getting better.

The Perm Function is characterized by a large number
of local optimal value of the single-peak function, and it
is a well test function which can test the function of the
algorithm. It can be seen from the experimental results that
SFDE has the highest precision and the fastest convergence
rate for Zakharov Function with 30 dimensions (iterations:
2000 times).

The convergence curves of five algorithms for 9 bench-
mark functions with 30 dimensions are drawn in Figure 3,
respectively. For each benchmark function, there are two
curves, the left one is plotted with iterations, and average
function values are plotted with NFEs at right. Figures
3(a)–3(c) and 4(a) present multimodal benchmark functions
and Figures 4(b)-4(c), 5(a)–5(c) present unimodal bench-
mark functions. Figure 3(a) is the curves of average optimal
of F1. In Figure 3(b), SFDE and CODE almost have the
same best value on F2. The convergence curves of compared
algorithms for F3 function and F13 function are given in
Figures 3(c) and 4(a). Figure 4(b) present convergence curves
of test results for F10 function. In Figure 4(c), 5(a)-5(b), plots
of SFDE are much better than other variants for F4, F6, and
F8 functions. In Figure 5(c), SFDE demonstrates best average
and convergence speed for 30 dimensions on F9 function and
MDE is the second best on F9.

4.3. Results Analysis. Table 2 shows the comparison between
SFDE and classic DE. It can be seen from the above
experimental results that SFDE does better in most of the
base functions compared with other differential evolutionary
algorithms, and the convergence speed is also accelerated.

In Table 2, the eight test functions, 𝑓4(𝑥), 𝑓6(𝑥), 𝑓8(𝑥),𝑓9(𝑥), 𝑓14(𝑥), and 𝑓19(𝑥), are unimodal functions, and the
solving accuracy of SFDE is better than that of other algo-
rithms. In the results of the multimodal test function, the
individual test function is poor performance, such as 𝑓2(𝑥)

6 Wireless Communications and Mobile Computing

SFDE: Shuffled Frog-leaping Differential Evolutionary Algorithm
Input: An initial population {𝑥𝑖,𝑗 | 𝑥𝑖,𝑗 ∈ [𝐿𝑜𝑤𝐵𝑜𝑢𝑛𝑑𝑒𝑟𝑦,𝑈𝑝𝐵𝑜𝑢𝑛𝑑𝑒𝑟𝑦]; 𝑖 = 1, . . . 𝑁𝑃; 𝑗 = 1, 2, . . . 𝐷.};

Benchmark 𝑓(𝑥) or object function 𝑔(𝑥);
Terminal conditions: Maximum iterationsℵ or Acceptable error 𝜀0.

Output: optimal 𝑔𝑏𝑒𝑠𝑡.
Begin
(1) Initialization;
(2) Dividing 𝑥𝑖,𝑗 into 𝑇 subpopulations at random;
(3)While ((t < ℵ) 𝑜𝑟 (𝜀 > 𝜀0))
(4) 𝑝𝑏𝑒𝑠𝑡𝑖(t + 1) = {{{

𝑝𝑏𝑒𝑠𝑡𝑖(𝑡), 𝑖𝑓 𝑓(𝑋𝑖(𝑡 + 1)) ≥ 𝑓(𝑝𝑏𝑒𝑠𝑡𝑖(𝑡))
𝑋𝑖(𝑡 + 1), 𝑖𝑓 𝑓(𝑋𝑖(𝑡 + 1)) < 𝑓(𝑝𝑏𝑒𝑠𝑡𝑖(𝑡)) /∗ computing pbesti according to Eq (9); ∗/

(5) 𝑔𝑏𝑒𝑠𝑡(𝑡) = min{𝑓(𝑝𝑏𝑒𝑠𝑡1(𝑡)), 𝑓(𝑝𝑏𝑒𝑠𝑡2(𝑡)), . . . , 𝑓(𝑝𝑏𝑒𝑠𝑡𝑚(𝑡))} /∗ finding the 𝑔𝑏𝑒𝑠𝑡𝑖 according to Eq (10); ∗/
/∗ updating the position of the𝑝𝑤𝑜𝑟𝑠𝑡𝑖 in each subpopulation according to Formulas (11) and (12); ∗/

(6) 𝑝𝑚𝑜V𝑒𝑖 = rand ∗ (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑝𝑤𝑜𝑟𝑠𝑡𝑖);
(7) 𝑝𝑤𝑜𝑟𝑠𝑡𝑖 = 𝑝𝑤𝑜𝑟𝑠𝑡𝑖 + 𝑝𝑚𝑜V𝑒𝑖;
(8) While 𝑝𝑤𝑜𝑟𝑠𝑡𝑖 is not increased

/∗ updating the position of the𝑝𝑤𝑜𝑟𝑠𝑡𝑖 in each subpopulation according to Formulas (13) and (14); ∗/
(9) 𝑝𝑚𝑜V𝑒𝑖 = 𝑟𝑎𝑛𝑑 ∗ (𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑝𝑤𝑜𝑟𝑠𝑡𝑖);
(10) 𝑝𝑤𝑜𝑟𝑠𝑡𝑖 = 𝑝𝑤𝑜𝑟𝑠𝑡𝑖 + 𝑝𝑚𝑜V𝑒𝑖;
(11) EndWhile
(12) For i=1 to NP
(13) V𝑖,𝑗 = 𝑥𝑟1,𝑗 + 𝐹 ∗ (𝑥𝑟2,𝑗 − 𝑥𝑟3,𝑗); V𝑖,𝑗 = 𝑥𝑏𝑒𝑠𝑡,𝑗 + 𝐹 ∗ (𝑥𝑟1,𝑗 − 𝑥𝑟2,𝑗); /∗Mutation operation; ∗/
(14) Correction(); /∗ Correction operation∗/
(15) Crossover(); /∗ Crossover operation∗/
(16) Selection(); /∗ Selection operation ∗/
(17) End For
(18) 𝜀 = |(𝑓(𝑥) − 𝑓(𝑥∗)|;
(19) 𝑡 = 𝑡 + 1;
(20) EndWhile
(21) Return 𝑡, 𝜀 and 𝑔𝑏𝑒𝑠𝑡.
(22) End

Algorithm 1: Pseudocode of Shuffled Frog-leaping Differential Evolutionary (SFDE).

and 𝑓7(𝑥). However, the solving accuracy of SFDE is much
higher than that of other algorithms and SFDE is more stable.
More importantly, SFDE algorithm itself is very simple and
fast and has an absolute advantage.

In order to determine whether SFDE is more effective
than other methods, statistical methods need to detect the
results of CPU running time; this paper selected the paired
T-test and the paired F-test.The T-test is an important test of
the mean difference between the two samples, with the aim
of checking the system error. The F-test is a significant test
of the variance of the two samples, with the aim of testing
the accident error. Usually we compare the value of 0.05. If
the test result is less than 0.05, the cell will mark the result
with ‘+’, instead, the cell will mark the result with ‘-’. The
percentage of ‘+’ in all results is the likelihood that SFDE
will handle the reliability and advantage of the test problem.
Specific test results as shown in Table 3, each column is
test function, efficiency, detection methods, and a variety of
intelligent optimization.

To compare SFDE with other algorithms, we select
advanced variants of DE, namely, JADE, DMPSADE, and
IMMSADE, which is introduced in [12]. The comparison
results are as shown as follows in Table 4.

Table 4 shows a clear comparison of SFDE-SaDE, SFDE-
JADE, SFDE-DMPSADE, and SFDE-IMMASDE. From
Table 4, it is clear to see that the convergence speed of SFDE
is faster among the considered algorithms for most of test
functions.

5. Simulation of Spectrum
Throughput Optimization

There are three ways of spectrum sensing: energy detection,
matched filter detection, and cyclone-stationary property
detection, the most commonly used of which is energy
detection. In this way, if the length of each frame is fixed,
its sensing time synchronizes with its energy accumulation.
At the same time, if authorized users have good protection,
the false alarm probability will be smaller and the detection
rate will be larger, but the data transmission time will be
shortened [14]. That is to say, the idle time of the cognitive
user’s usage spectrum becomes shorter, resulting in lower
throughput of the cognitive user. Therefore, how to arrange
an effective schedule tomaximize the throughput of cognitive
users (i.e., authorized users have a right of first class service)
is a hot research topic.

Wireless Communications and Mobile Computing 7

Ta
bl
e
1:
D
et
ai
le
d
de
fin

iti
on

so
ft
he

te
st
fu
nc
tio

n.
F#

N
am

e
D
es
cr
ip
tio

n
D
im

.
Ra

ng
e

O
pt
.

𝑓 1(𝑥
)

Ac
kl
e

𝑓 1(𝑥
)=−

20ex
p
(−0

.2√
1 𝑁𝑁 ∑ 𝑖=1𝑥2 𝑖

)−
ex
p
1 𝑁𝑁 ∑ 𝑖=1co

s (2𝜋
𝑥 𝑖)+

20+
𝑒

30
[−60

0,60
0]

0

𝑓 2(𝑥
)

M
ic
ha
le
w
ic
z

𝑓 2(𝑥
)=−

𝑁 ∑ 𝑖=1sin
(𝑥 𝑖)

sin
2𝑚
(𝑖𝑥2 𝑖 𝜋

),𝑚
=10

30
[0,𝜋

]
-9
.6
6

𝑓 3(𝑥
)

Sc
hw

ef
el’
s

pr
ob

le
m

1.2
𝑓 3(𝑥

)=𝑁 ∑ 𝑖
=
1

(𝑖 ∑ 𝑗
𝑥 𝑖)2

30
[−50

0,50
0]

0

𝑓 4(𝑥
)

Sp
he
re

𝑓 4(𝑥
)=

N ∑ i=
1

𝑥2 𝑖
30

[−50
0,50

0]
0

𝑓 5(𝑥
)

Ro
se
nb

ro
ck

𝑓 5(𝑥
)=N
−
1 ∑ i=
1

(100
(𝑥2 𝑖−

𝑥 𝑖+1)
2
+(𝑥
𝑖
−1)2

)
30

[−10
0,10

0]
0

𝑓 6(𝑥
)

Ro
ta
te
d

H
yp
er
-E
lli
ps
oi
d

𝑓 6(𝑥
)=
𝑛 ∑ 𝑖=1𝑖 ∑ 𝑗=1𝑥2 𝑗

30
[−65

.53,6
5.53]

0

𝑓 7(𝑥
)

Sh
ift
ed

an
d

Ro
ta
te
d

Sc
hw

ef
el’
s

Fu
nc
tio

n

𝑓 7(𝑥
)=5

00+
418.9

829×
𝑛−
𝑛 ∑ 𝑖=1𝑔(
𝑦 𝑖),

𝑦 𝑖=
𝑧 𝑖+

4.209
6873

6𝑒+
002

𝑔(𝑦 𝑖
)=

{ { { { { { { { { { { { { { {𝑦 𝑖sin
(𝑦 𝑖
1/
2
)

𝑖𝑓 𝑦
𝑖 ≤5

00
((50

0−m
od
(𝑦 𝑖,5

00))
sin
(√ 5

00−
m
od
(𝑦 𝑖,5

00))
)−

(𝑦 𝑖−
500)
2

1000
0𝑛

𝑖𝑓𝑦 𝑖
>50

0
((m

od
(𝑦 𝑖

,500
)−5

00)s
in
(√ 5

00−
m
od
(𝑦 𝑖

,500
)))

−(𝑦
𝑖
+50

0)2
1000

0𝑛
𝑖𝑓𝑦 𝑖

<−5
00

𝑧=𝑀
5
(10

00(𝑥
−𝑜 5) 100

),
𝑜 3=

[𝑜 31,
𝑜 32,.

..𝑜 3n
]

30
[−10

0,10
0]

50
0

8 Wireless Communications and Mobile Computing

Ta
bl
e
1:
C
on

tin
ue
d.

F#
N
am

e
D
es
cr
ip
tio

n
D
im

.
Ra

ng
e

O
pt
.

𝑓 8(𝑥
)

Za
kh

ar
ov

𝑓 8=
𝑁 ∑ 𝑖=1𝑥 𝑖
2
+ (
𝑁 ∑ 𝑖=10.
5𝑖×

𝑥 𝑖2)
2

+ (
𝑁 ∑ 𝑖=10.
5𝑖×

𝑥 𝑖2)
4

30
[−10

,10]
0

𝑓 9(𝑥
)

D
ix
on

-P
ric

e
𝑓 9=

𝑁 ∑ 𝑖=2𝑖(
2𝑥 𝑖2

−𝑥 𝑖−
1
)2 +

(𝑥 𝑖−
1)2

30
[−10

,10]
0

𝑓 10(𝑥
)

Pe
rm

𝑓 10=
𝑑 ∑ 𝑖=1(
𝑑 ∑ 𝑗=1(𝑗
𝑖
+𝛽)

((𝑥
𝑗 𝑗)𝑖
−1)

)2
30

[0,𝜋
]

-9
.6
6

𝑓 11(𝑥
)

G
rie

w
an
k

𝑓 11=
1 4000
𝑁 ∑ 𝑖=1𝑥2

−𝑁 ∏ 𝑖=1
co
s(𝑥
𝑖 √ 𝑖)
+1

30
[−60

0,60
0]

0

𝑓 12(𝑥
)

Sc
hw

ef
el

𝑓 12=
𝑁 ∑ 𝑖=1[−

𝑥 𝑖sin
(√ 𝑥

𝑖)]
30

[−50
0,50

0]
-4
18
.9
82
d

𝑓 13(𝑥
)

Ra
str

ig
in

𝑓 13=
𝑁 ∑ 𝑖=1(𝑥
𝑖2
−10

co
s(2𝜋

𝑥 𝑖)+
10)

30
[−5.1

2,5.1
2]

0

𝑓 14(𝑥
)

Su
m

of
di
ffe
re
nt

po
we

rs
𝑓 14=

(𝑁 ∑ 𝑖=1
 𝑥 𝑖 𝑖+
1
)

30
[−1,

1]
0

𝑓 15(𝑥
)

Sh
ub

er
t

𝑓 15=
(5 ∑ 𝑖=1𝑖

co
s((𝑖

+1)
𝑥 1+

𝑖))+
(5 ∑ 𝑖=1𝑖

co
s((𝑖

+1)
𝑥 2+

𝑖))
2

[−10
,10]

-1
86
.7
30
9

𝑓 16(𝑥
)

Po
we

ll
𝑓 16=

𝑑
/4 ∑ 𝑖=1[(
𝑥 4𝑖−3

+10
𝑥 4𝑖−2

)2 +
5(𝑥 4
𝑖−
1
−𝑥 4𝑖

)2 +
(𝑥 4𝑖−
2
−2𝑥
4𝑖
−
1
)4 +

10(𝑥
4𝑖
−
3
−2𝑥
4𝑖
)4]

30
[−4,

5]
0

𝑓 17(𝑥
)

D
ro
p-
W
av
e

𝑓 17=
1+c

os
(12√

𝑥 12 +
𝑥 22)

0.5(
𝑥 12 +

𝑥 22)
+2

2
[−5.1

2,5.1
2]

-1

𝑓 18(𝑥
)

Le
vy

𝑓 18=
sin
2
(𝜋𝜔 1

)+𝑑
−
1 ∑ 𝑖=1(𝜔
1
−1)2

[1+
10sin
2
(𝜋𝜔 1

+1)]
+(𝜔
𝑑
−1)2

[1+
10sin

2
(2𝜋𝜔
𝑑
)]

30
[−10

,10]
0

𝑓 19(𝑥
)

Su
m
Sq
ua
re
s

𝑓 19=
𝑑 ∑ 𝑖=1𝑖𝑥
𝑖2

30
[−10

,10]
0

𝑓 20(𝑥
)

W
ei
er
str

as
s

𝑓 20=
𝑁 ∑ 𝑖=1(
𝑘
m
ax ∑ 𝑘=0[
𝑎𝑘 co

s(2𝜋
𝑏𝑘 (𝑥
𝑖
+0.5

))]−
𝑛𝑘max ∑ 𝑘=0[

𝑎𝑘 co
s(2𝜋

𝑏𝑘 ×
0.5)]

)
30

[−0.5
,0.5]

0

Wireless Communications and Mobile Computing 9

SFDE
EPSDE
MDE

CODE
MDESELF

0 0.5 1 1.5 2 2.5 3 3.5 4
Number of Function Evaluations (NFE)

SFDE
EPSDE
MDE

CODE
MDESELF

×105

10−120

10−100

10−80

10−60

10−40

10−20

100

1020
Fu

nc
tio

n
V

al
ue

200 400 600 800 1000 1200 1400 1600 1800 20000
Iteration times

10−15

10−10

10−5

100

105

1010

Fu
nc

tio
n

V
al

ue

(a) Ackle Function

SFDE
EPSDE
MDE

CODE
MDESELF

SFDE
EPSDE
MDE

CODE
MDESELF

×105

−102

−101

−100

Fu
nc

tio
n

V
al

ue

200 400 600 800 1000 1200 1400 1600 1800 20000
Iteration times

10−15

10−10

10−5

100

105

Fu
nc

tio
n

V
al

ue

0.5 1 1.5 2 2.5 3 3.5 40
Number of Function Evaluations (NFE)

(b) Michalwicz Function

SFDE
EPSDE
MDE

CODE
MDESELF

×105

10−30

10−20

10−10

100

1010

Fu
nc

tio
n

V
al

ue

200 400 600 800 1000 1200 1400 1600 1800 20000

Iteration times

SFDE
EPSDE
MDE

CODE
MDESELF

0.5 1 1.5 2 2.5 3 3.5 40
Number of Function Evaluations (NFE)

10−14
10−12
10−10
10−8
10−6
10−4
10−2
100
102
104
106

Fu
nc

tio
n

V
al

ue

(c) Schwefel’s Problem 1.2

Figure 3: The 30 dimensions and curves convergence for 3 benchmark functions with 5 variants of DE.

10 Wireless Communications and Mobile Computing

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

Iteration times
SFDE
EPSDE
MDE

CODE
MDESELF

0 0.5 1 1.5 2 2.5 3 3.5 4
Number of Function Evaluations (NFE)

SFDE
EPSDE
MDE

CODE
MDESELF

×105

10−14
10−12
10−10
10−8
10−6
10−4
10−2
100
102
104

Fu
nc

tio
n

V
al

ue

10−15

10−10

10−5

100

105

Fu
nc

tio
n

V
al

ue

(a) Rastrigin Function

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

Iteration times

SFDE
EPSDE
MDE

CODE
MDESELF

0 0.5 1 1.5 2 2.5 3 3.5 4
Number of Function Evaluations (NFE)

SFDE
EPSDE
MDE

CODE
MDESELF

×105

10−14
10−12
10−10
10−8
10−6
10−4
10−2
100
102
104

Fu
nc

tio
n

V
al

ue

10−20

100

1020

1040

1060

1080

10100

Fu
nc

tio
n

V
al

ue

(b) Perm Function

0 50 100 150 200 250 300 350 400 450
Iteration times

SFDE
EPSDE
MDE

CODE
MDESELF

SFDE
EPSDE
MDE

CODE
MDESELF

0 0.5 1 1.5 2 2.5 3 3.5 4
Number of Function Evaluations (NFE) ×105

10−14
10−12
10−10
10−8
10−6
10−4
10−2
100
102
104
106

Fu
nc

tio
n

V
al

ue

10−20

10−15

10−10

10−5

100

105

1010

Fu
nc

tio
n

V
al

ue

(c) Sphere Function

Figure 4: The 30 dimensions and curves convergence for 3 benchmark functions with 5 variants of DE.

Wireless Communications and Mobile Computing 11

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

Iteration times
APDDE
EPSDE
JADE

MDE
CODE

100

102

104

106

108

1010

1012

Fu
nc

tio
n

V
al

ue

SFDE
EPSDE
MDE

CODE
MDESELF

10−15

10−10

10−5

100

105

Fu
nc

tio
n

V
al

ue

×105

0.5 1 1.5 2 2.5 3 3.5 40
Number of Function Evaluations (NFE)

(a) Rotated Hyper-Ellipsoid

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

Iteration times

10−20

10−15

10−10

10−5

100

105

Fu
nc

tio
n

V
al

ue

0 0.5 1 1.5 2 2.5 3 3.5 4
Number of Function Evaluations (NFE)

SFDE
EPSDE
MDE

CODE
MDESELF

10−14
10−12
10−10
10−8
10−6
10−4
10−2
100
102
104

Fu
nc

tio
n

V
al

ue

×105

SFDE
EPSDE
MDE

CODE
MDESELF

(b) Zakharov Function

SFDE
EPSDE
MDE

CODE
MDESELF

SFDE
EPSDE
MDE

CODE
MDESELF

×105
0.5 1 1.5 2 2.5 3 3.5 40

Number of Function Evaluations (NFE)

10−1
100
101
102
103
104
105
106
107

Fu
nc

tio
n

V
al

ue

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
000

Iteration times

10−15

10−10

10−5

100

105

Fu
nc

tio
n

V
al

ue

(c) Dixon-Price Function

Figure 5: The 30 dimensions and curves convergence for 3 benchmark functions with 5 variants of DE.

12 Wireless Communications and Mobile Computing

Table 2: Experimental data of various DE algorithms on the test functions (30d).

Func. Rate SFDE EPSDE MDE CODE MDESELF

𝑓1(𝑥) Avg. 5.47E+00 2.00E+01 2.07E+01 2.00E+01 2.00E+01
S.D. 2.12E-12 1.29E-01 3.37E-02 6.49E-03 2.53E-02

𝑓2(𝑥) Avg. -2.25E+01 -2.41E+01 -1.31E+01 -2.78E+01 -2.36E+01
S.D. 4.99E-01 5.81E-01 4.29E-01 1.10E-02 1.43E-01

𝑓3(𝑥) Avg. 4.16E-31 1.94E+03 1.38E-07 4.42E+01 3.59E-07
S.D. 7.16E-31 1.18E+03 1.04E-07 8.34E+00 6.22E-07

𝑓4(𝑥) Avg. 4.76E-21 2.93E-01 2.99E-03 3.26E+01 3.72E-02
S.D. 1.06E-20 2.00E-01 8.92E-04 7.04E+00 4.82E-02

𝑓5(𝑥) Avg. 1.20E+01 1.63E+01 5.30E-07 1.19E+01 1.51E+01
S.D. 1.14E+00 2.76E+00 5.52E-07 6.98E-01 5.80E+00

𝑓6(𝑥) Avg. 9.98E-94 3.73E-17 3.01E-25 1.18E-10 9.42E-24
S.D. 1.60E-93 6.03E-17 2.89E-25 1.18E-10 1.63E-23

𝑓7(𝑥) Avg. 5.47E+03 5.13E+03 7.22E+03 4.08E+03 4.52E+03
S.D. 3.14E+02 2.21E+02 3.25E+02 3.52E+02 1.88E+02

𝑓8(𝑥) Avg. 5.34E-24 4.92E+01 1.63E-06 6.86E+01 3.95E-11
S.D. 9.22E-24 4.42E+01 1.96E-06 4.96E+00 6.07E-11

𝑓9(𝑥) Avg. 0.00E+00 1.65E+01 1.66E+02 5.71E-06 3.19E+01
S.D. 0.00E+00 1.07E+01 1.05E+01 5.46E-06 5.06E+00

𝑓10(𝑥) Avg. 3.80E+00 5.06E-02 2.60E+00 2.66E-01 1.72E-02
S.D. 5.34E+00 2.17E-02 5.80E+00 3.67E-01 1.76E-02

𝑓11(𝑥) Avg. 0.00E+00 0.00E+00 0.00E+00 1.10E-11 0.00E+00
S.D. 0.00E+00 0.00E+00 0.00E+00 7.40E-12 0.00E+00

𝑓12(𝑥) Avg. -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.17E+04
S.D. 1.47E-11 1.86E-05 0.00E+00 1.58E-12 1.99E+02

𝑓13(𝑥) Avg. 0.00E+00 2.31E+01 1.64E+02 3.44E-06 3.33E+01
S.D. 0.00E+00 1.30E+01 8.78E+00 2.37E-06 4.99E+00

𝑓14(𝑥) Avg. 0.00E+00 3.47E-58 1.74E-86 5.11E-47 8.08E-67
S.D. 0.00E+00 7.75E-58 3.80E-86 8.83E-47 1.81E-66

𝑓15(𝑥) Avg. -1.87E+02 -1.87E+02 -1.87E+02 -1.87E+02 -1.87E+02
S.D. 0.00E+00 4.02E-14 0.00E+00 0.00E+00 2.20E-07

𝑓16(𝑥) Avg. 4.83E-21 1.99E-03 3.92E-15 2.09E-06 2.64E-10
S.D. 9.38E-21 1.04E-03 1.81E-15 7.44E-07 2.54E-10

𝑓17(𝑥) Avg. -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00
S.D. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

𝑓18(𝑥) Avg. 1.79E-02 3.02E-20 5.13E-31 7.24E-15 3.25E-19
S.D. 4.00E-02 4.60E-20 2.90E-31 3.22E-15 6.61E-19

𝑓19(𝑥) Avg. 2.52E-105 1.13E-21 1.39E-30 1.83E-14 1.44E-29
S.D. 3.58E-105 1.05E-21 1.44E-30 1.02E-14 3.21E-29

𝑓20(𝑥) Avg. 0.00E+00 2.28E-05 2.13E-13 3.18E-04 1.88E-08
S.D. 0.00E+00 3.17E-05 1.31E-13 6.10E-05 2.46E-08

At present, Monte Carlo is a common method, but its
implementation is a complex and time-consuming task [15],
and the more important point we have noticed is that it
cannot alsomeet the real-time requirements. It is high time to
improve the sensing time by using the improved Differential
Evolution algorithm, such as good searching performance,
fewer parameters, and faster convergence rate, so as to
maximize the system throughput.

5.1. Mathematical Model Based on Energy Detection. With-
out interfering with the authorized users, it is necessary
to determine if they are busy or idle by continuously
detecting signals received in a certain frequency band,
so as to determine whether these resources are accessi-
ble or not, which is a binary hypothesis testing problem,
we assume that the authorized user accesses his reserved
frequency for periodic 𝑇1, and its disappearance takes

Wireless Communications and Mobile Computing 13

Table 3: The comparison results of function optimization.

F#/Rate T/F EPSDE MDE DE CODE DE∘ MDESELF DE

F1/87.5%
T-test 7.6954E-03 3.3359E-02 3.5105E-02 3.4813E-02
F-test 8.8978E-01 5.4921E-03 3.2283E-05 3.6439E-03
T/F +/+ +/+ +/+ +/+

F2/62.5%
T-test 2.2431E-02 3.3328E-06 3.1399E-04 5.8249E-02
F-test 5.4126E-01 5.2737E-01 4.2237E-03 1.3638E-02
T/F +/- +/- +/+ -/+

F3/75%
T-test 1.9592E-01 2.8839E-02 5.5096E-03 4.2232E-01
F-test 1.5253E-33 4.9760E-23 2.8585E-31 5.6612E-24
T/F -/+ +/+ +/+ -/+

F4/87.5%
T-test 4.4275E-02 6.7979E-04 2.8489E-03 9.0376E-02
F-test 4.7045E-40 3.0269E-34 6.7452E-43 7.9601E-40
T/F +/+ +/+ +/+ -/+

F5/50%
T-test 1.6634E-02 9.8894E-06 4.9342E-01 1.4166E-01
F-test 1.1582E-01 3.2658E-25 3.6254E-01 8.1762E-03
T/F +/- +/+ -/- -/+

F6/62.5%
T-test 9.0588E-02 6.7503E-02 6.7318E-03 2.1129E-01
F-test 3.0342E-147 1.2115E-130 2.8959E-159 1.7384E-146
T/F -/+ -/+ +/+ -/+

F7/50%
T-test 8.0260E-03 5.0414E-04 8.2932E-04 1.4593E-02
F-test 2.9739E-01 2.9593E-01 6.3363E-01 1.9485E-01
T/F +/- +/- +/- +/-

F8/87.5%
T-test 1.2310E-02 7.9426E-03 7.5570E-05 7.5386E-02
F-test 1.1154E-74 4.4393E-52 2.0763E-73 6.1861E-42
T/F +/+ +/+ +/+ -/+

F9/100%
T-test 2.3766E-02 4.7325E-08 1.1628E-02 4.0496E-07
F-test 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
T/F +/+ +/+ +/+ +/+

F10/37.5%
T-test 1.4552E-01 6.3556E-01 1.7863E-01 1.5229E-01
F-test 1.6245E-09 8.7781E-01 1.3244E-04 7.0381E-10
T/F -/+ -/- -/+ -/+

F11/100%
T-test 0.0000E+00 0.0000E+00 3.9290E-02 0.0000E+00
F-test 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
T/F +/+ +/+ +/+ +/+

F12/100%
T-test 0.0000E+00 0.0000E+00 0.0000E+00 6.8809E-06
F-test 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
T/F +/+ +/+ +/+ +/+

F13/100%
T-test 2.3766E-02 4.7325E-08 2.2266E-02 1.6671E-05
F-test 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
T/F +/+ +/+ +/+ +/+

F14/50.0%
T-test 1.2857E-01 2.9792E-01 6.8323E-02 4.2411E-01
F-test 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
T/F -/+ -/+ -/+ -/+

F15/100%
T-test 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F-test 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
T/F +/+ +/+ +/+ +/+

F16/100%
T-test 1.7538E-02 2.3093E-03 2.3093E-03 3.9836E-02
F-test 2.2333E-51 6.1220E-16 6.2159E-42 2.4880E-31
T/F +/+ +/+ +/+ +/+

F17/100%
T-test 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F-test 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
T/F +/+ +/+ +/+ +/+

14 Wireless Communications and Mobile Computing

Table 3: Continued.

F#/Rate T/F EPSDE MDE DE CODE DE∘ MDESELF DE

F18/50.0%
T-test 3.5592E-01 3.5592E-01 3.4659E-01 3.4659E-01
F-test 1.0490E-71 1.6603E-116 2.5120E-52 4.4566E-67
T/F -/+ -/+ -/+ -/+

F19/100%
T-test 1.3200E-02 5.4837E-02 1.5650E-03 3.3401E-01
F-test 0.0000E+00 5.7934E-298 0.0000E+00 1.3100E-303
T/F +/+ +/+ +/+ +/+

F20/100%
T-test 4.6049E-02 4.2513E-04 1.3872E-08 3.6213E-02
F-test 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
T/F +/+ +/+ +/+ +/+

Table 4: Comparison results of function optimization (30d).

Function Dim Algorithm MEAN STD

𝑓 (𝑥) = N∑
i=1
𝑥2𝑖 30

SFDE 0.00E+00 0.00E+00
SaDE 0.00E+00 0.00E+00
JADE 0.00E+00 0.00E+00

DMPSADE 0.00E+00 0.00E+00
IMMSADE 0.00E+00 0.00E+00

𝑓 (𝑥) = N−1∑
i=1
(100 (𝑥2𝑖 − 𝑥𝑖+1)2 + (𝑥𝑖 − 1)2) 30

SFDE 5.62E+00 1.06E+00
SaDE 4.67E+01 3.23E+01
JADE 2.97E+00 8.17E+00

DMPSADE 7.48E-06 2.24E-05
IMMSADE 0.00E+00 0.00E+00

𝑓 (𝑥) = −20 exp(−0.2√ 1𝑁
𝑁∑
𝑖=1

𝑥2𝑖) − exp 1𝑁
𝑁∑
𝑖=1

cos (2𝜋𝑥𝑖) + 20 + 𝑒 30

SFDE 5.47E+00 2.12E-12
SaDE 2.09E+01 4.26E-03
JADE 2.09E+01 1.67E-01

DMPSADE 2.02E+01 1.60E-01
IMMSADE 3.99E-15 0.00E+00

𝑇0 as a cycle; the energy detection model is as formula
(15):

𝑇0 : z (n) = 𝜇 (n)𝑇1 : 𝑧 (n) = 𝑠 (n) + 𝜇 (n) (15)

In the abovemodel, 𝑧(𝑛) is the signal received by the cognitive
user. 𝜇(𝑛) is a Gaussian noise with a mean of 0 and a variance
of 𝜎2𝜇. 𝑠(𝑛) is the signal belonged to authorized user, the mean
value is 0, and the variance is 𝜎2.

Spectrum sensing concerns two parameters (i.e., detec-
tion probability and false alarm probability) [16]. Let 𝜏 be the
duration of observation, and while the statistic index denotes
as formula (16)

W = 1𝑁
𝑁∑
𝑛=1

|𝑧 (𝑛)|2 (16)

whereN is the amount of those perceived samples and f is the
sampling frequency, it is obvious that 𝑁 = 𝜏𝑓. Suppose that
probability density𝑊 is a random variable with distribution

of 𝜒2 and a given threshold 𝜀; the false alarm probability can
be given by the following formula (17):

𝑃𝑓 (𝜀) = 𝑃𝜏 (W > 𝜀 | T0)
= 1√2𝜋𝜎0 ∫

∞

𝑁
𝑒−(W−𝜇0)2/2𝜎20𝑑𝑥

= 𝑄((𝜀𝜎2𝜇) − √𝜏𝑓)
(17)

where 𝑃𝑓(𝜀) refers to the probability of misjudging an
authorized user without his/her perceiving, 𝛿20 is the variance
of𝑊, and 𝜇0 is the mean of𝑊, respectively.

However, assuming the given 𝑇1 and a threshold 𝜀, the
probability density 𝑊 will be a noncentral 𝜒2 distribution
variable. Then the corresponding detection probability is
shown in formula (18).

𝑃𝑑 (𝜀) = 𝑃𝜏 (W > 𝜀 | T1)
= Q((𝜀𝜎2𝜇 − 𝛾 − 1)√ 𝜏𝑓2𝛾 + 1)

(18)

Wireless Communications and Mobile Computing 15

Perceived
time

Data transfer time

t T-t

Perceived
time

Data transfer time

t T-t

＄；Ｎ； ＆Ｌ；Ｇ？1 ＄；Ｎ； ＆Ｌ；Ｇ？Ｇ· · · · · ·

Figure 6: Period-aware frame structure.

where 𝑃d(𝜀) refers to the probability of correctly judging the
existence of authorization and 𝛾 is the signal-to-noise ratio
from cognitive users to authorized users. From formulas (17)
and (18) combined, we infer that formulas (19) and (20) are
correct.

𝑃𝑓 = 𝑄(√2𝛾 + 1Q−1 (𝑃𝑑) + √𝜏𝑓𝛾) (19)

𝑃𝑑 = 𝑄(1√2𝛾 + 1 (Q−1 (𝑃𝑓) − √𝜏𝑓𝛾)) (20)

When the timely requirement of an authorized user is
detected, the related cognitive user needs to quickly give a
way to the authorized user. Based on the above formulas (19)
and (20), it is obvious that the higher the value of 𝑃𝑑 is, the
better the related protection is obtained. The lower the 𝑃𝑓 is,
the higher the reusability of wireless resource is. So a good
algorithm should have high 𝑃𝑑 and low 𝑃𝑓.
5.2. ATrade-Off betweenUserThroughput andPerceivedTime.
The time cost of processing one data frame of cognitive
radio includes two parts, i.e., frame perceived phase and
data transmission phase. When the first perception becomes
longer, the detection probability becomes larger, the proba-
bility of false alarm becomes smaller, but the cognitive user’s
data transmission time will be reduced [17]. Therefore, how
to balance the sensing and transmission time under the
precondition of authorizing users to operate safely and then
improve the throughput of the cognitive radio system is an
urgent problem to be solved. In this section, the periodic
structure of the radio frame is the basis for research, as shown
in Figure 6.

When the authorized user is not in the channel, there is no
false alarm probability [18]; the cognitive user’s throughput
is C0 = log 2(1 + 𝑆𝑁𝑅𝑠); if an authorized user exists, the
cognitive user throughput is C1 = log 2(1+𝑆𝑁𝑅𝑠/(1+𝑆𝑁𝑅𝑝)).
Obviously C0 > C1, and 𝑆𝑁𝑅𝑠 = 𝑃𝑠/𝑁0, where Ps is the
average cognitive user power and𝑁0 is the noise power.Then𝑆𝑁𝑅𝑝 = 𝑃𝑝/𝑁0, where 𝑃𝑝 is the interference degree of the
authorized user at the cognitive user acceptance point [19].
It can be found that, in order to protect authorized users,
the probability of 𝑃𝑑 is close to 1. At this time the system
throughput is as formula (21):

𝑅 (𝜏) = 𝑅0 (𝜀, 𝜏) + R1 (𝜀, 𝜏) (21)

Among them, 𝑅0(𝜀, 𝜏) = ((𝑇 − 𝜏)/𝑇)𝐶0(1 − 𝑃𝑓(𝜀,𝜏))𝑃(H0) 𝑅1(𝜀, 𝜏) = ((𝑇 − 𝜏)/𝑇)𝐶1(1 − 𝑃𝑑(𝜀, 𝜏))𝑃(H1), 𝑃(𝐻0)

and 𝑃(𝐻1) denote the probability that the first user will not
appear and appear, respectively, and𝑃(𝐻0)+𝑃(𝐻1) = 1. Since
C0 >C1 and𝑃𝑑 approximately equal 1,𝑅1 is close to zero.Then
formula (21) can simplify the following formula (22):

𝑅 (𝜏) ≈ 𝑅0 (𝜀, 𝜏) = 𝑇 − 𝜏𝑇 𝐶0 (1 − 𝑃𝑓 (𝜀, 𝜏)) 𝑃 (H0) (22)

Since the Q is a decreasing function, when the sensing time
becomes larger, under the specified detection probability,
the false alarm probability will be small, and the data
transmission time will be smaller. That is to say, the value
of formula (22) may become larger or smaller. The trade-off
between perceived user throughput and perceived time is to
find the optimal sensing time 𝜏 under the protection of the
authorized user, so that the system arrives at the maximum
effective throughput. Therefore, the optimization problem of
looking for the optimal perception time is transformed into
formula (23):

max: {𝑅 (𝜏) = 𝑅0 (𝜀, 𝜏)}
𝑠.𝑡 𝑃𝑑 (𝜀, 𝜏) ≥ 𝑃𝑑 (23)

To solve problem of the effective throughput of spectrum
resource in wireless cognition network, we need to find
the best service mode for the personalized users. This is a
problem of function optimization.This section uses the SFDE
to find the optimal perception time.

5.3. Specific Solution Based on SFDE. Specific implementa-
tion steps are as follows, which is based on SFDE.

Step (1) initializes a population. The entire range of
variables is from 0.001 to 1 into 45 intervals. The upper limit of
the i-th segment is bounds (𝑖, 2) and the lower bound is limited
to bounds (𝑖, 1). The specific evaluation process is shown as
formula (24):

𝑏𝑜𝑢𝑛𝑑𝑠 (i, 2) = 0.01 + 0.0002 ∗ i
𝑏𝑜𝑢𝑛𝑑𝑠 (i, 1) = 0.01 + 0.0002 ∗ (i − 1) (24)

where each interval assumes as an individual and the whole
has 45 individual vectors. The whole population divide
themselves into the three subpopulations, each of which has
15 individuals. Then each individual is initialized as shown in
formula (25):

𝑥𝑗,𝑖 (0) = 𝑏𝑜𝑢𝑛𝑑𝑠 (i, 1) + 0.0002 ∗ 𝑟𝑎𝑛𝑑 (0, 1) (25)

16 Wireless Communications and Mobile Computing

Table 5: The parameters used in the simulation experiment.

Parameter value Description
NP 45 Population size.
D 20 Population individual dimension.
iMax 20 The maximum number of iterations.
W 5 The maximum number of individuals that the archive set holds.
N 15 The number of individuals per sub population.
P 0.1 The step size of the parameters of the parameter pool.
P(H0) 0.2 The probability of occurrence of cognitive users.𝑃𝑑 0.95 Detection of non-value of probability.
F 6MHz Sampling frequency.
SNRp -15dB Authorized user’s SNR.
SNRs 20dB Cognitive user’s SNR

where the 0.0002 is the length of itself individual gene in the
population.

Step (2) finds the optimal individual Xlbest in each sub-
population. Each gene vector is brought into fitness formula
(22).TheXlbest is based on the fitness and themaximum value
of each gene for each individual. With randomly selecting the
parameters F and CR for each individual from the parameter
candidate pool, we can get the sniffing values F ad and
F de of the parameter F corresponding to each individual
are obtained and use the optimal individual to compute the
variation vector.

Step (3) chooses sniffing values CR ad and CR de of the
parameter CR corresponding to each individual. And we can
combine the intermediate vector with the mutation vector of
Step (2).

Step (4) lets the intermediate vector obtained in Step (3)
participate in the selection operation, and we can compute
the fitness values for each gene in each intermediate vector
by formula (22) and compare the fitness value with the target
vector. If the fitness is greater than the target vector, the gene
will replace the gene corresponding to the target individual.
Repeat Steps (2)–(4) until all individuals in the population
have completed the operation of mutation, crossover, and
selection. Then the new population goes into the next
generation.

Step (5) repeats Steps (2)–(4) until the maximum num-
ber of iterations is reached. The optimal sensing time and
the corresponding maximum effective throughput are ob-
tained.

5.4. Parameters Setting. In order to prove the effectiveness
of the SFDE algorithm in the process of system effective
throughput optimization, the simulation carries out and
compares with the Monte Carlo method. In order to fully
reflect the superiority and contrast integrity of the improved
SFDE, the experimentwill contrast those brand-new variants,
such as JADE, MDE, EPSDE, and CODE. In addition, this
experiment will also join the standard particle swarm algo-
rithm to illustrate the Differential Evolution more effectively.
The simulation in the hardware configuration for the INTER
CORE i7, CPU 3.19GHz, memory 1.98GB running on the
computer, the program written to run the software for the

SFDE
Monte Carlo
PSO
JADE

EPSDE
MDE
CODE

2 3 4 5 6 7 8 9 101
convergence rate (s)

4

4.5

5

5.5

se
ns

in
g

tim
e (

s)

Figure 7: Comparison of SFDE and Monte Carlo for system
effective throughput.

MATLAB 7.0. The parameters used in the system simulation
experiment are shown in Table 5.

The convergence curve obtained by the simulation is
shown in Figure 7. From the effective throughput con-
vergence charts obtained in Figure 5, it can be seen that
the optimal sensing time of the SFDE is 3.67ms and
3.7ms for Monte Carlo. The maximum effective throughput
of SFDE is 5.2231bps/Hz, while Monte Carlo’s through-
put is 5.1947bps/Hz. The SFDE achieves better goat than
the Monte Carlo, which is close to the theoretical value
of 5.3bps/Hz. For PSO, it is the maximum throughput
with 4.5126bps/Hz, much worse than that of SFDE. JADE
is second only to Monte Carlo, but its corresponding
sensing time is 5.67ms, which is significantly worse. In
summary, SFDE in the throughput performance is very
good.

It can be seen from the experimental results in Figure 8
that the convergence rate of SFDE in the optimization process
ismuch faster than that of others, especially Monte Carlo.The
SFDE spends only 2.1987s on finding the best sensing time,
while Monte Carlo spends 52.1423s. So the sensing time of
SFDE is 23.7 times faster than Monte Carlo. It is even 5.69
times faster than the EPSDE. Monte Carlo is not dominant in

Wireless Communications and Mobile Computing 17

2 3 4 5 6 7 8 9 101
0

0.2

0.4

0.6

0.8

1

1.2

SFDE
Monte Carlo
PSO
JADE

EPSDE
MDE
CODE

convergence rate (s)

se
ns

in
g

tim
e (

s)

Figure 8: Comparison of SFDE andMonte Carlo convergence rate.

the selection of sensing time; that is, it is not suited to real-
time.

From the above experimental results, SFDE increases the
system throughput with ensuring the convergence of the
premise. Eventually SFDE greatly improve the convergence
rate. In other words, SFDE overcomes the shortcomings
of Monte Carlo and others that are not suitable for real-
time, which makes it more practical in solving the effective
throughput optimization of cognitive users.

6. Conclusion

In this paper, in order to optimize the radio time perception,
so that the system throughput can be maximized, a Shuffled
Frog-leaping Differential Evolution (SFDE) algorithm is put
forward, which combines shuffled frog leaping with differen-
tial evolution.The experimental studies show that in the same
situation the proposed SFDE algorithm improves the existing
performance of others. This article simulates the effective
throughput of cognitive users in radio and uses the improved
SFDE to optimize. Experimental results show that, under
the same situation, the SFDE can reach the theoretical value
of throughput optimization accuracy, and the convergence
speed is also faster.

Data Availability

The experimental Excel data used to support the findings of
this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

Financial supports from the National Natural Science Foun-
dation of China (no. 61572074), the China Scholarship Coun-
cil for visiting to UK (Grant no. 201706465028), and the
2012 Ladder Plan Project of Beijing Key Lab of Knowledge

Engineering forMaterials Science (no. Z12110 1002812005) are
highly appreciated.

References

[1] Q. Fan and X. Yan, “Self-adaptive differential evolution algo-
rithm with discrete mutation control parameters,” Expert Sys-
tems with Applications, vol. 42, no. 3, pp. 1551–1572, 2015.

[2] P.Ochoa, O. Castillo, and J. Soria, “A fuzzy differential evolution
method with dynamic adaptation of parameters for the opti-
mization of fuzzy controllers,” in Proceedings of the 2014 IEEE
Conference on Norbert Wiener in the 21st Century (21CW), pp.
1–6, Boston, Mass, USA, June 2014.

[3] W.-J. Yu, M. Shen, W.-N. Chen et al., “Differential evolution
with two-level parameter adaptation,” IEEE Transactions on
Cybernetics, vol. 44, no. 7, pp. 1080–1099, 2014.

[4] J. Liang, B. Qu, X. Mao, and T. Chen, “Differential evolution
based on fitness euclidean-distance ratio for multimodal opti-
mization,” in Emerging Intelligent Computing Technology and
Applications, pp. 252–260, Springer, Berlin, Germany, 2012.

[5] S. Wang, Y. Duan, W. Shu, D. Xie, Y. Hu, and Z. Guo,
“Differential evolution with elite mutation strategy,” Journal of
Computational Information Systems, vol. 9, no. 3, pp. 855–862,
2013.

[6] M. Ali, M. Pant, and A. Abraham, “Improving differential
evolution algorithm by synergizing different improvement
mechanisms,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 7, no. 2, pp. 1–32, 2012.

[7] S.-W.Wang,W.-S. Zhang, L.-X.Ding et al., “Research on param-
eter self-selection strategy of differential evolution,” Computer
Science, vol. 42, no. 1, pp. 256–259, 2015.

[8] Z.-W. Li, X.-G. Zhou, G.-J. Zhang et al., “Dynamic adaptive
differential evolution algorithm,” Computer Science, vol. 42, no.
z1, pp. 52–56, 2015.

[9] M.M. Eusuff and K. E. Lansey, “Optimization of water distribu-
tion network design using the shuffled frog leaping algorithm,”
Journal of Water Resources Planning and Management, vol. 129,
no. 3, pp. 210–225, 2003.

[10] J. Luo and M.-R. Chen, “Improved shuffled Frog Leaping
algorithm and its multi-phase model for multi-depot vehicle
routing problem,” Expert Systems with Applications, vol. 41, no.
5, pp. 2535–2545, 2014.

[11] Q. Zhang, L. Liu, and H. Guo, “Improved shuffled flog leaping
algorithm based on keeping the diversity of population,” Journal
of Thermal Analysis and Calorimetry, vol. 105, no. 1, pp. 53–59,
2009.

[12] H. Li, “Crossing and variation frog leaping algorithm,” Journal
of Ludong University (Natural Science Edition), no. 1, pp. 16–20,
2015.

[13] S.Wang, Y. Li, andH. Yang, “Self-adaptive differential evolution
algorithm with improved mutation mode,” Applied Intelligence,
vol. 47, no. 3, pp. 644–658, 2017.

[14] Z. Quan, S. Cui, A. H. Sayed, and H. V. Poor, “Wideband
spectrum sensing in cognitive radio networks,” in Proceedings
of the IEEE International Conference on Communications (ICC
’08), pp. 901–906, Beijing, China, May 2008.

[15] E. C. Y. Peh, Y. Liang, Y. L. Guan, and Y. Zeng, “Optimization
of cooperative sensing in cognitive radio networks: a sensing-
throughput tradeoff view,” IEEE Transactions on Vehicular
Technology, vol. 58, no. 9, pp. 5294–5299, 2009.

18 Wireless Communications and Mobile Computing

[16] X. Zhang, H. Bie, Q. Ye, C. Lei, and X. Tang, “dual-mode index
modulation aided OFDM with constellation power allocation
and low-complexity detector design,” IEEE Access, vol. 5, pp.
23871–23880, 2017.

[17] J. Svenson and T. Santner, “Multiobjective optimization of
expensive-to-evaluate deterministic computer simulator mod-
els,” Computational Statistics & Data Analysis, vol. 94, pp. 250–
264, 2016.

[18] J. Zhou, E. Dutkiewicz, R. P. Liu, X. Huang, G. Fang, and Y. Liu,
“Amodified shuffled frog leaping algorithm for PAPR reduction
in OFDM systems,” IEEE Transactions on Broadcasting, vol. 61,
no. 4, pp. 698–709, 2015.

[19] Y. Yu, P. Zhang, Z. Song, and F. Chai, “Composite differential
evolution algorithm for SHM with low carrier ratio,” IET Power
Electronics, vol. 11, no. 6, pp. 1101–1109, 2018.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

