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By exploiting the sparsity of the channel in the delay and angle domains, compressed sensing (CS) algorithms can be used for
channel estimation of massive multiple-input multiple-output (MIMO) systems to reduce pilot overhead. Due to the Doppler
frequency shift, however, the intercarrier interference (ICI) and the rapid change of the channel state result in the poor estimation
effect of doubly selective (DS) channel. In this paper, we propose the block sparsity adaptive matching pursuit (B-SAMP) algorithm
to solve this problem. Firstly, the complex exponential basis expansion model (CE-BEM) is used to convert numerous channel tap
coefficients into BEM parameter vectors and then the sparsity adaptive channel estimation scheme based on compressed sensing is
proposed. Specifically, the ICI-free model is obtained by using the proposed equally placed pilot group scheme, and the B-SAMP
algorithm is proposed by using the spatio-temporal common sparsity of the channel to complete the estimation of DS channel.
Finally, a linear smoothing method is used to reduce the error caused by CE-BEM, thereby further improving the accuracy of the
estimation. The simulation results show that the proposed method not only improves the estimation accuracy compared with the
existing scheme but also requires fewer pilots.

1. Introduction

Mobile communications will be upgraded to a new level
with the coming of 5G era. Massive multiple-input multiple-
output (MIMO) technology as one of the key technologies
in 5G mobile communications has many advantages such as
improving system spectrum efficiency and transmission reli-
ability [1]. Meanwhile, massive MIMO faces challenges such
as high-dimensional channel state information (CSI), pilot
pollution and the scheduling of numerous accessing users,
etc. [2, 3]. For the doubly selective (DS) channel generated by
the fast movement of the user, the Doppler shift is generated
in the frequency domain, and the channel state changes
rapidly [4]. In this case, the channel estimation becomesmore
complicated.Therefore, wemainly investigate the DS channel
estimation problem of massive MIMO systems in this paper.

Compressed sensing (CS) technology can be used to
reduce the rank of channel estimation by exploiting the sparse
characteristics of the channel in some variation domains,
which can reduce pilot overhead and estimation complexity

in massive MIMO systems [5, 6]. The channel is sparse in
the delay domain due to the limited number of significant
channel gains in multipath propagation environments, and
this sparsity is used to perform time domain channel estima-
tion under time-domain synchronous orthogonal frequency
division multiplexing (TDS-OFDM) transmission scheme in
[7, 8]. In order to improve the accuracy of signal recovery
and achieve channel estimation in complex scenarios, [9, 10]
realizes time-frequency joint channel estimation by utilizing
pseudonoise (PN) sequences and pilots. Time domain chan-
nel estimation can greatly reduce the overhead of the pilot.
However, the interference cancellation of training sequences
of different antennas will be difficult with the increase of the
number of antennas. Therefore, [11] completes the channel
estimation by proposing a nonorthogonal pilot scheme,
and the adaptive structured subspace pursuit algorithm is
proposed by utilizing the spatiotemporal common sparsity
of the channel. The problem of multiuser channel estimation
and feedback is further studied in [12, 13]. These papers
improve the CS algorithm by using the sparse characteristics
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of the channel under slow time-varying channels where the
channel remains constant for a single or multiple OFDM
symbol time.

The channel is sparse due to the nature of the transmission
even under DS channels [14]. However, the Doppler shift
caused by the rapid movement of the user leads to the rapid
changes of the channel gain in the time domain and also
destroys the orthogonality of the subcarriers to generate
intercarrier interference (ICI) [4]. In this case, there aremany
channel coefficients that need to be estimated due to the rapid
change of channel status. In addition, numerous pilots need
to be placed in order to ensure that ICI can be observed,
which will greatly reduce the spectral efficiency. Therefore,
even using CS it is challenging to estimate the channel with
sufficient accuracy under reasonable model [4].

Fortunately, the basis expansion model (BEM) can be
used to simplify the estimation process because the channel
changes are relatively smooth in the time domain [15]. The
BEM expresses the channel gain of 𝑁 discrete time points
in a linear combination of 𝑄 basis functions. Especially the
complex exponential basis expansion model (CE-BEM) can
further make the frequency-domain channel matrix strictly
banded and obtain the ICI-free model by combining specific
pilot schemes [16]. After using CE-BEM, the parameters to
be estimated for a single symbol of 𝑁�푡 antennas are greatly
reduced from 𝑁t𝑁𝐿 to 𝑁t𝑄𝐿, and the mathematical model
of the frequency domain can be considered using the CS
algorithm.

The combination of CE-BEM and CS algorithm can fur-
ther reduce the pilot overhead of DS channel estimation and
achieve good estimation effect. The single antenna channel
estimation scheme based on time-frequency training OFDM
is implemented in [17]. The model is further extended to
MIMO systems and a novel compression recovery algorithm
is proposed in [18]. The fast time-varying of the channel
causes the error of symbol reconstruction in the time-
frequency joint channel estimation scheme. Therefore, some
studies directly use the pilot sequence to complete the
frequency domain channel estimation. The distributed com-
pressive sensing-simultaneous orthogonal matching pursuit
(DCS-SOMP) algorithm is proposed for channel estimation
of single antenna and symbol in [19], and the block simul-
taneous orthogonal matching pursuit (BSOMP) algorithm is
proposed for channel estimation of multi symbols in [20].
The system model is further extended to large-scale MIMO
systems and the optimal pilot placement scheme is proposed
in [21].

The nonorthogonal pilot scheme in which the pilots
of different antennas are placed at the same position is
proposed in [11], which can greatly reduce the pilot overhead
of the massive MIMO system compared to the conventional
orthogonal pilot scheme. In addition, the scheme can also
perform superimposed block processing of the same position
in combination with the spatial common sparsity of the
channel. In view of this, the nonorthogonal pilot group
structure was improved, and the optimal placement scheme
based on discrete stochastic optimization (DSO) is used to
determine the pilot position in [21]. The DSO is the process
of performing numerous random selections within a sample

to find the optimal result. The goal of the optimal placement
scheme is to obtain the position where the correlation
coefficient of each column of the measurement matrix as
small as possible, so as to make the measurement matrix
approximately satisfy the restricted isometry property (RIP)
criterion and improve the recovery accuracy.

In this paper, we estimate multiple channel state infor-
mation corresponding to multiple OFDM symbols of all
antennas at the same time. Firstly, the CE-BEMmodel is used
to convert the channel tap gain into CE-BEM coefficients.
Then the CE-BEM model is reconstructed by using the
sparsity of the channel. The proposed block sparsity adaptive
matching pursuit (B-SAMP) algorithm is used to estimate
the BEM coefficients and obtain all channel coefficients. The
following improvements are mainly implemented:

(i) The equally placed pilot group scheme is pro-
posed, and a constant amplitude zero autocorrelation
(CAZAC) sequence is used to determine the pilot
amplitude.

(ii) TheCE-BEMmodel is chunked by the spatiotemporal
common sparsity of the channel, and the B-SAMP
algorithm is used to obtain the accurately sparse
support set.

The equally placed pilot group scheme is equally spaced
to insert multiple pilot clusters on subcarriers, and each
cluster has only one nonzero central pilot in the middle and
surrounded by zero pilots on the left and right sides. In
addition, the RIP criterion of measurement matrix can be
satisfied by using the CAZAC sequence when the number
of antennas is large [11]. The equally placed scheme is more
convenient to implement in actual communication systems,
and the computational complexity is lower.

The BSOMP algorithm is only used in a single antenna
system in [20], and the algorithm requires that the sparsity
is known. However, the proposed B-SAMP algorithm can
be used in massive MIMO system and can achieve more
accurate estimation by exploiting block sparse features. In
addition, the B-SAMP algorithm does not require sparsity S
to be known and can be more widely used in practice.

To further reduce the estimation error caused by CE-
BEM, a piecewise linear approximation model is used to
smooth the estimated channel taps. It has been proved in
[22] that the piecewise linear approximation model has a
good estimate of DS channel even for normalized Doppler of
up to 0.2, and this model has been improved for smoothing
treatment for single antenna system in [20]. The simulation
part shows that smoothing treatment can greatly improve the
estimation effect.

The rest of this paper is organized as follows. The system
model is presented in Section 2. The proposed estimation
scheme and algorithm are in Section 3. Section 4 holds the
smoothing treatment and complexity analysis of algorithm.
In Section 5, simulation results are presented to demonstrate
the performance of the proposed scheme. Finally, conclusion
is drawn in Section 6.
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2. System Model

In this section, we first describe the basic model of OFDM
system under the DS channel in massive MIMO. Then, the
CE-BEM form of the channel and the basic criteria of the CS
algorithm are introduced.

2.1. OFDM System Model over DS Channel. In massive
MIMO systems, base stations usually employ a large number
of antennas, which exchange data with terminals of single
antennas to achieve complex communication. It is assumed
that there are 𝑁�푡 antennas at the sender and s(�푘)�푟 is the
𝑟-th OFDM symbol transmitted by the 𝑘-th antenna. The
subcarrier sequence X(�푘)

�푟 = [𝑋(�푘)
�푟 [0], ⋅ ⋅ ⋅ 𝑋(�푘)

�푟 [N − 1]]�푇 of
length 𝑁 is composed of the pilot subcarrier group [X(�푘)

�푟 ]Ω
and the data subcarrier [X(�푘)

�푟 ]�휎, in which Ω(|Ω| = 𝑃) is the
set of pilot subcarrier indices and 𝜎(|𝜎| = 𝑁 − 𝑃) represents
the set of data carrier indices. After inverse discrete Fourier
transform (IDFT), the time-domain symbol sequence x(�푘)�푟 =
F�퐻�푁X

(�푘)
�푟 is obtained (F�퐻�푁 is an N-point IDFT matrix). Then the

OFDM symbol s(�푘)�푟 ∈ C(�푀+�푁)×1 is precoded by a cyclic prefix
(CP) sequence with length M.

The OFDM symbols transmitted by 𝑁�푡 antennas reach
the receiver through a complex DS channel. The discrete
mathematical model is expressed as

𝑦�푟 [n] =
�푁𝑡

∑
�푘=1

�퐿

∑
�푙=1

ℎ(�푘)�푟 [𝑛, 𝑙] 𝑠(�푘)�푟 [𝑛 − 𝑙] + 𝑤�푟 [𝑛] (1)

where 𝑙 is discrete delay samples and 𝐿 is the equivalent
channel length, ℎ(�푘)�푟 [𝑛, 𝑙] = 0 when 𝑛 ∉ [0,𝑀 + 𝑁 −
1] or 𝑙 ∉ [1, 𝐿]. Due to the large attenuation in the
transmission process, the path with significant gain becomes
less. Therefore, channels exhibit the sparsity in the delay
domain with several relatively large tap coefficients, ℓ�푘,�푟 =
supp{h(�푘)�푟 } = {𝑙 : |h(�푘)�푟 [𝑙]| > 𝑝�푡ℎ} is the support set of h(�푘)�푟

and 𝑝�푡ℎ is the noise floor according to [23]. After removing
the CP and DFT transform, the frequency domain subcarrier
sequences are obtained:

y�푟 =
�푁𝑡

∑
�푘=1

H(�푘)
F,�푟X

(�푘)
�푟 + w�푟 (2)

where the frequency domain channel matrix H(�푘)
F,�푟 =

F�푁H
(�푘)
T,�푟F

�퐻
�푁, H

(�푘)
T,�푟 ∈ C�푁×�푁 is the time domain channel matrix,

and w�푟 is the corresponding additive white Gaussian noise
(AWGN) vector. The elements forH(�푘)

T,�푟 can be expressed as

[H(�푘)
T,�푟]�푝,�푞 = ℎ(�푘)�푟 [𝑀 + 𝑝,mod (𝑝 − 𝑞,𝑁)] ,

𝑝, 𝑞 ∈ [0,𝑁 − 1]
(3)

It is worth noting that H(�푘)
T,�푟 is a cyclic matrix and H(�푘)

F,�푟
is a diagonal matrix in the slow fading channel. However,
H(�푘)

T,�푟 is a pseudocyclic matrix and H(�푘)
F,�푟 becomes a complete

matrix due to the Doppler shift inducing ICI in DS channel.

In the channel estimation process, there are 𝑁�푡𝑁𝐿 channel
coefficients that need to be estimated due to the rapid change
of channel status. In this case, a large number of pilots need
to be placed in order to ensure that ICI can be observed,
which will greatly reduce the spectral efficiency. Therefore,
even using compressive sensing it is challenging to estimate
the channel with sufficient accuracy under reasonable model
[4].

2.2. CE-BEM Based System Model. The variation of ℎ(�푘)�푟 [𝑛, 𝑙]
with time 𝑛 is usually very smooth because the Doppler
spread of the channel is limited, so it can be approximated by a
small part smooth function. Using the BEM to fit the channel
coefficients can greatly reduce the computational complexity
of the estimation. Specifically

h(�푘)�푟,�푙 =
�푄−1

∑
�푞=0

𝑐(�푘)�푟,�푞 [𝑙] ∙ b�푞 + 𝜉(�푘)�푟,�푙 (4)

in which 𝜉(�푘)�푟,�푙 ∈ C�푁×1 is the BEM error, 𝑄(𝑄 ≪ 𝑁) is the
BEMorder, b�푞 ∈ C�푁×1 is 𝑞-th BEM function, and 𝑐(�푘)�푟,�푞 [𝑙] is the
corresponding BEM coefficient with the tap 𝑙. Besides, h(�푘)

�푟,�푙
=

(ℎ(�푘)�푟 [𝑀, 𝑙], ⋅ ⋅ ⋅ , ℎ(�푘)�푟 [𝑀 + 𝑁 − 1, 𝑙])�푇 is the impulse response
of the 𝑁 points of the 𝑙-th channel tap. Using the BEM
can significantly reduce the number of unknown coefficients
from𝑁�푡𝑁𝐿 to𝑁�푡𝑄𝐿.

Although the gain of channel changes rapidly in DS
channel, the delay of channel changes slowly [24]. Therefore,
it can be ensured that 𝑆 significant channel taps keep the
corresponding position ℓ�푘 = {𝑙1, ⋅ ⋅ ⋅ 𝑙�푆} unchanged during 𝑅
successive OFDM symbols [20]. The 𝑅 consecutive OFDM
symbols transmitted by 𝑁�푡 antennas can be considered to
pass through the same multipath channel and share common
sparsity under the condition of 𝑑max/𝑐 ≤ 1/10𝐵𝑊 [21], in
which 𝑑max denotes the maximum distance between any two
transmit antennas, 𝑐 is the speed of light, and 𝐵𝑊 is the signal
bandwidth. It should be pointed out that the path gains of
different transmit receive antenna pairs can be different due
to the nonisotropic antennas [25].

We can get that c(�푘)�푟,�푞 = [𝑐(�푘)�푟,�푞 [1], ⋅ ⋅ ⋅ , 𝑐(�푘)�푟,�푞 [L]]�푇 has the same
set of support ℓ and sparsity 𝑆 for any 𝑞 ∈ [0,𝑄 − 1], 𝑟 ∈
[1, 𝑅], and 𝑘 ∈ [1,𝑁�푡] by exploiting the spatial and temporal
channel correlations. Combining the formula (3) for analysis
and derivation, we can obtain

H(�푘)
�푇,�푟 =

�푄−1

∑
�푞=0

diag (b�푞) C̃(�푘)
�푟,�푞 + E (5)

where E is the error matrix of the BEM, diag(b�푞) is the
diagonal matrix with the diagonal element b�푞, and C̃(�푘)

�푟,�푞 is the
cyclic matrix with the first column c(�푘)�푟,�푞 ∈ C�퐿. The BEM error
will be omitted in the following calculation, and the estimated
H�푇 will be smoothed to further reduce the impact of errors
in Section 5. Equation (2) can be simplified as

y�푟 =
�푁𝑡

∑
�푘=1

�푄−1

∑
�푞=0

B�푞C
(�푘)
�푟,�푞X

(�푘)
�푟 + w�푟 (6)
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in which B�푞 = FNdiag(b�푞)F�퐻�푁 and C(�푘)
�푟,�푞 = diag(FN((c(�푘)�푟,�푞)�푇,

01×(�푁−�퐿))�푇).The simplification of the formula takes advantage
of the diagonalization of the circulant matrix.

The basis functions of CE-BEM are Fourier vector with
a period of 𝑁, which is able to make the frequency-domain
channel matrix H(�푘)

�퐹,�푟 strictly banded [19]. The 𝑞-th basis
function b�푞 can be expressed as

b�푞 = (1, ⋅ ⋅ ⋅ , 𝑒�푗(2�휋/�푁)�푛(�푞−(�푄−1)/2),

⋅ ⋅ ⋅ 𝑒�푗(2�휋/�푁)(�푁−1)(�푞−(�푄−1)/2))�푇
(7)

Using the expression of b�푞, the formula (6) can be further
simplified as

y�푟 =
�푁𝑡

∑
�푘=1

�푄−1

∑
�푞=0

I⟨�푞−(�푄−1)/2⟩�푁 diag (X(�푘))F�耠�푁c(�푘)�푟,�푞 + w�푟 (8)

where I⟨�푞⟩�푁 denotes a permutation matrix obtained from an
identity matrix I�푁 and F�耠�푁 ∈ C�푁×�퐿 is the first 𝐿 column of
the DFT matrix F�푁. In the next, the specific BEM coefficient
expression will be obtained by the corresponding pilot group
structure.

2.3.The Basic Criteria of CS Algorithm. Thehigh-dimension-
al signal can be successfully recovered when two important
criteria in CS are satisfied: the high dimensional signal x
is a sparse vector (i.e., ‖x‖0 = 𝑆 and 𝑆 ≪ 𝐿) and the
measurement matrix Φ needs to meet the RIP criterion.
However, it is difficult to verify RIP condition due to the
prohibitive complexity and the tremendous computation.The
mutual coherence property (MCP) is widely adopted in the
practical schemes because it is simple to calculate [26]. It can
be expressed as

𝜇 (Φ) = max
1≤�푖 ̸=�푗≤�퐿

⟨𝜙�푖, 𝜙�푗⟩
𝜙�푖2

𝜙�푗
2

(9)

where 𝜙�푖, 𝜙�푗 denote the i-th and the j-th columns of Φ. 𝜇(Φ)
is used to represent the self-correlation of the measurement
matrix, and a smaller value of the 𝜇(Φ) means the orthogo-
nality of the columns of the measurement matrix gets better,
so that the more accurately support set can be selected in the
loop iteration of the CS algorithm.

3. The Proposed Channel Estimation Scheme

Our goal is to obtain channel state information under the DS
channel, and the compressed sensing algorithm used due to
the pilot overhead can be reduced. The equally spaced pilot
group scheme will be mentioned firstly, which can obtain the
CE-BEM vector model without ICI and can satisfy the MCP
criterion of the measurement matrix. Then, the B-SAMP
algorithm based on spatiotemporal common sparsity will be
proposed, which has good sparse adaptability and estimation
stability.

3.1. The Equally Placed Pilot Group Scheme. The nonorthog-
onal pilot scheme is used in the paper, which is that the
pilots of different transmit antennas are at the same subcarrier
position. The nonorthogonal pilot scheme can reduce the
pilot overhead compared with the traditional orthogonal
pilot scheme and can perform the joint channel estimation
of multiple antennas by using the sparsity of the channel and
the compressed sensing algorithm.

The total number of pilot subcarriers and the corre-
sponding pilot indices within one OFDM symbol in the k-
th antenna are denoted as 𝑃 and Ω, respectively. The pilot
subcarriers are grouped in 𝐺 clusters, and each cluster has
only one non-zero central pilot in themiddle and surrounded
by𝑄−1 zero pilots on the left and right sides.The central pilot
index set Ω�푐�푒�푛�푡(|Ω�푐�푒�푛�푡| = 𝐺) is expressed as

Ω�푐�푒�푛�푡 = {𝑝0, ⋅ ⋅ ⋅ , 𝑝�퐺−1} (10)

where 0 ≤ 𝑝0 < ⋅ ⋅ ⋅ < 𝑝�퐺−1 ≤ 𝑁− 1 and must have |𝑝�푖 − 𝑝�푗| ≥2𝑄 − 1, 𝑖 ̸= 𝑗 to prevent the overlapping of the effective pilot
subcarriers and the guard pilot subcarriers. In the next, we
take Q subsets from Ω with

Ω0 = Ω�푐�푒�푛�푡 − 𝑄 − 1
2

...
Ω(�푄−1)/2 = Ω�푐�푒�푛�푡

...

Ω�푄−1 = Ω�푐�푒�푛�푡 + 𝑄 − 1
2

(11)

in which Ω�푐�푒�푛�푡 − (𝑄 − 1)/2 denotes a set where each element
in Ω�푐�푒�푛�푡 subtracts (𝑄 − 1)/2. The pilot pattern with 𝑄 = 3 is
shown in Figure 1, and the value of𝑄 is related to the Doppler
shift. The Doppler shift characteristic can be expressed by
using the pilot pattern and the CE-BEM, and the estimation
of 𝑄 sparse CE-BEM coefficient vectors could be decoupled
from (8) by 𝑄 separate equations without ICI as

[y�푟]Ω0 =
�푁𝑡

∑
�푘=1

diag (P(�푘)
Ω𝑐𝑒𝑛𝑡

) [F�耠�푁]
Ω𝑐𝑒𝑛𝑡

c(�푘)�푟,0 + w�푟,0

...
[y�푟]Ω(𝑄−1)/2

=
�푁𝑡

∑
�푘=1

diag (P(�푘)
Ω𝑐𝑒𝑛𝑡

) [F�耠�푁]
Ω𝑐𝑒𝑛𝑡

c(�푘)�푟,(�푄−1)/2 + w�푟,(�푄−1)/2

...

[y�푟]Ω𝑄−1 =
�푁𝑡

∑
�푘=1

diag (P(�푘)
Ω𝑐𝑒𝑛𝑡

) [F�耠�푁]
Ω𝑐𝑒𝑛𝑡

c(�푘)�푟,�푄−1 + w�푟,�푄−1

(12)
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Figure 1: The pilot group pattern within single symbol of k-th antenna.

The above formula is an undetermined condition due to𝐺 ≪
𝑁�푡𝐿, which is impossible to estimate the signal using the tra-
ditional estimation algorithm. The high-dimensional signal
can be successfully recovered when two important criteria in
CS are satisfied. We have obtained that the BEM coefficient
c(�푘)�푟,�푞 is sparse.Thenwe will construct the measurement matrix
Φ, and channel estimation will be performed by using an
improved CS based on the spatiotemporal common sparsity
of channel.

Considering the correlation of channels over 𝑅 consecu-
tive OFDM symbols, (12) can be expressed as

[Y]Ω0 = [Φ(1) ⋅ ⋅ ⋅Φ(�푁𝑡)]C0 + W0

...
[Y]Ω(𝑄−1)/2 = [Φ(1) ⋅ ⋅ ⋅Φ(�푁𝑡)]C(�푄−1)/2 + W(�푄−1)/2

...
[Y]Ω𝑄−1 = [Φ(1) ⋅ ⋅ ⋅Φ(�푁𝑡)]C�푄−1 + W�푄−1

(13)

where Y = [y1 ⋅ ⋅ ⋅ y�푅] ∈ C�푁×�푅 is the received subcarriers
during multiple OFDM symbols, C�푞 = [c1,�푞 ⋅ ⋅ ⋅ cR,�푞] ∈
C�푁𝑡�퐿×�푅 represents the BEM coefficients that needs to be
estimated, and c�푟,�푞 = [(c(1)�푟,q)�푇 ⋅ ⋅ ⋅ (c(�푁𝑡)�푟,q )�푇]�푇. The measurement
matrix is Φ = [Φ(1) ⋅ ⋅ ⋅Φ(�푁𝑡)] ∈ C�푅×�푁𝑡�퐿, and Φ(�푘) =
diag(P(�푘)

Ω𝑐𝑒𝑛𝑡
)[F�耠�푁]Ω𝑐𝑒𝑛𝑡 . Since 𝑄 equations have the same mea-

surement matrix and sparsity, (12) can be further expressed
as

[[Y]Ω0 ⋅ ⋅ ⋅ [Y]Ω𝑄−1] = Φ [C0 ⋅ ⋅ ⋅C�푄−1] + W (14)

The above formula is the multiobservation vector repre-
sentation form of DCS theory. Estimation accuracy can be
improved by using DCS with multidimensional observed
vectors [19]. It can be found that the size P(�푘)

Ω𝑐𝑒𝑛𝑡
and position

Ω�푐�푒�푛�푡 of the pilot determine the value of 𝜇(Φ) because of
Φ(�푘) = diag(P(�푘)

Ω𝑐𝑒𝑛𝑡
)[F�耠�푁]Ω𝑐𝑒𝑛𝑡 .

The pilots of different antennas occupy the identical
subcarriers position, and the pilot groups are equally spaced
on each antenna. The pilot subcarriers of each antenna are
grouped in 𝐺 clusters, and each cluster has only one central

pilot 𝑝�휅 in the middle and surrounded by𝑄−1 zero pilots on
the left and right sides. Specifically, {𝑝�휅}�퐺−1�휅=0 is selected from
the set of {0+(Q−1), ⋅ ⋅ ⋅ , 𝑁−1−(Q−1)}with the equal interval
⌊𝑁/𝐺⌋ for all antennas, and 𝑝�휅 = 𝑝0 + 𝜅⌊𝑁/𝐺⌋ for 0 ≤ 𝜅 ≤
𝐺 − 1, where 𝑝0 is the subcarrier index of the first pilot with
𝑄−1 ≤ 𝑝0 < ⌊𝑁/𝐺⌋−𝑄. In addition, we consider {𝜃�휅,�푚}�퐺−1,�푁𝑡

�휅=0,�푘=1

to follow the independent and identically distributed uniform
distribution in [0, 2𝜋], where 𝑒�푗�휃𝜅,𝑘 denotes the 𝜅+1 th element
of P(�푘)

Ω𝑐𝑒𝑛𝑡
∈ C�퐺×1 for the 𝑘-th antenna.

It has been proved in [11] that smaller value of 𝜇(Φ) can
be obtained using this pilot scheme with the increase of the
number of antennas. Compared to the optimal pilot place-
ment scheme [21], the equally interval placement scheme has
lower computational complexity and can be applied more
widely in practical communication.

3.2. The B-SAMP Algorithm. In previous section, we have
obtained the DCS form by exploiting the common sparsity of
the time and BEM functions. However, the spatial common
sparsity can be used to further improve the accuracy of the
estimation. Specifically, the measurement matrix Φ can be
rearranged as

Ψ = [Ψ1, ⋅ ⋅ ⋅ ,Ψ�퐿] (15)

where Ψ�푙 = [Φ(1)
�푙

, ⋅ ⋅ ⋅ ,Φ(�푁𝑡)
�푙

] ∈ C�퐺×�푁𝑡 . So (13) can be
reformulated as

Y = ΨD + W (16)

where D = [D�푇
0 ⋅ ⋅ ⋅D�푇

�퐿−1]�푇, D�푙 = [d1,0[𝑙] ⋅ ⋅ ⋅ dR,0[𝑙] ⋅ ⋅ ⋅
d1,Q−1[𝑙] ⋅ ⋅ ⋅ dR,Q−1[𝑙]] ∈ C�푁𝑡×�푅�푄, and d�푟,�푞[𝑙] = [c(1)�푟,q[𝑙],
⋅ ⋅ ⋅ c(�푁𝑡)�푟,q [𝑙]]�푇 ∈ C�푁𝑡×1. The model becomes block-sparse form
after reorganization. Our goal is to find the support set ℓwith
sparsity 𝑆 in D�푙 (0 ≤ 𝑙 ≤ 𝐿 − 1).

We propose the B-SAMP algorithm by improving the
original SAMP algorithm in order to obtain the sparse
position of the channel more accurately. Block sparsity can
greatly improve the accuracy of recovery by using Q BEM
equations and spatiotemporal common sparsity. In the B-
SAMP algorithm as shown in Algorithm 1 , the initialization
parameters are set at first and then iterate through the loop
to update the support set. When the stop criterion is satisfied,
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Input: sensing matrixΨ, observed matrix Y, step size 𝑠;
Output: 𝑆-sparse block approximation D̂

Initialization: the iterative index 𝑖 = 1, the support set
𝐹0 = 𝜙, the residual matrix R�푖−1 = Y, the initial channel
sparsity level 𝑇 = 𝑠 and the stage index 𝑗 = 1

Repeat
(1) (correlation) Z = Ψ�퐻R�푖−1

(2) (support obtain) 𝐶�푖 = 𝐹�푖−1 ∪ ∏�푇({‖Z�푙‖�퐹}�퐿�푙=1)
(3) (support pruning) D̆�퐶𝑖

= Ψ†�퐶𝑖Y, D̆(�퐶𝑖)
𝑐 = 0

𝐹 =
�푇

∏({D̆�푙

�퐹}
�퐿

�푙=1
)

(4) (block estimate) D̆�퐹 = Ψ†�퐹Y, D̆(�퐹)𝑐 = 0
(5) (residue update) R�푖 = Y −ΨD̆

If ‖R�푖‖�퐹 < ‖R�푖−1‖�퐹
(6) (Continue loop iteration)
𝐹�푖 = 𝐹
𝑖 = 𝑖 + 1

Else
(7) (stage index update) 𝑗 = 𝑗 + 1
(8) (sparsity level update) 𝑇 = 𝑗 × 𝑠

Until halting condition ture
Output: D̂ = D̆ and obtain the estimation of channel h(�푘)�푟,�푙

Algorithm 1: The B-SAMP Algorithm.

the estimated D̆ is obtained and h(�푘)
�푟,�푙

∈ C�푁×1 can be obtained
according to (4)-(14) and (16).

The purpose of step (1)-(6) of the loop iteration is to
obtain a support set with sparsity level 𝑆. The step (1)
is to obtain the correlation between each column of the
measurement matrix and the residual. Then select the most
relevant 𝑇-block, get its position, and update the support set
in step (2).∏�푇({‖Z�푙‖�퐹}�퐿�푙=1) denotes a set of size 𝑇, which finds
the position of the 𝑇 largest number by calculating the 𝐹-
norm of the 𝐿 block. A more accurate support set is obtained
through inversion and support pruning.

The residual is updated at last, and then proceed to the
next iteration of loop. Steps (7)-(8) are performed when
‖R�푖‖�퐹 ≥ ‖R�푖−1‖�퐹, indicating that the current 𝑗𝑠-sparse
solution has been obtained, and the sparsity level needs to
be updated to find (𝑗 + 1)𝑠-sparse solution. The step size 𝑠
determines the number of supports selected for each cycle.

In the algorithm, stop iterating when ‖R�푖‖�퐹 >
‖R�푖−2‖�퐹 (𝑖 ≥ 2) or ‖D̆�푙min

‖�퐹 ≤ 𝑝�푡ℎ is satisfied. The sparsity level
𝑇 is increased to reduce residuals when ‖R�푖‖�퐹 > ‖R�푖−1‖�퐹.
However, if the residuals continue to increase, it must stop
iterating immediately to ensure the accuracy of the estimate.
‖D̆�푙min

‖�퐹 denotes the smallest ‖D̆�푙‖�퐹 for 𝑙 ∈ [0, 𝐿 − 1], and
its value will become smaller and smaller with repeated
iterations. When a complete support set is obtained, ‖D̆�푙min

‖�퐹
implies that the 𝑙-th path is dominated by noise. Therefore,
we can set the appropriate threshold 𝑝�푡ℎ based on the size of
the noise to achieve a good estimation effect.

The MCP criterion is the basic criterion of the CS
algorithm and is of great significance for measuring the
performance of the algorithm [26]. According to the previous

analysis, the equal-interval pilot group scheme can obtain
lower cross-correlation values, thus ensuring the validity of
the loop iteration of the B-SAMP algorithm [11]. As the loop
iterates continually, the correct sparse support set is gradually
selected and the residual R�푖 is reduced. It is worth noting
that the size of the threshold 𝑝�푡ℎ is mainly determined by the
noise and the fitting error caused by CE-BEM, so it should be
continuously tested and optimized during application [11, 16].
The construction of the measurement matrix and the setting
of the stopping criterion ensure the validity and convergence
of the algorithm, so that accurate estimation results can be
obtained.

Simulation experiments show that the B-SAMP algo-
rithm achieves similar results to the DCS-SOMP algorithm
by setting appropriate stopping criteria. It should be pointed
out that the DCS-SOMP algorithm is block-processed as the
B-SAMP algorithm, instead of being originally applied to a
single-symbol and single-antenna system in [19]. The DCS-
SOMP algorithm is not available in the real communication
process due to the sparsity 𝑆 needs to be known. Therefore,
the B-SAMP algorithm has a wider application significance.
Comparison of specific algorithms will be compared in
Section 5.

4. Smoothing Treatment and
Complexity Analysis

4.1. Smoothing Treatment. The CE-BEM can greatly reduce
the estimated parameters under DS channels. However, this
model has a serious Gibbs effect at the edge of the detection
window and causes a large error due to spectral leakage.

It has been proved that the piecewise linear approxima-
tion model can be used in DS channel estimation, which
can achieve good estimation effect even if the normalized
Doppler shift (NDS) reaches 0.2 [20, 22]. We define h(�푘)�푎V�푒

�푟,�푙
≜

𝐸[h(�푘)�푟,�푙 [𝑀], ⋅ ⋅ ⋅ ,h(�푘)�푟,�푙 [𝑀 + 𝑁 − 1]] to denote the time average
of the already obtained the 𝑙-th CIR during the 𝑟-th OFDM
system of the 𝑘-th antenna. It has been found that |h(�푘)�푎V�푒

�푟,�푙
−

h(�푘)
�푟,�푙

[𝑀 + 𝑛]| is minimized with 𝑛 = 𝑁/2 − 1 in [22]. So we
can use the estimated h(�푘)�푎V�푒�푟,�푙 to get h(�푘)�푟,�푙 [𝑀 + 𝑁/2 − 1] with
a small error for 𝑟 ∈ [1, 𝑅] and then use a piecewise linear
approximation model for smoothing treatment.

Specifically, the estimate of the slope between the (𝑟 − 1)-
th and the 𝑟-th OFDM symbol can be obtained

𝛼(�푘)
�푟−1,�푙 =

h(�푘)�푎V�푒
�푟,�푙

− h(�푘)�푎V�푒
�푟−1,�푙

𝑁 + 𝑀 , 𝑙 ∈ ℓ̂, 𝑘 ∈ [1,𝑁�푡] (17)

Because of the existence of the CP, the discrete interval is𝑁+
𝑀. Similarly, the slope between the 𝑟-th and the (𝑟 + 1)-th
OFDM symbol can be obtained

𝛼(�푘)
�푟,�푙 = h(�푘)�푎V�푒

�푟+1,�푙
− h(�푘)�푎V�푒

�푟,�푙

𝑁 + 𝑀 , 𝑙 ∈ ℓ̂, 𝑘 ∈ [1,𝑁�푡] (18)
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Figure 2: Comparison of NMSE performance between the proposed estimation algorithm and other algorithms at speed 350𝑘𝑚/ℎ (NDS
V�푑 = 0.065).

We can utilize both 𝛼(�푘)
�푟−1,�푙

and 𝛼(�푘)
�푟,�푙

to calculate the CIR of the
𝑟-th OFDM.

ℎ(�푘)�푟1,�푙 (𝑛) = (𝑀 + 𝑛 + 1 + 𝑁
2 ) 𝛼(�푘)

�푟−1,�푙 + ℎ(�푘)�푎V�푒�푟−1,�푙

ℎ(�푘)�푟2,�푙 (𝑛) = (𝑛 + 1 − 𝑁
2 )𝛼(�푘)

�푟,�푙 + ℎ(�푘)�푎V�푒�푟,�푙 ,

0 ≤ 𝑛 ≤ 𝑁 − 1

(19)

Then by calculating the average of h(�푘)
�푟1,�푙

and h(�푘)
�푟2,�푙

, we obtain
more accurate CIR via smoothing treatment, represented as

h(�푘)�푟,�푙 = 1
2 (h(�푘)�푟1,�푙 + h(�푘)�푟1,�푙) 𝑙 ∈ [0,L − 1] , 𝑘 ∈ [1,𝑁�푡] (20)

After smoothing treatment, the estimation error will be
greatly reduced, and the effect of smoothing will be verified
in Section 5.

4.2. Complexity Analysis. The iteration of steps (1)-(5) consti-
tutes the main part of each cycle in the B-SAMP algorithm.
For step (1), the complexity of finding the correlation of
the measurement matrix is 𝑜(𝐺𝑁�푡𝐿𝑄𝑅). For step (2), the
complexity of the F-norm of the matrix block Z�푙 and the
select𝑇 largest correlations∏�푇 is 𝑜(𝑁�푡𝐿𝑄𝑅) and 𝑜(𝐿), respec-
tively. The complexity of Moore-Penrose matrix inversion
is 𝑜(2𝐺(𝑁�푡𝑇)2 + (𝑁�푡𝑇)3) in step (3), and the complexity
of getting 𝐹 is 𝑜(𝑁�푡𝐿𝑄𝑅) and 𝑜(𝐿). Similarly, steps (4)
and (5) have the complexity of 𝑜(2𝐺(𝑁�푡𝑇)2 + (𝑁�푡𝑇)3) and
𝑜(𝐺𝑁�푡𝐿𝑄𝑅), respectively. After simple analysis of complexity,
it can be found that the main computational load lies in the
inverse of the matrix.

5. Simulation Results and Discussion

In this section, the proposed channel estimation scheme will
be validated by MATLAB simulation. We mainly compare
the B-SAMP algorithm with the DCS-SOMP algorithm to
verify the accuracy of the estimation and highlight the self-
adaptiveness of the algorithm. In addition, the effects of
equally spaced pilot placement scheme and the smoothing
method will also be validated.

The important parameters in the simulation system are as
follows: the length of subcarriers was 𝑁 = 4096, the lengths
of channel and CP are 𝐿 = 165 and 𝑀 = 170, system carrier
was𝑓�푐 = 3𝐺𝐻𝑧, subcarrier spacing Δ𝑓 = 15𝐾𝐻𝑧, and system
bandwidth 𝑓�푠 = 61.44𝑀𝐻𝑧. The DS channel is generated by
Jakes simulation model and the power spectrum obeys U-
shaped distribution. The International Telecommunications
Union Vehicular-B channel model with 𝑆 = 6 was adopted
in simulation. Assume that the uniform array of antennas is
arranged at the pitch of 𝜆/2. We set𝑁�푡 = 15 to ensure that all
antennas have common sparsity according to [21].

5.1. NMSE Comparison of Different Algorithms. The normal-
ized mean square error (NMSE) comparisons are performed
in scenarios where the speeds are 350𝑘𝑚/ℎ and 500𝑘𝑚/ℎ,
respectively. It is known by [20] that the size of 𝑄 and 𝑅 is
affected by the speed, so we can set 𝑄 = 3 and 𝑅 = 5 to meet
the requirements.

The B-SAMP algorithm is compared with the original
SAMP algorithm and OMP algorithm. Meanwhile, the algo-
rithm compares with the BSOMP algorithm and the DCS-
SOMP algorithm. Figure 2 shows the comparison of NMSE
performance for different algorithms at the speed of 350𝑘𝑚/ℎ
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Figure 3: Comparison of NMSE performance between the pro-
posed estimation algorithm and other algorithms at speed 500𝑘𝑚/ℎ
(NDS V�푑 = 0.093).

(NDS V�푑 = 0.065). It can be seen from the figure that
the NMSE of different algorithms is gradually reduced with
the increase of signal to noise ratio. The OMP algorithm
has the same recovery effect as the SAMP algorithm, and
the NMSEs are the largest. The BSOMP algorithm utilizes
the common sparsity of multiple OFDM symbols and BEM
coefficients to change the position selection of single element
into vector and uses this superposition form to improve
the selection accuracy of the support set. The DCS-SOMP
algorithm and the B-SAMP algorithm further reduce the
NMSE by exploiting the common sparsity of the antennas of
the massive MIMO system. In addition, it can be found that,
after smoothing treatment, the NMSE is greatly reduced and
a very good estimation effect is achieved.

In order to strengthen the contrast, the comparison at
the speed of 500𝑘𝑚/ℎ (NDS V�푑 = 0.093) is shown in
Figure 3. The recovery effect similar to the NDS of 0.065 is
shown in the figure, except that the NMSE of all algorithms
is improved by 3 dB due to the increase of Doppler shift.
After these comparisons, it can be found that the B-SAMP
algorithm can reduce the error by about 5 dB compared with
the original SAMP algorithm using the block search support
set, and the smooth processing can further reduce the NMSE
by 5 dB.

After this part, we can conclude that the B-SAMP
algorithm using the spatiotemporal common sparsity of the
channel to improve the original SAMP algorithm can greatly
improve the estimation accuracy, and the algorithm has good
adaptive adjustment capability because it achieves the same
effect as the DCS-SOMP algorithm with known sparsity.
In addition, the smoothing process using the piecewise

linear approximation model further improves the estimation
accuracy.

5.2. NMSE Comparison of Pilots Placement Schemes. The
equally spaced pilot scheme was used in this paper. In order
to prove that the equally spaced placement can achieve good
estimation results, we compare the equal interval placement
scheme with the optimal placement scheme based on DSO.

The optimal placement scheme is to find a location
index that minimizes the 𝜇(Φ) value, which can makes
the measurement matrix have good orthogonality, and the
estimated support set is very accurate. Figure 4 compares
the NMSE performance of two placement schemes, where
the proposed B-SAMP algorithm and the smoothed B-SAMP
algorithm are used. We can find that the two pilot schemes
have very similar performance.

It is mentioned that the equispaced pattern reaches
𝜇(Φ) = 0.99, and the estimation effect is extremely
poor in [21], because the number of pilot sequence sam-
ples is too small to make the measurement matrix have
good orthogonality under single antenna system. In this
paper, the distribution of the phase 𝜃�휅,�푚 is more uniformly
with the increase of antennas number, which can make
the measurement matrix achieve better orthogonal effect.
The equally spaced pilot scheme can be applied more
widely in the communication protocol due to its regular
distribution.

5.3. NMSE versus Number of Antennas. The NMSE perfor-
mance comparison of different algorithms with the number
of antennas k is shown in Figure 5. In the comparison,
the fixed parameters are used: SNR=30dB, v=350km/h, and
G=190. The total pilot overhead reaches 2(𝑄 − 1)𝐺/𝑁 ≈
23.2%, and the important reason for the high pilot over-
head is the existence of guard pilots. The comparison is
to observe the change of NMSE with the increase of the
number of supporting antennas when the number of pilots is
fixed.

We can find that the NMSEs of the OMP algorithm and
the SAMP algorithm rise rapidly with the increase of the
number of antennas, and the NMSE of the BSOMP algorithm
also appears similar to them. However, the B-SAMP algo-
rithmand theDCS-SOMPalgorithmchange relatively slowly.
This is because the estimation model becomes a block sparse
form in theB-SAMPalgorithmby using the common sparsity
of the spatial. The sparse block becomes larger as the number
of antennas increases, so that the accuracy of the estimation
does not decrease rapidly.

We can also find the channel information obtained by the
B-SAMP algorithm, and the NMSE will be further reduced
after smoothing. In the case of the same pilot overhead, the
NMSE of the smoothed B-SAMP algorithm at 20 antennas
are consistent with the B-SAMP algorithm at 10 antennas.
We can conclude that the improved algorithms and methods
can support channel estimation of more antennas under the
same conditions, that is, reduce the pilot overhead when the
number of antennas is constant.
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Figure 4: NMSE performance comparison of the equally spaced pilot scheme and the optimal placement scheme.
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Figure 5:TheNMSE performance versus the number of antennas k
with SNR=30dB and v=350km/h.

6. Conclusions

In this paper, we use CE-BEM and proposed CS-based chan-
nel estimation scheme to complete DS channel estimation for
massive MIMO systems. The ICI-free model is obtained by
using the proposed equally placed pilot group scheme, and
theB-SAMPalgorithm is proposed by using the spatiotempo-
ral common sparsity of the channel. Simulation results show

that channel estimation using the proposed equally placed
pilot group scheme and theB-SAMPalgorithmachieves good
estimation results. Compared with the existing DS channel
estimation scheme, the proposed equally placed pilot group
scheme has lower computational complexity and can meet
the requirements of the measurement matrix; moreover the
B-SAMP algorithm has good adaptive adjustment capability
and stable estimation effects. In addition, the proposed
channel estimation scheme can be easily implemented in
practical systems.
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