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In this paper, a parallel group detection (PGD) algorithm is proposed in order to address the degradation in the bit error rate
(BER) performance of linear detectors when they are used in high-load massive MIMO systems. �e algorithm is constructed by
converting the equivalent extended massive MIMO system into two subsystems, which can be simultaneously detected by the
classical detection procedures. �en, using the PGD and the classical ZF as well as the QR-decomposition- (QRD-) based
detectors, we proposed two new detectors, called ZF-based PGD (ZF-PGD) and QRD-based PGD (QRD-PGD). �e PGD is
further combined with the sorted longest basis (SLB) algorithm to make the signal recovery more accurate, thereby resulting in
two new detectors, namely, the ZF-PGD-SLB and the QRD-PGD-SLB. Various complexity evaluations and simulations prove that
the proposed detectors can signi�cantly improve the BER performance compared to their classical linear and QRD counterparts
with the practical complexity levels. Hence, our proposed detectors can be used as e�cient means of estimating the transmitted
signals in high-load massive MIMO systems.

1. Introduction

In recent years, massive multiple-input-multiple-output
(massive MIMO) systems have been proposed to improve
the quality of signal transmission in wireless communica-
tions. In a massive MIMO system, each cell site is equipped
with very large number of antennas. �erefore, massive
MIMO systems can provide not only high energy e�ciency
but also very high spectral one [1, 2]. Currently, the system
with 128 antennas deployed at the BS, which simultaneously
serves 8 single-antenna users, has been built successfully in
laboratory [3]. Consequently, massive MIMO is expected to
be one of the most important technologies for next gen-
eration cellular networks.

In massive MIMO, all complex signal processing, in-
cluding signal detection for the uplink, precoding for the
downlink, and channel estimation for both, should be
implemented at the BS due to large dimension of the system

[1]. For uplink scenario, all active users transmit their
signals to the BS using the same time-frequency resources.
�ese transmitted signal symbols are recovered at the BS by
adopting suitable detectors. �e detectors used in massive
MIMO systems must satisfy the following requirements: (1)
they should provide good BER performance or high
spectral e�ciency and (2) they should have low com-
plexities. Low complexity linear detectors, such as zero-
forcing (ZF) [4–7] or minimum mean square error
(MMSE), can provide near-optimal bit error rate (BER)
performance when they are used in massive MIMO systems
[1]. In [8], the authors proved that if the system uses the
Bell Laboratory Space Time (BLAST) detector, it will obtain
a huge energy e�ciency compared to that of the classical
MMSE.

It is worth noting that the BER performance of the
system depends on the so-called load factor β, de�ned by the
ratio of the total number of antennas equipped at the users’
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side and the ones at the BS. In [9], Björnson et al. declared
that there exists no specific value of system’s load factor and
the system can be defined unconventionally with arbitrary
number of antennas and users. �is means, massive MIMO
can be defined as either a high-load system (i.e., β ≈ 1) or a
low-load one (i.e. β≪ 1). When β is high, the BER per-
formance given by linear detectors presented in [1] becomes
worse. �us, they are not suitable detectors for signal re-
covery in high-load scenarios. In spite of the fact that it can
provide high BER performance, the BLASTdetector in [8] is
also not applicable to massiveMIMO systems with hundreds
of antennas due to its high complexity.

In order to improve BER performance of linear de-
tectors in high-load massive MIMO systems, Post De-
tection Sparse Error Recovery (PDSR) algorithm [10] can
be applied. Nevertheless, this algorithm only uses binary
phase shift keying (BPSK) or quadrature phase shift
keying (QBSK). As a result, the overall system throughput
is limited. Another way to improve BER performance of
the system is to artificially reduce load factor of the
system. In [11], Nguyen et al. proposed group detection
(GD) algorithm and the efficient low complexity detectors
called the ZF-GD and ZF-IGD. �e algorithm is built by
dividing a high-load massive MIMO system to two separate
subsystems with smaller load factors. As a consequence, these
detectors significantly outperform their classical ZF coun-
terpart. Unfortunately, in full-load systems (β � 1), they
underperform than the classical MMSE detector, thereby
making them less attractive.

In this paper, we develop our idea called the parallel
group detection (PGD) algorithm in [12] for high-load
massive MIMO systems. �e algorithm is built by dividing
the equivalent extended form of high-load massive MIMO
system into two smaller load subsystems, which can be
detected in parallel by utilizing the classical detectors. Based
on the PGD, the classical ZF, and the QRD detectors, we are
able to create two new detectors, namely, ZF-PGD and
QRD-PGD. In order to improve the accuracy of the signal
detection process, the shortest longest basis (SLB) algorithm
[13], an efficient lattice reduction technique, is further
combined with the PGD to generate two other new de-
tectors, called ZF-PGD-SLB and QRD-PGD-SLB. �e em-
pirical simulations and complexity evaluations show that the
proposed detectors can significantly improve the BER
performance of massive MIMO systems compared to those
of the classical linear detectors and the QRD while their
complexities are at the practical levels. Consequently, they
are the good candidates for signal recovery in high-load
massive MIMO systems.

Notations: C denotes set of complex numbers; Q is the
slicing operation, which slices the received signals to the
nearest values in the set of integer numbers corresponding to
the QAM constellation; IN is a N × N identity matrix, and
1N is a N × 1 one vector, whose elements are all 1; (▪)T and
(▪)H are the transpose and Hermitian transpose operations;
E[▪] and ⊗ denote the expectation operation and Kronecker
product, respectively; and P† is the pseudoinverse of matrix
P and [▪] is the round operation.

2. Uplink Massive MIMO System Model

Let us consider an uplink scenario of a single-cell massive
MIMO system, as depicted in Figure 1. In the system, the BS
with Nr antennas, located at the cell’s origin, communicates
with Kmultiple-antenna users using the same frequency and
time resources. Each user has NT antennas. In order to
obtain high spectral efficiency, each user is assumed to use
spatial division multiplexing (SDM) scheme. Using this
scheme, the serial data stream of each user is first converted
into NT substreams, and then they are transmitted simul-
taneously by this user’s antennas to the BS. Under the above
assumptions, the overall transmit signal vector from K users,
x ∈ CN×1, N � KNT, can be expressed as

x � xT
1 xT

2 · · · xT
K􏽨 􏽩

T
, (1)

where xi ∈ CNT×1, i � 1, 2, . . . , K, is the transmit signal
vector of the ith user satisfying E[xixH

i ] � EsINT
, and Es is

the average energy of M-QAM signals.
�e received vector at the BS, y ∈ CNr×1, can be modeled

as follows:

y �

�����
pu

NTEs

􏽳

H B⊗ INT
􏼐 􏼑

1/2
x + n, (2)

where pu denotes the transmit power of each user;
H ∈ CNr×N and n ∈ CNr×1 are, respectively, small-scale
fading channel matrix and noise vector, whose entries are
independent identically distributed (i.i.d) random variables
with zero mean and unit variance; and B is a K × K diagonal
matrix including the large-scale fading coefficients. It is
reasonable to assume that the large-scale fading coefficients
are the same for one user and different from those of the
others because the distances between the antenna elements
are very much smaller than those from the users to the BS.
�e large-scale fading coefficient corresponding to ith user is
given by [14]

bi,i �
zi

di/d0( 􏼁
c, (3)

where bi,i is the ith diagonal element of B; zi is a random
variable, representing the shadowing, with zero mean and
variance σ2Shadow; di and d0, respectively, denote the distance
from the ith user to the BS and the reference distance; and c

is the path loss factor.
For the sake of simplicity, let us define

U �
���������
pu/(NTEs)

􏽰
H(B⊗ INT

)1/2. �en, the system model in
(2) can be rewritten as

y � Ux + n, (4)

or equivalently as
yex � Uexx + nex, (5)

where yex � yT 0T
N􏽨 􏽩

T
, Uex � UT (1/

��
Es

􏽰
)IN􏽨 􏽩

T
, and

nex � nT (− 1/
��
Es

􏽰
)xT􏽨 􏽩

T
, respectively, represent the re-

ceived signal vector, the channel matrix, and the noise vector
of the extended massive MIMO system [15]. Normally, the
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receiver needs to get the channel state information (CSI), i.e.,
to estimate the channel matrix U, through the adoption of
some estimator, e.g., the MMSE estimator. In this paper, it is
assumed that the CSI is perfectly known at the BS for the
sake of simplicity.

3. Linear Detection and Its Drawbacks

Linear detectors, such as the ZF or the MMSE, have low
complexity. �erefore, it is suitable for signal detection in
massive MIMO systems. When the load factor of the system
is sufficiently small (i.e., β � N/Nr≪ 1), the BER perfor-
mances of the linear detectors become near optimal [1].
However, as the load factor approaches unit, performance of
the linear detectors degrades noticeably. By applying the ZF
detector to the original system in (4), all N transmitted
symbols from K users can be simultaneously detected as
follows:

􏽥x � U†y

� x + U†n.
(6)

�e weighted vector 􏽥x is then sliced to obtain the final
output of the ZF detector as

􏽥x � Q(􏽥x). (7)

It is easy to observe from (6) that there is an error vector
in estimation 􏽥x given by e � 􏽥x − x � U†n. �erefore, the
error covariance matrix is determined as follows:

ΦZF � E eeH
􏽨 􏽩 � UHU􏼐 􏼑

− 1
. (8)

�e average mean square error (MSE) occurred when
recovering one symbol can be determined by

MSEZF
�

1
N

trace ΦZF
􏼐 􏼑 �

1
N

trace UHU􏼐 􏼑
− 1

. (9)

Shown in Figure 2 is the empirical cumulative distri-
bution function (ECDF) of the MSEZF realized with 103
iterations when N � 64, Nr � [64 : 64 : 264] antennas, or
equivalently, the load factor β � N/Nr � [1 : − 0.25 : 0.25]).
�e large-scale fading coefficients are determined by setting
the SNR pu/σ2 � 27 dB (where σ2 is the noise power),
d0 � 100m, 100m≤ di ≤ 990m, σ2Shadow � 8 dB, and c � 3.5.
�e results in Figure 2 clearly show that the MSE signifi-
cantly reduces as the load factor gets smaller. In the worse
case, when N � Nr � 64 or β � 1, the MSE becomes very
large. �is indicates that the BER performance of the system
will severely degrade. �e reasons of this phenomenon can
be two-fold: (1) the ZF detector suffers from the noise
amplification effect and (2) the diversity order provided by
the ZF detector reduces from Nr − N + 1 (for Nr >N) to 1.

It is remarkable that when the ZF detection procedures
are utilized on extended system in (5), the resultant detector
is called the MMSE detector. �erefore, MMSE detection
and its MSE can be extended from the ZF ones by
substituting channel matrix, U, by its extended form, Uex.

4. Proposed Detectors with Parallel
Group Detection

4.1. Parallel Group Detection Approach. In order to address
the problem of performance degradation in very high-load
massive MIMO systems, we propose the so-called parallel
group detection (PGD) algorithm. In the proposed ap-
proach, a massive MIMO system is divided into several
parallel subsystems with lower load, which are then detected
separately. As a result, the overall system performance can be
noticeably improved. In general, the number of parallel
branches can be from 2 to N. Nevertheless, the more the
number of subsystems generated, the higher the detection
complexity required. �erefore, in this paper, a system with
two branches, i.e., two subsystems, is considered to keep the
complexity at a reasonable level.

NT
antennas-user

Nr antennas-BS

r

d0

Figure 1: System model of a single-cell massive MIMO system.
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Figure 3 shows the detection scheme using the proposed
PGD algorithm when number of parallel branches equals 2.
�e transmit signal vector x is estimated by the PGD al-
gorithm through the following steps:

Step 1: convert the massive MIMO system into its
equivalently extended form, as in (5)
Step 2: generate 2 subsystems in parallel
Step 3: estimate the transmitted subvectors (i.e., 􏽢s1 and
􏽢s2) by applying some classical detector on each
subsystem
Step 4: rearrange the estimated subvectors to get the
estimated signal vector 􏽥x as 􏽥x � 􏽢sT

1 􏽢sT
2􏽨 􏽩

T

In this section, Step 2 is described in detail. Steps 3 and 4
are presented in the following sections.

First of all, we rewrite the extended massive MIMO
system in (5) as

yex � G1 G2􏼂 􏼃
s1
s2

􏼢 􏼣 + nex

� G1s1 + G2s2 + nex,

(10)

where G1 ∈ C(Nr+N)×L and G2 ∈ C(Nr+N)×(N− L) are the
subchannel matrices obtained by, respectively, taking first L
and the remaining (N − L) columns of the extended channel
matrixUex. Similarly, s1 ∈ CL×1 and s2 ∈ C(N− L)×1 denote the
transmitted subvectors generated by taking the first L and
the remaining elements of the transmitted signal vector x.
�e value of L should be selected in such a way that the PGD-

based detectors meet the following requirements: (1) the
BER performances of users belonging to different groups are
the nearly same and (2) the total complexities of proposed
detectors get as low as possible. In [11], the authors pointed
out that the group detection algorithm (GD) is able to
achieve the best BER performance at the lowest possible
computational cost when the sizes of both subsystems are
identical. Following the method in [11], we can find out that
L � N/2 is the best value of L that satisfies both of the above
requirements.�erefore, throughout the paper, we select L �

N/2 as the optimal value.
In order to generate the first subsystem, the interference

term G2s2 in (10) needs to be eliminated. Let P1 � (INr+N −

G2G†
2) be the projection term. �en, multiplying both sides

of (10) by P1, we get

P1yex � P1G1s1 + P1nex. (11)

Now, define 􏽥y1 � P1yex, 􏽥G1 � P1G1, 􏽥n1 � P1nex as re-
ceived vector, channel matrix, and noise vector of the first
subsystem; then, (11) is further rewritten as

􏽥y1 � 􏽥G1s1 + 􏽥n1. (12)

Similarly, the second subsystem is generated in parallel
with the first one as follows:

􏽥y2 � 􏽥G2s2 + 􏽥n2, (13)

where 􏽥y2 � P2yex, 􏽥G2 � P2G2, 􏽥n2 � P2nex, and P2 �

(INr+N − G1G†
1).

It is noteworthy that the load factor given by each
subsystem is β1 � β2 � L/(Nr + N), which is a half of that of
the original system. �erefore, the BER performance of the
system is expected to improve as the PGD algorithm is
adopted. �e PGD algorithm is summarized as in
Algorithm 1.

4.2. Proposed ZF-PGD and QRD-PGD Detectors.
�eoretically, any classical detectors can be used as sub-
detectors in the PGD algorithm to estimate 􏽢s1 and 􏽢s2.
However, low-complexity detectors should be adopted to
keep the complexity at practical levels. In this section, we
adopt the classical QRD and the ZF in the PGD to generate
two new detectors, called the ZF-PGD and QRD-PGD, as
described below.

4.2.1. ZF-PGD Detector. In the ZF-PGD algorithm, 􏽢sk, k �

1, 2, are estimated by the ZF detection procedure to both
subsystems in the PGD as follows:

􏽢sk � Q 􏽥G†
k􏽥yk􏼒 􏼓

� Q 􏽥sk + 􏽥G†
k􏽥nk􏼒 􏼓.

(14)

Similarly to the ZF detector, the error covariance ma-
trices and MSEs for each branch in the ZF-PGD can be
determined, respectively, as follows:

MSE
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Figure 2: ECDF of MSE of the classical ZF detector realized in 103
iterations when Nr � [64 : 64 : 264], NT � 4, K � 16,
pu/σ2 � 27 dB, d0 � 100m, 100m≤di ≤ 990m, σ2Shadow � 8 dB, and
c � 3.5.
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ΦZF− PGD
k � E sk − 􏽥sk( 􏼁 sk − 􏽥sk( 􏼁

H
􏽨 􏽩

� E 􏽥G†
k􏽥nk

􏽥G†
k􏽥nk􏼒 􏼓

H

􏼢 􏼣

� 􏽥GH

k
􏽥Gk􏼒 􏼓

− 1
,

(15)

MSEZF− PGD
k �

1
L
trace 􏽥GH

k
􏽥Gk􏼒 􏼓

− 1
􏼠 􏼡. (16)

Shown in Figure 4 is the ECDF of the classical linear
detectors and the ones based on PGD algorithm when the
parameters are set almost the same as in Figure 2 except
Nr � 64 antennas. �e illustration shows that the MSEs of
the two subsystems detected by the ZF-PGD are equal to
each other and much smaller than that of the classical ZF
detector. �ey are even comparable with the MSE of the
MMSE detector. �is implies that the ZF-PGD can improve
the system performance significantly compared to the ZF
one.

4.2.2. QRD-PGD Detector. In order to further improve the
BER performance of the PGD algorithm, the conventional
QRD detector is applied to the subsystems to generate the
QRD-PGD detector as follows.

First, using the QR decomposition to decompose sub-
channel matrices, 􏽥Gk, k � 1, 2, we get

􏽥Gk � QkRk, (17)

where Qk is (Nr + N) × L unitary matrices satisfying that
QH

k Qk � IL and Rk be L × L upper triangle matrices, which
can be presented in the matrix form asfollows:

Convert
to

extended
system

Generate
subsystem 1

Generate
subsystem 2

Subdetector
1

Subdetector
2

Stacking
recovered
subvectors

y, U

yex

yex

Uex

x

s2

s1

~y2

~y1

G2
~

G1
~

Figure 3: Block diagram of signal detection using the proposed PGD algorithm.

Input: y, U, K, NT

Output: x̂
(1) Convert the system to equivalent extended form with yex � yT 0T

N􏽨 􏽩
T
; Uex � UT (1/Es)IN􏼂 􏼃

T.
(2) Set L � (N/2) and define G1 � Uex(:, 1 : L),G2 � Uex(:, L + 1 : N).
(3) Compute P1 � (I − G2G†

2) and P2 � (I − G1G†
1).

(4) Compute received vectors and channel matrices of the two parallel subsystems as 􏽥y1 � P1yex, 􏽥G1 � P1G1, 􏽥y2 � P2yex, 􏽥G2 � P2G2.
(5) Estimate both transmitted subvectors 􏽢sk, (k � 1, 2), by applying a suitable subdetector to the kth subsystem having 􏽥yk, 􏽥Gk.
(6) Rearrange the recovered subvectors to get the overall estimated vector as 􏽢x � 􏽢sT

1 􏽢sT
2􏽨 􏽩

T
.

ALGORITHM 1: Proposed PGD algorithm.

MSE
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Figure 4: ECDF curves of the MSEs of the classical linear detectors:
the ZF-PGD and the ZF-PGD-SLB detectors realized in 103 iter-
ations when Nr � 64, NT � 4, K � 16, pu/σ2 � 27 dB, d0 � 100m,

100m≤di ≤ 990m, σ2Shadow � 8 dB, and c � 3.5.

Wireless Communications and Mobile Computing 5



Rk �

rk1,1
rk1,2

· · · rk1,L

0 rk2,2
· · · rk2,L

⋮ ⋮ ⋱ ⋮

0 0 0 rkL,L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

where rki,j
denotes the ith row and jth column entry of Rk.

Next, multiplying both sides of (17) by QH
k , we obtain

vk � QH
k 􏽥yk � Rksk + QH

k 􏽥nk. (19)

Finally, ignoring the noise term QH
k 􏽥nk in (19), all entries

of 􏽢sk (denoted by 􏽥ski
, i � L, L − 1, . . . , 1) are determined layer

by layer using the following rule:

􏽢ski
� Q 􏽥ski

􏼐 􏼑 � Q

vki

rki,i

, i � L,

vki
− 􏽘

L

j�i+1 rki,j
􏽢skj

􏼒 􏼓

rki,i

, i≠L,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

where vki
is ith entry of vk and 􏽢skj

is the sliced value of 􏽥skj
.

Note that the BER performance given by the QRD-PGD
is usually better than that of its ZF-PGD counterpart due to
the advantage of the successive interference cancelation
(SIC) technique. However, it suffers from the larger delay of
the SIC technique. �e higher the dimensions of the system
are, the higher delay the QRD-PGD suffers. �erefore, the
QRD-PGD detector is suitable to be used in small- or
medium-size systems.

5. Proposed ZF-PGD-SLB and QRD-PGD-
SLB Detectors

5.1. Lattice Reduction-Aided PGD Detection Approach. In
this section, a new detection approach, called PGD-LR, is
considered by combining the lattice reduction (LR) tech-
niques with the PGD to further enhance the BER perfor-
mance of massive MIMO systems.

First of all, the subsystems, 􏽥yk, k � 1, 2, are converted
into the ones in LR domain as follows:

􏽥yk � 􏽥Gksk + 􏽥nk

� 􏽥GkTkT
− 1
k sk + 􏽥nk

� 􏽥G(LR)

k ck + 􏽥nk,

(21)

where ck � T− 1
k sk, 􏽥G(LR)

k � 􏽥GkTk is the channel matrix in the
LR domain and Tk is a unimodular matrix (i.e.,
det(Tk) � ±1), whose entries are integer numbers. 􏽥G(LR)

k

and Tk are determined by applying LR techniques on the
channel matrix 􏽥Gk.

Next, we apply some classical detectors to (21) to estimate
the transmitted vector in LR domain, 􏽥ck. It is worth noting that
the entries of ck must be selected from a set of consecutive
integer numbers. �erefore, if the signal is modulated by

M-QAM method, it needs to be converted to the set of
consecutive integer number by the shift-and-scaling operation.
Let us define m � log(M), α � 1/2, β � (m − 1)(1 + j)/2,
where j2 � − 1. �en, the shift-and-scaling transmitted signal
vector is sk � αsk + β, thereby leading to the shift-and-scaling
signal vector in the LR as follows:

ck � T− 1
k sk � αck + βT− 1

k 1L. (22)

�erefore, the hard decision of 􏽥ck is given by

􏽢ck �
1
α
⌊α􏽥ck + βT− 1

k 1L⌋ − βT− 1
k 1L􏼐 􏼑. (23)

Once 􏽢ck is determined, the estimated signal subvector, 􏽥sk,
is obtained as follows:

􏽥sk � Tk􏽢ck. (24)

Finally, 􏽥sk is sliced to get the final output of kth sub-
system as 􏽢sk � Q(􏽥sk).

5.2. Proposed ZF-PGD-SLB and QRD-PGD-SLB Detectors.
In practice, 􏽥G(LR)

k and Tk can be carried out by utilizing LR
techniques such as Lenstra–Lenstra–Lovasz (LLL) algorithm
[16], Seysen algorithm (SA) [17], or element-based lattice
reduction (ELR) [13] on the subchannel matrix, 􏽥Gk. Among
these LR techniques, ELR [13] is the most suitable to be used
in massive MIMO systems because of its high performance
and low complexity. �e ELR finds out 􏽥G(LR)

k and Tk ma-
trices from 􏽥Gk by minimizing the diagonal entries of error
covariance matrix Φk � ( 􏽥GH

k
􏽥Gk)− 1 in (15). �is technique

includes two versions called shortest longest vector (SLV)
algorithm and shortest longest basis (SLB). While the SLB
minimizes all diagonal entries of Φk, the SLV only in-
vestigates the maximum one. As a sequence, BER perfor-
mance given by the SLB is better than that of the SLV, yet at
the cost of higher complexity. In this work, we use the SLB as
the LR technique and combine it with the proposed ZF-PGD
and QRD-PGD to create the ZF-PGD-SLB and QRD-PGD-
SLB ones. Due to space limitation, we just summarize the
SLB adopted on channel matrix 􏽥Gk in Algorithm 2. For more
details of this technique, the readers can find them in [13].

5.2.1. ZF-PGD-SLB Detector. In the ZF-PGD-SLB detection
algorithm, the transmitted symbols in LR domain 􏽥ck, k �

1, 2, are determined by utilizing the ZF detection procedure
as follows:

􏽥ck � 􏽥G(LR)H

k
􏽥G(LR)

k􏼒 􏼓
− 1

􏽥G(LR)H

k 􏽥yk. (25)

Once 􏽥ck is obtained, the estimated subvector, 􏽢sk, can be
easily determined using (23) and (24).

Similar to the ZF detector, the error covariance matrix
and the MSE for the kth subsystems in the LR domain are,
respectively, given by
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ΦZF− PGD− SLB
k � E ck − 􏽥ck( 􏼁 ck − 􏽥ck( 􏼁

H
􏽨 􏽩

� 􏽥G(LR)H

k
􏽥G(LR)

k􏼒 􏼓
− 1

,

(26)

MSEZF− PGD− SLB
k �

1
L
trace 􏽥G(LR)H

k
􏽥G(LR)

k􏼒 􏼓
− 1

. (27)

Note that the error in estimating 􏽢sk depends on the
accuracy of 􏽥ck in (25). Hence, (27) can be used as theMSE for
estimating 􏽢sk. It can be seen from Figure 4 that the MSEs of
the subsystems detected by the ZF-PGD-SLB are almost
identical and much smaller than those of the ZF and the ZF-
PGD counterparts. �is indicates that the ZF-PGD-SLB
detector is able to noticeably outperform the ZF and the ZF-
PGD ones.

5.2.2. QRD-PGD-SLB Detector. In the QRD-PGD-SLB de-
tection algorithm, the transmitted symbols in LR domain 􏽥ck,

k � 1, 2, is determined by adopting the SIC detection
technique as follows.

First, use QR decomposition to decompose 􏽥G(LR)

k as

􏽥G(LR)

k � Q(LR)
k R(LR)

k , (28)

where Q(LR)
k and R(LR)

k are, respectively, the unitary matrix
and upper triangle one.

Next, multiplying both sides of (28) by Q(LR)H
k , we get

v(LR)
k � Q(LR)H

k 􏽥y

� R(LR)
k ck + Q(LR)H

k
􏽥nk.

(29)

Let r
(LR)
ki,j

be the entry at the ith row, jth column of R(LR)
k

and cki
and v

(LR)
ki

, are respectively, the ith entries of ck and
v(LR)

k . Applying SIC detection technique, the last entry of 􏽢ck

(i.e., 􏽢ckL
) is determined as

􏽢ckL
�
1
α
⌊α􏽥ckL

+ βtkL
1L⌋ − βtkL

1L􏼐 􏼑, (30)

where 􏽥ckL
� v

(LR)
kL

/r(LR)
kL,L

and tkL
is Lth row of T− 1

k . Once 􏽢ckL
is

determined, the (L − 1)th entry of 􏽢ck will be estimated by
canceling the interference of 􏽢ckL

out of v
(LR)
kL− 1

. In general, �e
ith entry of 􏽥ck (􏽥cki

, i � 1, 2, . . . , L − 1) is determined as

􏽥cki
� v

(LR)
ki

− 􏽘
L

j�i+1
r

(LR)
ki,j

􏽢ckj

⎛⎝ ⎞⎠ r
(LR)
ki,i

􏼒 􏼓
− 1

, (31)

and its hard-decision value is given by

􏽢cki
�
1
α
⌊α􏽥cki

+ βtki
1L⌋ − βtki

1L􏼐 􏼑. (32)

�is process is repeated until all entries of 􏽢ck are
obtained.

6. Complexity Analysis

In this section, we evaluate the complexity of the classical
linear detectors, the QRD, the BLAST, and all the proposed
ones. In order to do so, we follow the method in [11, 18, 19]

to count the number of necessary floating point operations
(flops) to estimate a transmitted signal vector. It is assumed
that each real arithmetic operation such as a real addition, a
real subtraction, a real multiplication, a real division, or a
square root of a real number is counted as a flop. It is worth
noting that a multiplication of twomatrices with dimensions
of c × d and d × e needs a total of ce d multiplications and
ce(d − 1) additions. In addition, the inversion of c × cmatrix
requires c3 multiplications and c3 additions [20]. Further-
more, we would like to note that the complexity of a detector
can be computed using either the complex or the equivalent
real system. However, as shown in [21], the real system
requires more flops than the complex one.

Under the above assumptions, the complexity of the
classical ZF, the MMSE, the QRD, and the BLASTdetectors
in terms of flops is computed directly on the complex system
as follows:

CZF � 8N
3

+ 16N
2
Nr − 2N

2
+ 6NNr − 2N, (33)

CMMSE � 8N
3

+ 16N
2
Nr − 2N

2
+ 6NNr, (34)

CQRD � 6N
2
Nr + 3N

2
+ 12NNr + 4N, (35)

CBLAST �
15
4

N
4

+ 2N
3
Nr + N

2
N

2
r + N 16Nr − 2( 􏼁. (36)

Because the proposed detectors are built based on the
extended form of the massive MIMO system with the
channel matrix Uex including both real and complex values,
to evaluate the complexity more exactly, we represent Uex as
follows:

Uex � G1 G2􏼂 􏼃 �

F1 F2
D1 02
01 D2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (37)

where both F1 and F2 are Nr × L complex matrices; D1 and
D2 are L × L diagonal real matrices; and 01 and 02 denote
L × L zeros matrices, L � N/2.

6.1. Complexity Evaluation of the ZF-PGD and QRD-PGD
Detectors. It can be seen that the computational costs of the
ZF-PGD and the QRD-PGD detectors comprised of two
parts: (1) generating the two subsystems and (2) utilizing
detection procedures to detect 􏽢s1 and 􏽢s2. Because the sub-
systems in the PGD algorithm are created exactly the same
way and their dimensions are equal to each other, the
complexity of the ZF-PGD and QRD-PGD detectors can be
computed by using the following equation:

CsubD− PGD � 2 CGe + CsubD( 􏼁, (38)

where CsubD− PGD is the total complexity of the ZF-PGD/
QRD-PGD, CGe denotes the computational cost of gener-
ating a subsystem, and CsubD is number of flops given by
applying the classical D detector (D is either the ZF or the
QRD) to each subsystem. From the PGD algorithm, CGe is
evaluated as
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CGe � CP1
+ C􏽥G1

+ C􏽥y1

� N
3

+ 4N
2
Nr + 4a

2
N + N − NNr + 4aNNr

− 2aNr + 8aN − a(flops),

(39)

where CP1
, C􏽥G1

, and C􏽥y1
are, respectively, the numbers of

flops to compute the projection term P1, the sub-channel
matrix 􏽥G1, and the received vector 􏽥y1; a � Nr + N.

Because the dimensions of the subsystems are a × L,
CsubD can be obtained based on (33) and (35) by, re-
spectively, replacing Nr and N with a � Nr + N and L �

N/2 as follows:

CsubZF � N
3

+ 4aN
2

−
1
2
N

2
+ 3aN − N(flops), (40)

CsubQRD �
3
2

aN
2

+
3
4
N

2
+ 6aN + 2N(flops). (41)

6.2. Complexity Evaluation of the ZF-PGD-SLB and the QRD-
PGD-SLB Detectors. From the signal detection procedures
of the ZF-PGD-SLB and the QRD-PGD-SLB, we can easily
observe that the complexity of these detectors are different
from those of their ZF-PGD and the QRD-PGD counter-
parts by three aspects: (1) converting the subsystems to the
ones in the LR domain; (2) utilizing hard decision to esti-
mate transmitted symbols as in (23); and (3) converting the
estimated vector 􏽢ck in the LR domain to 􏽢sk in the transmit
constellation. Besides, the dimensions of subsystems in the
PGD and the ones in the LR domain are exactly the same.
�erefore, the computational complexity of the ZF-PGD-
SLB and the QRD-PGD-SLB detectors can be determined
based on the following equation:

CsubD− PGD− SLB � CsubD− PGD + 2CSLB + 2CSli + 2Cconv,

(42)

where CsubD− PGD− SLB denotes the complexity of either the
ZF-PGD-SLB or the QRD-PGD-SLB detector, CSLB is the
number of flops to covert one subsystem to the one in the LR
domain (e.g., convert 􏽥G1 to 􏽥G(LR)

1 ), CSli and Cconv are, re-
spectively, the total complexity of hard decision operation in
(23) and of converting 􏽢ck to 􏽢sk in (24).

Following Algorithm 2 step by step, CSLB can be eval-
uated to be

CSLB � 16L
3

+ 16aL
2

− 2L
2

− 2aL + 4Cλ + 10CΔ

+ 24LCupdate

� 2N
3

+ 4aN
2

−
1
2
N

2
− aN + 4Cλ + 10CΔ

+ 12NCupdate(flops),

(43)

where Cλ, CΔ, and Cupdate are, respectively, the average
number of times needed to compute λi,j and Δi,j and to
update Φ and T′ so that 􏽥G1 and T1 are generated
successfully.

From (23) and (24), the remaining two terms in (42) can
be evaluated to be

CSli � 2L
2

+ 4L �
N2

2
+ 2N(flops), (44)

Cconv � 3L
2

− L �
3
4
N

2
−

N

2
(flops). (45)

Note that the complexity of T− 1
k in (23) is already in-

cluded in the SLB algorithm.
�e computational complexities of all the detectors are

summarized in Table 1. �e results in Table 1 show that all
proposed detectors have the same complexity order as those
of linear detectors (i.e., O(N3)).

�e computational costs of all the detectors with dif-
ferent antenna’s configurations are further illustrated in
Figures 5 and 6.

It can be observed from Figures 5 and 6 that the
complexities of the detectors increase proportionally with
the number of antennas. Although the computational costs
of the proposed detectors are higher than those of the
classical MMSE and the ZF-SLB, they are very much smaller
than those of the BLASTone in high-load systems. It is worth
emphasizing that the higher complexities of our proposed
detectors than those of the MMSE/ZF-SLB are rewarded by
huge SNR gains as illustrated in the following section.

It can also be seen from Figure 6 that when the load
factor reduces from β � 0.8 to β � 0.27 (or equivalently, the
number of data streams reduces from 96 to 32), the gaps
between the complexities of the detectors under consider-
ation get much smaller. �is implies that the computational
costs of proposed detectors and the BLAST one become
comparable in very low load systems. �erefore, our pro-
posed detectors are only suitable to use in the systems with
sufficiently high load factors.

7. Simulation Results

In this section, the BER performances of all the proposed
detectors as well as the classical linear detectors, the QRD,
and the MMSE-BLAST (in the paper, the detector is referred
to as the BLAST for short) ones are investigated. �e pro-
posed detectors are also compared with the ZF-SLB one
proposed in [13] regarding the BER performance. In the
simulation, the channel is assumed to be block fading, which
is unchanged within the signal block and changed from one
block to another. �e main simulation parameters and as-
sumptions are set up as follows: the cell radius, r, and
reference distance, d0, are 1000 meters and 100 meters,
respectively; all active users are uniformly distributed in the
cell such that the distance from the ith user to the BS sat-
isfying 100m≤di ≤ 990m; the large-scale fading coefficients
are generated according to (3), where σ2Shadow � 8 dB and
c � 3.5. All BER curves are drawn versus SNR defined by
pu/σ2 in dB.

Figures 7 and 8 illustrate the BER curves of the afore-
mentioned detectors for 2 different system configurations:
(1) Nr � 64, K � 16, and NT � 4 and (2) Nr � 128, K � 32,

and NT � 4 antennas. �e results in both figures show that
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Input: 􏽥Gk

Output: 􏽥G(LR)

k , Tk

(1) Set 􏽥U � 􏽥Gk; T′ � IN; and compute Φ � ( 􏽥UH 􏽥U)− 1.
(2) Do
(3) Find j index such that Φj,j is maximum reducible value of Φ.
(4) λi,k � − Φi,j/Φi,i, ∀ i≠ j

(5) Compute Δi,j � − |λi,j|
2Φi,i − λ∗i,jΦi,j − λi,jΦ∗i,j and chose i � argmaxi�1:L;i≠jΔi,j

(6) If Δi,j � 0, ∀i, j � 1 : L go to (10)
(7) tj′ � tj′ + λi,jti′; % tj′ is jth column of T′
(8) ϕj � ϕj + λi,jϕi; % ϕj is jth column of Φ
(9) ϕj � ϕj + λi,jϕ

i; % ϕj is jth row of Φ
(10) While (true)
(11) Tk � (T′− 1)H; 􏽥G(LR)

1 � 􏽥UTk

ALGORITHM 2: SLB algorithm.

Table 1: Computational complexity comparison.

Detectors Number of necessary flops to recover a transmitted signal vector
ZF 8N3 + 16N2Nr − 2N2 + 6NNr − 2N

MMSE 8N3 + 16N2Nr − 2N2 + 6NNr

QRD 6N2Nr + 3N2 + 12NNr + 4N

BLAST (15/4)N4 + 2N3Nr + N2N2
r + N(16Nr − 2)

ZF-PGD 4N3 + 8N2Nr + 8aN2 − N2 + 8a2N − 2NNr + 8aNNr − 4aNr + 22aN − 2a

QRD-PGD 2N3 + 8N2Nr + 8a2N + 3aN2 + (3/2)N2 + 6N − 2NNr + 8aNNr − 4aNr + 28aN − 2a

ZF-SLB 24N3 + 32N2Nr + 20N2 + 4NNr + 1 + 4Cλ1 + 10C△1 + 24NCupdate1

ZF-PGD-SLB 8N3 + 8N2Nr + 16aN2 + (N2/4) + 8a2N − 2NNr + 8aNNr − 4aNr + 20aN − 2a +

(7/2)N + 8Cλ + 20C△ + 24NCupdate

QRD-PGD-SLB 6N3 + 8N2Nr + 11aN2 + (9/4)N2 + 8a2N + (19/2)N − 2NNr + 8aNNr − 4aNr +

26aN − 2a + 8Cλ + 20C△ + 24NCupdate

Note. a � Nr + N, N � KNT; Cλ, CΔ, Cupdate, Cλ1 , CΔ1 , and Cupdate1 are given by simulations.

Number of antennas N = Nr
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Figure 5: Complexity curves of the proposed detectors as well as
the classical ZF, the MMSE, the QRD, and the BLAST detectors
when Nr � N � [60 : 20 : 200].
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Figure 6: Complexities of the proposed detectors as well as of the
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all the proposed detectors significantly outperform their
classical ZF and the QRD counterparts. In addition, the ZF-
PGD-SLB and the QRD-PGD-SLB detectors provide much
better BER performance than the ZF-SLB one. More
specifically, BER performance of the ZF-PGD is much
better than that of the classical ZF and even comparable to
the MMSE detector’s performance (it is well understood
that the MMSE detector can be implemented by applying
the ZF detector to the extended system defined in equation
(5); therefore, the ZF-PGD is able to approach the per-
formance of the MMSE detector, and due to the effects of
the projection terms P1 and P2, when generating the two
subsystems, the ZF-PGD slightly underperforms than its
MMSE counterpart). �is result confirms our analysis in
Section 3. �e illustrations in both these figures show that
there are big gaps between the BER curve of the MMSE and
those of the remaining proposed detectors. For example,
for the first antenna configuration, i.e., Nr � 64, K � 16,

NT � 4, the gaps between the MMSE curve and the ones of
the QRD-PGD, the ZF-PGD-SLB, and the QRD-PGD-SLB
are about 7.4 dB, 11.9 dB, and 13.4 dB at BER� 10− 4, re-
spectively. �ese gaps reduce to 6.52 dB, 9.02 dB, and
10.82 dB for Nr � 128, K � 32, and NT � 4. �ese results
imply that in full-load scenarios, as the system size in-
creases, the BER performance gaps between our proposed
detectors and those of the MMSE get smaller. �is is
probably due to the fact that the columns of the channel
matrix becomes more orthogonal in pairs when the system
size increases, thereby reducing the effect of cochannel
interference at the BS.

SNR
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Figure 7: BER curves of the proposed detectors as well as of the ZF,
the MMSE, the QRD, the BLAST, and the ZF-SLB ones when
Nr � 64, K � 16, NT � 4, and 4-QAM.
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It is worth noting that the BER performance of the ZF
detector is worse than that of the MMSE even if the SNR is
very high. �e reason is that there always exists a significant
gap between the output SNRs of these two detectors when
the SNR reaches to infinity [6].�e results in Figures 7 and 8
also show that the BLAST detector gives the best BER
performance among all the detectors under consideration.
However, its excessively high complexity prevents it from
being practically adopted in massive MIMO systems.

Shown in Figure 9 are the BER curves of the detectors
under consideration when the load factors of the system are
β1 � 0.27 and β2 � 0.8. �e system parameters are set as
follows: Nr � 120 antennas, K � 8, 24, and NT � 4 antennas,
leading to the equivalent dimensions as 120 × 32 and 120 × 96.
It can be seen from Figure 9 that when the load factor of the
system reduces, the BER performances of all considered de-
tectors improve significantly. Besides, the SNR gains between
our proposed detectors and the classical ones getmuch smaller
when the load factor reduces. Specifically, when β2 � 0.8, the
ZF-PGD, the ZF, and MMSE detectors have nearly the same
BER performance, but they underperform than the ZF-SLB,
the proposed ZF-PGD-SLB, and QRD-PGD-SLB detectors by
about 2 dB, 2.2 dB, and 3.2 dB at BER� 10− 4, respectively.
When the load factor reduces to β1 � 0.27, performances of all
considered detectors are just slightly different from each
others. �is implies that when the system’s load factor is
sufficiently small, the proposed detectors are no longer more
advantageous than the classical linear detectors with respect to
the BER performance. If the detection complexity is taken into
account (as illustrated in Figure 6), then the classical ZF and
MMSE detectors are the most efficient for signal recovery in
massive MIMO systems with low load factors.

8. Conclusion

In this paper, the parallel group detection algorithm has been
proposed to enhance BER performance of high-load massive
MIMO systems. By combining the PGD, the classical ZF,
and the QRD detectors, we are able to construct the ZF-PGD
and QRD-PGD detectors. Moreover, the PGD is further
combined with shortest longest basis (SLB) algorithm to
generate two other new detectors, called ZF-PGD-SLB and
QRD-PGD-SLB. Various simulation and analytical results
show that the proposed detectors remarkably outperform
their classical linear detectors and the QRD counterparts, yet
at the cost of higher detection complexities. Fortunately, the
complexities of the proposed detectors are very much
smaller than those of the BLAST in high-load scenario.
Consequently, our proposed detectors are suitable for signal
detection in high-load massive MIMO systems.
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