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When telecommunication infrastructure is damaged by natural disasters, creating a network that can handle voice channels can be
vital for search and rescuemissions. Unmanned Aerial Vehicles (UAV) equipped withWiFi access points could be rapidly deployed
to provide wireless coverage to ground users. This WiFi access network can in turn be used to provide a reliable communication
service to be used in search and rescue missions. We formulate a new problem for UAVs optimal deployment which considers not
only WiFi coverage but also the mac sublayer (i.e., quality of service). Our goal is to dispatch the minimum number of UAVs for
provisioning a WiFi network that enables reliable VoIP communications in disaster scenarios. Among valid solutions, we choose
the one that minimizes energy expenditure at the user’s WiFi interface card in order to extend ground user’s smartphone battery
life as much as possible. Solutions are found using well-known heuristics such as K-means clusterization and genetic algorithms.
Via numerical results, we show that the IEEE 802.11 standard revision has a decisive impact on the number of UAVs required to
cover large areas, and that the user’s average energy expenditure (attributable to communications) can be reduced by limiting the
maximum altitude for drones or by increasing the VoIP speech quality.

1. Introduction

The use of UAVs in natural disasters has become popular in
recent years [1, 2]. During the critical first 72 hours, UAVs can
be used for tasks such as situational awareness [3], deploying
communication systems [4–6], or search and rescue (SAR)
missions [7]. In this work, we aim to dispatch UAVs to deploy
a reliable communication system that can be used in SAR
missions.

There aremany aspects to consider in the communication
that takes place during SAR missions. In [8] the authors
identify the main building blocks (e.g., commanding, survey-
ing, relaying, etc.) and its communication requirements in
terms of tolerance to delay, jitter and minimum throughput.
Such requirements should be carefully considered when
selecting wireless link technologies for either UAV-to-UAV
or UAV-to-Infrastructure communication [9]. Similarly, in
[10] the authors identify requirements for a flexible, secure,
robust, and QoS-aware emergency response communication
system, analyzing current wireless technologies (e.g., WiFi,
WiMAX, cellular, TETRA, and Satellite) in the light of their

capability to carry voice, video, and push-to-talk emergency
communications. In the aforementioned works however,
the fitness criteria are based on link properties such as
throughput, delay or coverage versus the requirements of
a single communication. Nevertheless, QoS performance in
shared access networks such as WiFi does not only depend
on signal coverage but also on the traffic generated/consumed
by ground users sharing the medium, and if speech quality
degrades, the communication service cannot be used. Unfor-
tunately, this fact is frequently overlooked.

In this work we take a first step into the problem of
deploying a UAV-aided WiFi network that can support real-
time communications in SAR missions such as the one
illustrated in Figure 1. We consider a reference SAR commu-
nication service composed of a QoS-guaranteed bidirectional
voice channel for each ground user as well as a broadcast
audio channel for announcements. Then, we define a new
optimization problem for the deployment of a set of UAVs-
mounted Access Points (APs) which consists of finding the
minimum number of UAVs (and their position) to provide
the aforementioned communication service to a set of known
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Figure 1: Reliable communication service scenario.

ground targets. Among alternative solutions (i.e., same num-
ber of UAVs but in different positions) we choose the one
that exhibits the lowest energy expenditure in the network
interface card (NIC) of terminals so ground usersmay extend
their battery life. To the best of our knowledge, a similar
problem has never been considered before. Note that we
assume that the performance of the WiFi access network (see
Figure 1) is critical for the feasibility of the QoS-guaranteed
service while UAV-to-UAV or UAV-to-Infrastructure does
not significantly impair QoS, or its impact can be added to
our model as a constant extra delay and/or loss. Therefore,
the scope of this paper is restricted to the IEEE 802.11 access
network to be deployed.

Our optimization problem could be directly applied to
cover known areas (e.g., meeting points or facilities) when the
number of users is known or to provide service to semistatic
ground users. Besides, we also analyze the limits of the
applicability of this problem when ground users are moving.

The contributions and originality of this paper are as
follows:

(i) We mathematically formulate a new optimal drone
location problem that considers coverage, quality of
service, and energy expenditure attributable to the
communication.

(ii) We provide a mathematical model to predict speech
quality for a set of heterogeneous VoIP traffic sources
and for different IEEE 802.11 standard amendments.

(iii) We propose a mathematical model to predict energy
expenditure for a set of users and for different IEEE
802.11 standard amendments.

(iv) We provide a preliminary analysis of the applicability
of our problem to ground users on the move.

The findings of this paper can be useful not only for
deploying a communication network, but also as a first step
in the field ofmedia coverage (audio), which is an unexplored
area of application in disaster management according to [1].

2. Related Works

The deployment of standalone communication systems in
disaster scenarios is not new [1]. UAVs-aided wireless
communication systems have been previously proposed to
provide ubiquitous coverage (e.g., off-load of existing Base
Stations, or functional replacement of damaged ones [4, 9]),
relaying by interconnecting groups of distant users [11], or to

disseminate or collect information to/from ground terminals
[12, 13]. All previous applications can be useful in disaster
scenarios. However, the comparison of existing proposals is
difficult as each one sets the focus on different aspects of
the communication system (e.g., networking schemes and
architectures [10, 14, 15], network formation in UAV-to-UAV
communication [16], use of hybrid networks with various
wireless link technologies [10, 17]) and, generally, does not
specify the traffic generated by users, or else such traffic is not
voice or video [15].

Most works addressing the optimization of UAV deploy-
ment seek to find the minimum number of UAVs required
to provide signal coverage (i.e., received signal strength) to a
set of ground users at known positions [18, 19] disregarding
the traffic generated by ground users. In some cases, the opti-
mization problem seeks to cover all users while minimizing
the energy expenditure in the UAV as a result of propulsion
[20] or the communication [21].

UAV-mounted IEEE 802.11 Access Points (APs) have
also been explored in the past [8, 22–25]. A comprehensive
summary of the challenges and implications of the various
IEEE 802.11 amendments in long-range outdoorWiFi deploy-
ments can be found in [25]. Studies, however, only analyze
the performance of IEEE 802.11 links in terms of delay,
jitter, or throughput achievable by one traffic flow. While
results confirm the technical feasibility of deploying an UAV-
aided WiFi network for real-time voice communications,
they have a common weakness: only one communication
flow is considered, disregarding the negative effect of the
traffic generated/consumed by WiFi users in the network
performance. Moreover, it is well known [26] that there is an
upper bound in the number of simultaneous conversations
that each AP can take so the speech quality perceived by VoIP
users is acceptable. For this reason, deploying aWiFi network
usable in SAR missions should consider this restriction in
the number and position of UAVs deployed. However, to the
best of our knowledge, no previous work has taken this into
consideration before.

3. Guaranteed QoS VoIP Service and Energy
Expenditure in WiFi Networks

Speech quality perceived by users largely depends on end-
to-end delay and packet loss experienced by VoIP packets,
which is related to the performance of the WiFi network.
This relation has been investigated over the last decades in its
own research field [26–28] but its findings have been seldom
applied to AP positioning. This section elaborates on the
implications of WiFi network performance in both speech
quality and NIC energy expenditure experienced by ground
users in our context.

Speech quality can be estimated at the planning stage
by using the E-Model [29], which provides a quality score
termed 𝑅 factor (0-100). It is generally agreed that conver-
sations are acceptable when its 𝑅 factor is above a threshold
(𝑅min), commonly 𝑅𝑚𝑖𝑛 = 65. In its simplest form, 𝑅 can be
expressed as [30]

𝑅 = 94.2 − 𝐼𝑑 − 𝐼𝑒,𝑒𝑓𝑓 (1)
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Figure 2: Traffic in the VoWiFi system.

Table 1: 802.11 sensitivity relations for OFDMmodulations with 20 MHz channels.

Modulation Coding rate Data rate Sensitivity
(Mb/s) (dBm)

BPSK 1/2 6 -82
BPSK 3/4 9 -81
QPSK 1/2 12 -79
QPSK 3/4 18 -77
16-QAM 1/2 24 -74
16-QAM 3/4 36 -70
64-QAM 2/3 48 -66
64-QAM 3/4 54 -65

where, for now, it suffices to know that 𝐼𝑑 represents all
impairments due to delay and 𝐼𝑒,𝑒𝑓𝑓 is a factor that accounts
for the impairments caused by low bit-rate coding and packet
loss [31]. Both delay and packet loss are certainly affected by
the performance of the IEEE 802.11 access network.

Figure 2 illustrates a system composed of a set of IEEE
802.11 stations associated with one UAV-mounted AP. Each
station is represented by its physical layer and its medium
access control (MAC) sublayer. While all stations share a
common MAC protocol, each user station auto-configure
its Modulation and Coding Schema (MCS) according to the
Received Signal Strength Indicator (RSSI) from the AP. An
example of different MCSs defined for OFDM modulations
(e.g., 802.11a/g) is shown in Table 1. Thus, depending on the
received signal power, each user terminal will auto-configure
its MCS to the greatest bit-rate possible.

At the application level, this work assumes that each
ground user handles two real-time VoIP communication
channels: one downlink broadcast audio channel to listen
to announces from the rescue team and one bidirectional
channel for a regular conversation. We assume that the
broadcast traffic is always sent at the lowest bit-rate possible.

In this scenario, it is well known that VoIP speech quality
is mainly determined by the delay and loss experienced at
the AP’s downlink transmission buffer [26], which in turn
depends on the speech codec used by the VoIP application

and the number of simultaneous calls at a given moment
(i.e., traffic load). Some studies quantify this effect and
determine the maximum number of conversations that can
be simultaneously held so that delay and/or loss in the AP
does not exceed a certain threshold. For example, in [26] it
was found that a maximum of 15 calls for 64kb/s CBR traffic,
or 38 calls for VBR VoIP traffic, can be held for IEEE 802.11b.

Thus, UAV placement will be strongly influenced by
the maximum number of simultaneous calls that each AP
can take so that minimum level of speech quality is met.
However, finding this number is a complex task which falls
into the WiFi QoS research field. There is a plethora of
analytical models of the IEEE 802.11 mac behaviour [32–35].
In most models, the central variable is the probability that an
observed station attempts to transmit in a random time slot
(𝜏). However, different models apply different assumptions
to derive their analytical expression for 𝜏. In this paper, the
following assumptions are made:

(i) Heterogeneous traffic sources (users may have differ-
ent physical data bit-rate according to their received
signal strength).

(ii) Nonsaturated stations (transmission buffer could be
empty).

(iii) Noisy channel (packets can be corrupted due to
channel noise).
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Regarding the energy consumption attributable to the
wireless card of IEEE 802.11 stations, one could break it
down into the time spent on each possible power state (e.g.,
transmission, reception, idle) as

𝐸 = 𝜌𝑡𝑥 ⋅ 𝑇𝑡𝑥 + 𝜌𝑟𝑥 ⋅ 𝑇𝑟𝑥 + 𝜌𝑖𝑑𝑙𝑒 ⋅ 𝑇𝑖𝑑𝑙𝑒 (2)

where 𝑇𝑡𝑥, 𝑇𝑟𝑥, and 𝑇𝑖𝑑𝑙𝑒 stand for the time spent by the
network interface on transmission, reception, and idle states
and 𝜌𝑡𝑥, 𝜌𝑟𝑥, and 𝜌𝑖𝑑𝑙𝑒 stand for the power consumption of
network interface during those states (the WiFi standard
offers the possibility of using Power Saving Mode (PSM),
which would add a new factor 𝜌𝑠𝑙𝑒𝑒𝑝 ⋅ 𝜌𝑠𝑙𝑒𝑒𝑝, namely, sleep
mode. Nevertheless, time traffic such as VoIP rarely uses the
original PSM mode because it can introduce extra delays,
so in this work it will not be considered.). According to
[36], the average NIC consumption attributable to the VoIP
application is 0.15W.

Clearly, aspects like retransmissions due to noise or
collisions, or the MCS used by a station have a great influence
in 𝑇𝑡𝑥, 𝑇𝑟𝑥, and 𝑇𝑖𝑑𝑙𝑒. For instance, the station’s data bit-rate
(which depends on its MCS) will determine the duration of
the transmission or reception of a packet. So we can conclude
that the distance between drones and users (the greater
distance the lower data rate) and the traffic supported by the
WiFi network (which again depends on 𝜏) will influence the
NIC energy consumption.

Then, the following two aspects are distinctive of ourUAV
placement problem:

(i) Each AP can only cover as many users as a minimum
guaranteed speech quality level allows to (i.e., 𝑅 >𝑅min).

(ii) From solutions with the same number of UAVs, the
one that exhibits the lowest average power consump-
tion will be preferred.

4. Problem Statement

In the scenario illustrated in Figure 1, we want to deploy a set
of drones to create a WiFi access network that can be used
to provide the service described in Section 1. The following
assumptions are made for the sake of tractability:

(i) The position of ground targets (i.e., users confined in
a known area) is known.

(ii) Users have a smartphone running an app which han-
dles the VoIP communications described previously
using a known codec.

(iii) Channelisation betweenAPs is done in such amanner
that interferences are negligible.

4.1. Terminology. We discretize the flying zone as illustrated
in Figure 3. The setP represents the set of 3D coordinates of
each edge of the grid (i.e., potential locations of a drone).The
following terms and definitionswill be used for the remainder
of this paper:

(i) Users are denoted by the setU = {1, 2, . . . , 𝑈} and at
known locations given by {𝑤𝑘 | 𝑘 ∈ U}, where 𝑤𝑘 ∈
R3 represents the 3D coordinates of user 𝑘. There are𝑈 = 12 ground users illustrated in Figure 3.

Figure 3: UAVs placement scenario.

(ii) Drones are denoted by the set D = {1, 2, . . . , 𝐷} and
at known locations given by the set X = {𝑥𝑖 | 𝑖 ∈
D,𝑥𝑖 ∈ P}, where 𝑥𝑖 represents the 3D coordinates
of drone 𝑖. There are𝐷 = 3 drones in Figure 3.

(iii) C(𝑖) ⊂ U represents the set of users associated with
the AP installed at drone 𝑖 ∈ D. Figure 3 illustrates
the sets C(1), C(2), and C(3) with 4, 1, and 7 users,
respectively.

(iv) Let 𝛿𝑖𝑗 be 1 if user 𝑖 ∈ C(𝑗) and 0 otherwise.Then,𝐶 =∑𝐷
𝑗=1∑𝑈

𝑖=1 𝛿𝑖𝑗 = ∑𝐷
𝑖=1 |C(𝑖)| is the number of ground

users associated with the WiFi network (𝐶 = 12 = 𝑈
in Figure 3).

(v) 𝑅(𝑖) represents the speech quality level for the users
associated with the AP at drone 𝑖 ∈ D.

(vi) 𝐸𝑖𝑗 represents the average energy consumption per
second of the WiFi network card installed at user 𝑖’s
terminal when it is associated with drone 𝑗 ∈ D.

(vii) 𝐸(𝑗) represents the NIC average energy consumption
of stations associated with the AP at drone 𝑗. Then𝐸(𝑗) = ∑𝑈

𝑖=1 𝐸𝑖𝑗𝛿𝑖𝑗/|C(𝑗)|.
4.2. Problem Definition. Our goal is to minimize the number
of drones deployed to provide service to ground users and,
among solutions with the same number of drones, minimize
the NICs average power consumption attributable to VoWiFi.
This can be formulated as

min
X

𝐷 + 1𝐷
𝐷∑
𝑖=1

𝐸 (𝑖)𝐸max

subject to
𝐷∑
𝑗=1

𝑈∑
𝑖=1

𝛿𝑖𝑗 = 𝑈
𝑅 (𝑖) ≥ Rmin, ∀𝑖 ∈ D

𝑥𝑖 ∈ P, ∀𝑖 ∈ D

𝐷 ≤ 𝐷max

(3)

where 𝐷 represents the number of drones (which is
bounded by 𝐷max), 𝐸max is a constant that represents the
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maximumNIC energy consumption possible (i.e., a station in
the highest consumption state, e.g., transmission), and 𝐸(𝑖) is
the average NIC energy consumption of stations associated
with drone 𝑖. The constant 𝑅min represents the minimum
acceptable speech quality (e.g., 65). Observe that the objective
function is composed of a principal part (number of UAVs,
which is an integer between 1 and 𝐷max, and a subordinated
one (which is < 1), so its integer part always indicates the
minimum number of UAVs that meet all constraints.

By minimizing the number of drones launched, the
deployment cost is reduced. Besides, choosing the config-
uration that minimizes the average energy expenditure in
stations also benefits the SAR mission as it prolongs the
battery life of ground users’ terminals.

5. Solving by Exhaustive Search

The objective function can be evaluated for all edges of the
grid P with one drone (𝐷 = 1), if no solution is found,
the number of drones will be increased (𝐷 = 2) and every
possible combination of positions {𝑥1,𝑥2 | 𝑥1 ∈ P, 𝑥2 ∈
P, 𝑥1 ̸= 𝑥2} will be evaluated, and so on, until an optimal
solution is found or a maximum number of UAVs is reached
(𝐷max).

Algorithm 1 indicates the main steps followed. The input
of the algorithm is the set of ground users and their location,
the set of edges P, 𝐷max, and the level of speech quality
required 𝑅min. For an incremental number of drones (𝐷),
all possible combinations of UAVs locations X are checked.
Firstly, the number of users associated with each drone in the
WiFi network is evaluated. If the first constraint is met, the
QoS constraint is assessed (considering the lowest 𝑅 among
all UAVs). If both constraints are met, a potential solution
is found and the objective function is evaluated. Among
potential solutions with the same value of𝐷, the one with the
lowest objective function is selected.The algorithm ends after
finding the optimal solution, or after trying unsuccessfully
with 𝐷max drones. The output is the set of optimal UAVs
locations and the value of the objective function. A null
location will be returned if no solution is found.

Next, we elaborate on the functions used for the assess-
ment of signal coverage, speech quality, and power consump-
tion.

5.1. Signal Coverage Evaluation: Associate(). A WiFi station
requires Signal to Noise Ratio (SNR) and RSSI to be above
minimum levels to properly demodulate the signal from an
AP. In case of multiple APs (i.e., 𝐷 > 1), a station associates
to the one with greatest RSSI.

Let 𝑅𝑆𝑆𝐼𝑖𝑗 be the power received by user 𝑖 located at 𝑤𝑖
from the UAV 𝑗 located at 𝑥𝑗. We assume an open area and
Line of Sight. Althoughmore complex path lossmodels could
be used (e.g., [37]) we use a free space propagation model:

RSSI𝑖𝑗 = 𝑃𝑇𝑋 + 147,55 + 𝐺𝑖𝑗 − 𝑛 ⋅ 10 log10 (󵄩󵄩󵄩󵄩󵄩𝑤𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩)
− 20 log10 (𝑓) (4)

𝐺𝑖𝑗 = 10 log10 (10𝐺max/20 ⋅ cos2 𝜃𝑖𝑗) (5)

Input: U, {𝑤𝑘},P,𝐷max, 𝑅min
Output: L (location), 𝑜𝑓min (obj. function)
Initialization:𝐷 = 0,L = ⌀,𝑜𝑓min = 𝐷max + 1

(1) while (L = ⌀ or 𝐷 ≤ 𝐷max) do
(2) 𝐷++; // increase UAVs

(3) for 𝑥 ∈ X do
(4) for 𝑗 = 1 to 𝐷 do(5) 𝐶(𝑗) = associate(U,{𝑤𝑘},X);
(6) end
(7) if ∑𝐷

𝑖=1 |C(𝑖)| == 𝑈 then
/∗ first constaint met ∗/

(8) for 𝑗 = 1 to 𝐷 do
(9) 𝑅(𝑗)=QoSEval(C(𝑗),𝑥𝑗);
(10) 𝐸(𝑗)=EnergyEval(C(𝑗),𝑥𝑗);
(11) end
(12) 𝑅 = min

𝑘=1..𝐷
{R(𝑘)};

(13) if 𝑅 ≥ 𝑅min then
/∗ candidate solution ∗/

(14) of = 𝐷 + 1𝐷
𝐷∑
𝑖=1

𝐸(𝑖)𝐸max
;

(15) if 𝑜𝑓 < 𝑜𝑓min then
(16) ofmin = of;
(17) L = X;
(18) end
(19) end
(20) end
(21) end
(22) end

Algorithm 1: Exhaustive search algorithm.

where 𝑃𝑇𝑋 (dBm) stands for the power delivered by the
transmitter antennas; 𝐺𝑖𝑗 represents the gain of the antenna
between user 𝑖 and UAV 𝑗 as indicated in (5); 𝑛 is the
propagation exponent (e.g., approximately 3.3 in outdoor);‖𝑤𝑖 − 𝑥𝑗‖ is the Euclidean distance between user 𝑖 and drone𝑗; 𝑓 (hertz) is the channel frequency. In (5), 𝜃𝑖𝑗 (radians)
accounts for the elevation angle between user’s position 𝑤

𝑖

and UAV’s position 𝑥𝑗 and 𝐺max is a constant indicating the
maximum power.

Given RSSI𝑖𝑗, the Signal to Noise Ratio (SNR𝑖𝑗)(dB) can
be readily obtained by subtracting the receiver’s noise figure
(𝑁𝐹) and thermal noise (𝑁) as indicated in (6) and (7).

SNR𝑖𝑗 = RSSI𝑖𝑗 − 𝑁𝐹 − 𝑁 (6)

𝑁 = −174 + 10 log10 (𝐶𝐵𝑊) (7)

where𝐶𝐵𝑊 is signal bandwidth as specified by the IEEE 802.11
standard in use.

For all 𝑖 ∈ U and for all 𝑗 ∈ D, let us define 𝛾𝑖𝑗 as
a Boolean variable that represents whether user 𝑖 satisfies
minimum thresholds SNR𝑖𝑗 ≥ SNRmin and RSSI𝑖𝑗 ≥ RSSImin
with respect to UAV 𝑗 or not. Then, the function associate()
returns, for a specific UAV 𝑘, the set of users that meet
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minimum thresholds and whose RSSI with drone 𝑘 is greater
than with any other drone:

C (𝑘) = {𝑖 ∈ U | 𝛾𝑖𝑘 = 1, RSSI𝑖𝑘 > RSSI𝑖𝑗 ∀𝑗 ̸= 𝑘} (8)

5.2. VoWiFi Service QoS Evaluation: QoS.eval(). This func-
tion uses an analytical model to estimate the delay and packet
loss experienced by the set of users associated with a specific
AP. This is then used as input to the E-Model to assess the
speech quality level of the set of users associated with a
particular UAV.

Remember from Section 3 that each user will be execut-
ing an app which handles a broadcast VoIP traffic flow (for
announcements) and a bidirectional VoIP conversation. Traf-
fic from all users will be aggregated in the AP-mounted UAV
to which users are associated which will act as transparent
bridge. Each station is autoconfigured with a specific MCS
which determines its data bit-rate and bit error rate (BER).
This is illustrated in Figure 4.

All stations are assumed to run the same Distributed
Coordination Function (DCF) of the 802.11 MAC sublayer,
which uses CSMA/CA (Carrier Sense Multiple Access with
Collision Avoidance) for medium access control. In summary
CSMA/CA works as follows: each contending station must
sense the medium during a period of time in order to
ensure that it is idle before transmission. If the channel
is busy, the station waits a random backoff interval before
trying again. The backoff process is based on the Binary
Exponential algorithm. Time is discretized by defining a time
slot duration, and the algorithm picks a random number of
time slots between 0 and 2𝑖𝑊𝑜, where 𝑊𝑜 accounts for the
minimum contention window value, and 𝑖 increases by one
in each failed attempt up to a ceiling 𝑚. After a maximum
number of retransmissions is reached (𝑀), the packet is
discarded.

5.2.1. Delay and Packet Loss Estimation. The set of stations
in C(𝑘) and its AP (see Figure 4) constitute a system whose
performance has been largely studied in scientific literature
[38–41]. We have used a mix of different analytical models
from [32–35] suited for the conditions assumed in Section 3:
heterogeneous traffic sources, stations are nonsaturated, and

noisy channel. For the sake of clarity, we keep this section as
simple as possible using a homogeneous notation. However,
the reader is encouraged to readmore elaborated information
in the corresponding references.

The probability that an observed station attempts to
transmit in a randomly chosen time slot (𝜏) can be modelled
as in [32]:

𝜏 = 1𝜂 11 − 𝑞 ( 𝑟2𝑊𝑜(1 − 𝑝) (1 − (1 − 𝑟)𝑊𝑜) − 𝑞𝑟 (1 − 𝑝)) (9)

𝜂 = (1 − 𝑟) + 𝑟2𝑊𝑜 (𝑊𝑜 + 1)2 (1 − (1 − 𝑟)𝑊𝑜)
+ 𝑊𝑜 + 12 (1 − 𝑞) ( 𝑟2𝑞𝑊𝑜1 − (1 − 𝑟)𝑊𝑜 + 𝑟𝑝 (1 − 𝑞)
− 𝑟𝑞 (1 − 𝑝)2) + 𝑝2 (1 − 𝑞) (1 − 𝑝) ( 𝑟2𝑊𝑜1 − (1 − 𝑟)𝑊𝑜
+ 𝑞𝑟 (1 − 𝑝)2)(2𝑊𝑜

1 − 𝑝 − 𝑝 (2𝑝)𝑚−11 − 2𝑝 + 1)

(10)

where 𝜂 is defined in (10), 𝑞 is the probability of having at
least one packet queued at the transmission buffer after an
average MAC service time, 𝑝 is the probability that a packet
suffers any transmission errors, and 𝑟 is the probability that
at least one packet arrives during an idle state. Assuming
nonsaturated stations and Poisson packet arrivals to the
queue (with rate 𝜆), 𝑟 and 𝑞 can be expressed as

𝑟 = 1 − 𝑒−𝜆𝐸[𝑇] (11)

𝑞 = 1 − 𝑒−𝜆𝐸[𝑇]𝐸[𝐵] (12)

where𝐸[𝑇] represents the expected average slot duration and𝐸[𝐵] is expected average number of backoff slots that a packet
waits before transmission. Due to its complexity, a closed-
form of 𝐸[𝑇] is deduced in Appendix A. 𝐸[𝐵] can, however,
be expressed as in [35]:

𝐸 [𝐵] = 𝑊𝑜2 (1 − 𝑝) (1 − 𝑝 − (2𝑝)
𝑚

(1 − 2𝑝) − 2𝑚𝑝𝑀+1) (13)

Let 𝜏(𝑗), 𝑟(𝑗), 𝑞(𝑗), 𝐸[𝐵(𝑗)] and 𝜆(𝑗) denote 𝜏, 𝑟, 𝑞, 𝐸[𝐵] and𝜆 for the station 𝑗 in the system under consideration (i.e.,
ground users and AP such as in Figure 4), where 𝑗 refers
to either one user station 𝑗 = {1, 2, ..|C(𝑘)|}, or the AP
(𝑗 = |C(𝑘)| + 1 = 𝐴𝑃). Let 𝑝(𝑗) be the probability of packet
transmission error 𝑝 for station 𝑗. Then, 𝑝(𝑗) can be broken
down as

𝑝(𝑗) = (1 − 𝑃(𝑗)𝑖 ) + FER(𝑗) − (1 − 𝑃(𝑗)𝑖 ) ⋅ FER(𝑗) (14)

where 𝑃(𝑗)𝑖 accounts for the probability that the j-th station
finds the channel idle and FER(𝑗) stands for the Frame Error
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Rate due to channel noise. The probability of finding the
channel idle can be further expressed as

𝑃(𝑗)𝑖 = 𝑆∏
𝑖=1,𝑖 ̸=𝑗

(1 − 𝜏(𝑖)) (15)

where 𝑆 stands for the number of stations in the system,
including the AP (i.e., |C(𝑘)| + 1).

Assuming that frames have a constant size of 𝐿 bits (𝐿 =
preamble + header + data), it is possible to obtain the FER of
station 𝑗 as

FER(𝑗) = 1 − (1 − BER(𝑗))𝐿 (16)

where BER(𝑗) represents the bit error rate of station 𝑗, which
can be readily calculated (see BER equations in [42] and [43]
for DSS and OFDM modulations respectively) if one knows
user’s modulation (i.e., MCS𝑗).

Finally, solving the nonlinear equation system, the packet
loss of station 𝑗 can be expressed as

PL(𝑗) = 1 − (1 − FER(𝑗)) 𝜏(𝑗)∏𝑆
𝑖=1,𝑖 ̸=𝑗 (1 − 𝜏(𝑖))𝜆(𝑗)𝐸 [𝑇] (17)

Since we assume a very small buffer size, the queueing
delay can be neglected and the only delay component will be
the channel access delay. Then, the delay of a station 𝑗 can be
expressed as

DEL(𝑗) = 𝐸 [𝐵(𝑗)] 𝐸 [𝑇] (18)

As justified in [26], the AP (𝑗 = 𝐴𝑃) is the most saturated
station, leading the packet loss and delay in the system
(observe that the AP is also part of the system and its MCS
and FER change dynamically according to its communication
partner. Our approach is to consider average values of its data
bit-rate and FER.).Thus, we can take its packet loss and delay
as representative of the worst case. Then, the output of this
step is

PL = PL(𝐴𝑃) (19)

DEL = DEL(𝐴𝑃) (20)

5.2.2. Speech Quality Estimation. As stated in Section 3, the
E-Model rates the conversation quality 𝑅 factor, which can
be calculated using (1) [44], whose terms were

(i) 𝐼𝑒,𝑒𝑓𝑓 is the effective impairment equipment parame-
ter, which is a combination between the impairment
equipment parameter at zero packet loss (𝐼𝑒), and a
function of 𝐼𝑒 that is dependent onpacket loss rate and
packet loss behaviour. It can be expressed as

𝐼𝑒,𝑒𝑓𝑓 = 𝐼𝑒 + (95 − 𝐼𝑒) 𝑃𝑝𝑙𝑃𝑝𝑙/BurstR + 𝐵𝑝𝑙 (21)

where 𝐼𝑒 is a codec-dependent constant associated
with codec compression degradation (a list of values
from ITU-T codecs were presented in ITUT-T Rec.
G.113 Appendix I), 𝑃𝑝𝑙 represents the packet loss rate,
BurstR accounts for the burst ratio (i.e., equals 1 if
packet loss if random and greater otherwise), and 𝐵𝑝𝑙

represents the codec packet loss robustness, which
also has a specific value for each codec (listed in ITU-
T Rec. G117 Appendix I).

(ii) 𝐼𝑑 accounts for all impairments due to delay of
communication chain. Awidely accepted approxima-
tion for 𝐼𝑑 can be obtained from one-way delay in
communication path (𝑑) as follows:
𝐼𝑑 = 0.024𝑑 + 0.11 (𝑑 − 177.3)𝐻 (𝑑 − 177.3) (22)

where 𝐻 is the heavy side function (i.e., 𝐻(𝑥) = 0
for 𝑥 < 0 and 𝐻(𝑥) = 1 for 𝑥 > 0). This shows that
in practical terms, small delays (e.g. <100 ms) can be
disregarded.

In this paper we will use the G.711 codec (𝐼𝑒 = 0), with
BurstR = 1 and 𝐵𝑝𝑙 = 25.1. So, assuming that 𝑃𝑝𝑙 = PL (from
Eq. (19)) and𝑑 = DEL (fromEq. (20)) + 20ms (from theVoIP
codec packetization), 𝑅 for the set of users associated with a
drone can be expressed (the 20 ms of packetization delay are
included) as

𝑅 = 93.72 − 95 PL
PL + 25.1

− [0.024DEL
+ 0.11 (DEL − 157.3)𝐻 (DEL − 157.3)] (23)

5.3. Energy at Terminals: EnergyEval(). As stated in Section 3
the energy consumption depends on how long the NIC
spends on each one of the possible energy states (TX, RX or
IDLE) as shown in (2). Considering all disjoint events that
can happen during a slot, the energy consumption at the NIC
of station 𝑗 can be further decomposed as

𝐸 [𝐽(𝑗)] = 𝐽(𝑗)𝜎 𝑃𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟
idle interval

+ 𝐽(𝑗)𝑡𝑥,𝑠𝑃(𝑗)𝑡𝑥,𝑠 + 𝐽(𝑗)𝑡𝑥,𝑒𝑃(𝑗)𝑡𝑥,𝑒 + 𝐽(𝑗)𝑡𝑥,𝑐𝑃(𝑗)𝑡𝑥,𝑐⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
tranmission interval

+ 𝐽(𝑗)𝑟𝑥,𝑠𝑃(𝑗)𝑟𝑥,𝑠 + 𝐽(𝑗)𝑟𝑥,𝑒𝑃(𝑗)𝑟𝑥,𝑒 + 𝐽(𝑗)𝑟𝑥,𝑐𝑃(𝑗)𝑟𝑥,𝑐⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
reception interval

+ 𝐽(𝑗)𝑜,𝑠𝑃(𝑗)𝑜,𝑠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
other stations

(24)

where 𝐽(𝑗)𝑡𝑥,𝑠, 𝐽(𝑗)𝑡𝑥,𝑒, and 𝐽(𝑗)𝑡𝑥,𝑐 represent the expected energy
consumption during a successful, erroneous, or collided
transmission, respectively, 𝐽(𝑗)𝑟𝑥,𝑠, 𝐽(𝑗)𝑟𝑥,𝑒, and 𝐽(𝑗)𝑟𝑥,𝑐 represent the
expected energy consumptionduring a successful, erroneous,
or collided reception respectively, and 𝐽(𝑗)𝑜,𝑠 represents the
expected energy consumption when listening to a packet
successfully sent to other station. The terms 𝑃(𝑗)𝑡𝑥,𝑠, 𝑃(𝑗)𝑡𝑥,𝑒, 𝑃(𝑗)𝑡𝑥,𝑐,𝑃(𝑗)𝑟𝑥,𝑠, 𝑃(𝑗)𝑟𝑥,𝑒, 𝑃(𝑗)𝑟𝑥,𝑐, 𝑃(𝑗)𝑜,𝑠 indicate the probability of such events
during a time slot (𝐸[𝑇]). Finally, 𝐽(𝑗)𝜎 represents the energy
spent during an idle interval (i.e., none of the other events
happened) and 𝑃𝑖 is the probability of that.

As an example, let us analyze the first factor of (24): 𝐽(𝑗)𝜎

and 𝑃𝑖. The expected energy consumption during an idle
interval of duration 𝜎 will be

𝐽𝜎 = 𝜌𝑖𝑑𝑙𝑒 ⋅ 𝜎 (25)
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Table 2: Solution obtained versus simulation.

Drone (𝑖) 𝑥𝑖 𝐶(𝑖)
Algorithm / Simulation𝑅(𝑖)[1 - 100] 𝐸(𝑖)𝐸max

1 (20, 20, 20) 11 86 / 87 0.10 / 0.09
2 (30, 70, 20) 11 85 / 87 0.11 / 0.10
3 (80, 30, 20) 15 80 / 83 0.12 / 0.11
4 (80, 80, 20) 13 83 / 85 0.11 / 0.10

Table 3: Example solution input parameters.

IEEE Standard Scenario Traffic Constraints
Revision 802.11n Users 50 Call length 180 s RSSImin -82 dBm
GI 800 ns Size 100 m × 100 m VoIP codec G.711 SNRmin 20 dB
Preamble Greenfield X-Y step 10 m On/Off times CBR Rmin 65
Bandwidth 20 MHz Altitude layers {20, 30}m Packet interval 20 ms
Retries (𝑀) 7 Prop. Exponent 3.3 Broadcast channels 1

and the probability that stations do not transmit in an interval
is

𝑃𝑖 = 𝑆∏
𝑗=1

(1 − 𝜏(𝑗)) (26)

A detailed expression of the remainder factors in (24) is
deduced in Appendix B.

Given that 𝐸[𝐽(𝑗)] is the expected energy consumption
for each slot, it is possible to carry out the average energy
consumption per second of station 𝑗 as

𝐸𝑗 = 𝐸 [𝐽(𝑗)]
𝐸 [𝑇] (27)

Then, the average energy consumption per second of all
ground user stations that belong toC(𝑘) will be

𝐸 = ∑𝑖∈C(𝑘) 𝐸𝑖|C (𝑘)| (28)

which is the output of this function.

6. Example Solution

This section introduces a first example of the results obtained
after implementing Algorithm 1 in Matlab�. The scenario
includes 50 users randomly distributed among an area of 100
m × 100m.The X-Y step used was 10m.The parameters used
are listed in Table 3 . The consumption values for 𝜌𝑡𝑥, 𝜌𝑟𝑥,
and 𝜌𝑖𝑑𝑙𝑒 were 2.5, 0.9, and 0.11, respectively. Unless otherwise
specified, such parameters are common to all experiments in
this paper.

Figure 5 provides a graphical representation of the solu-
tion obtained, showing users’ distribution among UAVs by
color. In this case, 4 drones were necessary to service ground
users with the standard IEEE 802.11n.

The solution obtained with our exhaustive search algo-
rithm has been used as input scenario to the network
simulator ns-3 in order to validate the IEEE 802.11 analytical

4

3

100 100

2

90 9080 8070 7060 60

y (m) x (m)

50 5040 40

1

30 3020 2010 100 0

Drone
Associated users

0

10

20

30
z (

m
)

Figure 5: Solution obtained.

model provided in Section 5.2. The ns-3 model YansWifiPhy
with a transmission buffer size of one packet has been used
in simulation. Table 2 summarizes the results obtained,
comparing R and the normalized energy expenditure from
our analytical models with that of the simulation. Results
presented are the average of 30 runs.

Looking at Table 2 one can see acceptable differences in
the output of the E-Model, which suggests that the methods
and models proposed in Section 5.2 are accurate enough.

While exhaustive search always finds the optimal solu-
tion, it exhibits poor scalability since assessing 𝐷 drones
requires to evaluate ∑𝐷

𝑑=1 ( |P|
𝑑
) possibilities (e.g., ∼ 7 ⋅ 107

points in the scenario under consideration). For that reason,
exhaustive search is not always feasible and heuristic search
methods are commonly used as a general way to find a (semi)
optimal solution.

7. Heuristic Solutions

Genetic algorithms (GAs) have demonstrated consider-
able success in providing good solutions to a wide vari-
ety of optimization problems, including UAVs deployment
[45, 46]. Other metaheuristic methods, including particle
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Input: U, {𝑤𝑘},P,𝐷max, 𝑅min
Output: L (location), 𝑜𝑓min (obj. function)
Initialization: 𝐷 = 1,L = ⌀

(1) while (L = ⌀ or 𝐷 ≤ 𝐷max) do
(2) L, of = GAsearch(D, {𝑤𝑘}, Rmin);

/∗ call GA ∗/
(3) 𝐷++;
(4) end

Algorithm 2: Heuristic search pseudocode.

swarms optimization, artificial immune system, and sim-
ulated annealing, can be used instead or in hybridization
with GAs. However, we opt for using GAs for the sake of
simplicity since the performance obtained (which is analyzed
in the following subsection) is fair enough for the purpose of
providing a numerical analysis of our new problem which is
our main contribution.

We propose a heuristic search method that replaces lines(2)-(21) in Algorithm 1 by a function call (GAsearch) that
runs a genetic algorithm to find the optimal solution for a
specific number of drones 𝐷 as shown in Algorithm 2. 𝐷 is
increased until a valid solution is found up to a maximum
value of 𝐷max drones.

7.1. Genetic Algorithm:GAsearch(). Wehave used theMatlab�
R2017AGlobal Optimization Toolbox, whose main operators
are defined in [47].The basic concepts and steps followed are
detailed bellow.

7.1.1. Individuals. An individual is defined as a possible
solution to the problem.Thus, each individual is a location of𝐷 dronesX = {𝑥1,𝑥2, . . . ,𝑥𝐷 | 𝑥𝑖 ∈ P, 𝑖 ∈ D, 𝑥𝑖 ̸= 𝑥𝑗|∀𝑗 ̸=𝑖},
where 𝑥𝑖 ∈ P represents the 3D coordinates of drone 𝑖. For
example, for 𝐷 = 2, an individual {𝑥1,𝑥2} is composed by a
sequence of genes (e.g., {𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2}).
7.1.2. AlgorithmSteps. Themain steps followed by ourGAcan
be summarized as follows:

(1) An initial population is generated.
(2) Each individual from the generation is evaluated and

ranked by assessing a raw fitness score (e.g., objective
function of the problem (3)).

(3) Some individuals are selected to be parents according
to their position in the ranking.

(4) A new generation is created as follows:

(i) A 5% of the new individuals are a copy of the top
5%of the previous generation (elite individuals).

(ii) Of the remaining individuals:
(a) 80% is created by Crossover-and-Mutation

(CM) combining the genes of two selected
parents (crossover) and applying a muta-
tion to these new individuals with a very
low probability 𝑝𝐶𝑀𝑚 .

(b) 20% is created by an operation of mutation
of some parents (termed self-reproduction
andmutation, SRM)with probability𝑝𝑆𝑅𝑀𝑚 .

(5) The exit criteria are checked after creating the new
generation. The algorithm finishes when the lowest
raw fitness score found cannot be improved (i.e.,
lowered) after 50 consecutive generations by at least10−3. If this condition is not met, go to step (2).
However, if within the first 𝑀𝐴𝑋𝐺 generations no
individual meets problem constraints, the algorithm
returns L = ⌀ to indicate that no solutions can be
found with that number of drones.

For example, for a population size of 200 individuals, each
generation would be composed of 10 elite individuals (5%),
152 individuals formed by CM, and 38 individuals formed
by SRM. Although this differs slightly from the traditional
sequential application of operations done by the canonical
GA, it improves convergence according to [48, 49].

7.1.3. Initial Population. An initial population of𝑝 individuals
is created. Experimentally, we found that a population size of𝑝 = 200 individuals provides results that cannot be improved
in the scenarios tested.

According to [50], choosing an initial population which
is not completely random, but containing individuals prone
to be fit, improves the performance of the GA. For this
reason, we use the k-means clusterization method illustrated
in Figure 6. In particular, inside an area similar to the grid X-
Y dimensions, 𝑈 points—which represent 2D user locations
from the set {𝑤𝑘 | 𝑘 ∈ U}—are taken as input to create𝐷 clusters so that the mean distance from each point to its
cluster centroid is minimized. Once the k-means method is
applied, we add to each 2D centroid the average altitude (i.e.,
vertical axis) of the grid, obtaining a set of 3D centroids. The
first individual of the initial population will locate its drones
in the grid edges closest to these centroids.

The other (𝑝 − 1) individuals of the initial population
are created by distributing each individual’s drones randomly
among the spatial regions created around each centroid. In
particular, we define cubes with a volume equal to the d-th
part of the grid volume. Observe that since the centroid of
each cube was determined by k-means clusterization, there
could be overlapping regions or regions out of the grid
bounds such as those illustrated (in 2D) in Figure 6. Note that
drones are always located at grid edges.

To guarantee convergence to the optimal, after creating
the initial population, these spatial regions are no longer
taken into consideration for next generations. This implies
that genes carried by individuals from next generations could
be any edge ∈ P without any restriction.

7.1.4. Operators. The following operators have been used:

(1) Evaluation and ranking: each individual is assigned a
raw fitness score by assessing the problem objective
function as detailled in Appendix C. Since the genetic
algorithm is called to search for solutions with 𝐷
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Table 4: Heuristics validation input parameters.

IEEE Standard Scenario Traffic Constraints
Revision 802.11n Users {10, . . . , 40} Call length 180 s RSSImin -82 dBm
GI 800 ns Size 50 m × 50 m VoIP codec G.711 SNRmin 20 dB
Preamble Greenfield X-Y step 1 m On/Off times CBR Rmin 65
Bandwidth 20 MHz Altitude layers 20 m Packet interval 20 ms
Retries 7 Prop. Exponent 3.3 Broadcast channels 1

+
+

++

+ centroid
ground user
area for UAV positioning

y

x

Figure 6: Example of 2D spatial regions where drones of initial
population are confined (𝐷 = 4).

drones, individuals that do not meet the problem
constraints are assigned a higher score by adding a
penalty (a number between 1 and 2, according to
the ratio of ground users that meet QoS constraints)
to the value of their objective function. Individuals
are then sorted according to their raw fitness score.
Finally, if an individual is in the 𝑛 position in the rank-
ing, it is assigned a new scored termed expectation
value of 1/√𝑛.

(2) Parents Selection: we use a stochastic uniform selec-
tion process among individuals according to their
expectation value. In our case, 342 parents (152 ×2 CM + 38 SRM) are selected for crossover and/or
mutation operations. Therefore, individuals in the top
positions are chosen multiple times to be parents.

(3) Crossover: the crossover operator combines the char-
acteristics of two parents to create a new individual.
We use a uniform crossover operation by generating a
randombinary vectorwhich determines for each gene
of the child whether it comes from one parent or the
other.

(4) Mutation:We apply an exchange-type uniform muta-
tion that consists of changing one gene of an individ-
ual with a given probability (𝑝𝐶𝑀𝑚 for those individuals
generated after crossover, or 𝑝𝑆𝑅𝑀𝑚 for parents) for
a random coordinate within the grid edges (we set𝑝𝑆𝑅𝑀𝑚 = 1/(3 ⋅ 𝐷) and 𝑝𝐶𝑀𝑚 = 1/2 ⋅ 𝑝𝑆𝑅𝑀𝑚 ).

7.2. Heuristics Performance. This section validates the heuris-
tic method proposed above in terms of accuracy and conver-
gence speed. To do so, we propose a series of experiments
using the parameters listed in Table 4. The number of users
has been increased from 10 to 40 in a fixed area of 50 m× 50 m and as a result, the number of required drones has
also increased. Each experiment has been repeated 30 times
(users’ position is generated randomly on each run). Results
shown represent averaged values.

7.2.1. Quality of the Solutions. The optimal solution found
with our heuristic method is compared with that from
exhaustive search and from simply applying the k-means
clusterization method (i.e., the first individual in our initial
population). Table 5 shows for each method the number of
drones 𝐷, the average energy consumption at the stations as𝐸, and the value of the problem objective function. Results
also include the standard deviation between parentheses
when greater than 10−2. It can be observed that, while
results obtained with our heuristic method are very close
to the optimal ones (i.e., provided by exhaustive search),
the k-means clusterization method always overestimates the
number of required drones.

Results have been extended from 50 to 150 ground users
for our heuristic method and k-means but not for the exhaus-
tive search one (such extension poses a computational burden
too high for exhaustive search method with the grid under
consideration. For example, for𝐷 = 3 and |P| = 2 500 edges,
more than 15⋅109 possible UAV location combinations would
have to be evaluated). Figure 7 plots the value of the objective
function in our extended comparison. Results suggest that
the number of drones obtained with our heuristics tends to
grow linearly with the density of users in the scenario under
consideration, outperforming the solutions found with k-
means in the studied cases. Observe that since the energy
term in (3) is normalized and typically small, the objective
function value is almost entirely determined by the number
of drones (which explains the steps in the plot).

7.2.2. Convergence Speed and Complexity. The number of
generations until our heuristic algorithm finds the solution
is plotted in Figure 8. Notice that if no individual satisfies the
problem constraints during𝑀𝐴𝑋𝐺 consecutive generations,
the number of drones 𝐷 is increased and the GAsearch
procedure is called again (this value was determined exper-
imentally: initially, we tried 𝑀𝐴𝑋𝐺 = 200 generations in
an scenario of 10 000 m with 1 m X-Y steps but, since
solutions were always found during the first five generations,
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Table 5: Comparison of exhaustive, heuristic, and k-means.

U 10 20 30 40

exhaustive
𝐷 1 1 2 2𝐸 0.24 0.34 0.28 0.33𝑜𝑓 1.10 1.14 2.12 2.13

genetic
𝐷 1 1 2 2𝐸 0.24 0.34 0.29 0.33𝑜𝑓 1.10 1.14 2.12 2.13

k-means
𝐷 3 (0.62) 4 (0.88) 5 (0.96) 5 (1.07)𝐸 0.17 (0.01) 0.20 (0.02) 0.21 (0.02) 0.22 (0.02)𝑜𝑓 3.47 (0.62) 4.38 (0.87) 5.18 (0.95) 5.49 (1.06)
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Figure 7: Comparing heuristics, exhaustive search, and clusteriza-
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Figure 8: Generations evaluated until exit criteria are met.

we decided to reduce it to 50.). Results show that the best
individual is always found within the first five generations in
all scenarios tested.This explains that solutionswith𝐷 drones
(see Figures 7 and 8) commonly require evaluating around∼ 50𝐷 generations (see our exit criteria).

The fast convergence speed obtained can be explained as
follows:

(i) Both the initial population selection based on apply-
ing k-means and the large population size (𝑝 = 200)

create a first generation of individuals prone to be
excellent candidates.

(ii) The number of grid edges (|P|) (which depends
on the discretization step and the terrain size) also
impacts on convergence speed. Observe that the
number of grid edges that belong to each cluster
(i.e., |P|/𝐷) is not too large when compared to the
population size 𝑝. In general, scenarios with a greater
number of grid edges would need a larger population
to attain fast convergence.

In terms of computational complexity, the most demand-
ing procedure in our heuristic method is the assessment of
the raw fitness score (see Appendix C), whose computation
time can be expressed as𝑂(𝑈 ⋅ 𝐷). However, if one considers
that 𝐷 is upper bounded by the constant 𝐷max and that the
number of evaluations of the fitness function is also upper
bounded in our heuristic, then the computational complexity
of our heuristic method would be 𝑂(𝑈) (if the upper limit
of 𝐷 was not bounded by the problem constraint but by
the number of ground users 𝑈, then the computational
complexity would be 𝑂(𝑈3). At any rate, solutions can be
computed in polynomial time.). Figure 9 shows the execution
time obtained in the previous experiments with a computer
with 16GB RAM and CPU Intel Broadwell x86 (8 cores and
4 threads per core) at 2.2GHz. Results confirm computation
time monotonically increases with 𝑈 in less than polynomial
time for our heuristicmethod.The exhaustive searchmethod,
however, shows a stepped rise in computation time when the
number of drones in the solution is increased from 1 to 2 at𝑈 = 30 (see Figure 7).

From the previous results it can be concluded that the
quality of the solutions found with the proposed heuristic is
acceptable and that computational complexity and computa-
tion time are also acceptable for practical purposes.

8. Numerical Results

In this section we provide a numerical analysis using the
heuristics proposed in Section 7. All results shown represent
the average value after repeating each scenario 30 times (each
time the user disposition was random). We set the focus
on three different aspects: the impact of the IEEE 802.11
standard in use in the number of UAVs used, the energy
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Figure 9: CPU execution time obtained for the methods used.

Table 6: IEEE 802.11 revisions considered.

Frequency Channel Bandwidth Revision

2.4 GHz
20 MHz 802.11g
20 MHz 802.11n
40 MHz

5 GHz 20 MHz 802.11ac
80 MHz

consumption and its dependence of traffic load, and the
impact of speech quality and grid bounds constraints in the
energy consumption of ground users.

8.1. Influence of the IEEE 802.11 Standard Revision. In this
section, we compare the performance of the widely adopted
IEEE 802.11 g/n/ac standard amendments with the configura-
tion listed in Table 6. In particular we would like to find out
if certain amendments are more fit than others for the two
following scenarios of application:

(i) Low user density scenario: for a fixed number of users
(𝑈 = 100) we change the terrain size from 100 to
10 000 m2, obtaining a range of user sparsity from 1
to 100 m2/user. In this type of scenarios the number
of UAVs required is expected to increase mainly due
to the signal coverage requirement.

(ii) High user density scenario, (sparsity ≤ 1m2/user): in a
small area of 25 m2 we change the number of users
from 25 to 100 which yields a user sparsity range from
1 to 0.25 m2/user. In these circumstances the number
of drones required is mainly determined by the need
to satisfy the Speech Quality constraint (𝑅min).

Results are shown in Figures 10(a) and 10(b). In the low
user density, large area scenario (Figure 10(a)), it can be
observed that those standard revisions using the 2.4GHz
band (g and n) outperform (for large areas) the revision ac
which uses 5GHz as a result of lower path loss. Regarding
the small scenario with high-density shown in Figure 10(b),
no significant differences can be observed among different
revisions.

8.2. NIC Energy Consumption. We study how the area size
and user density impact on the average energy consumption
of ground users. In our study we define two terrain sizes of
10 m × 10 m and 100 m × 100 m (100 m2 and 10 000 m2

respectively), changing the number of ground users from 10
to 100 in steps of 10. The energy is expected to increase with
the number of users associated per drone (i.e., |C(𝑘)|) as a
result of an increment in collisions.

Results shown in Figure 11 represent the average energy
consumption of ground users and the UAV altitude from all
drones. The following points can be made after examining
these results:

(i) In the small size scenario, at some points the number
of users increase but the average energy decreases
(e.g., between 20 and 30 users in Figure 11(b)) which
seems anti-intuitive. This is attributable to an incre-
ment in the number of UAVs (see Figure 11(a)), which
is consistent with our hypothesis since the number of
users associated with each AP decreases due to the
increment in the number of UAVs.

(ii) Ground users in the smaller size terrain exhibit
higher energy expenditure than those in the bigger
size up to a number of 60 users. This can also be
explained as a result of less drones being deployed
and a higher number of users associated with each
drone, and therefore more traffic load per drone is
generated.

(iii) Both curves get slightly inverted after 70 users. In this
case the number of deployed UAVs is the same in
both scenarios, so energy consumption in both cases
tend to be more similar although a little higher in the
bigger terrain. This can be explained looking at the
average drone altitude in Figure 11(c). The larger area
producesUAVs in higher altitude to provide coverage.
As a consequence, path loss is higher and more users
receive aweaker signal, setting aMCS that sets a lower
data bit-rate, which translates into more transmission
time.

8.3. Relation between Energy and Constraints: 𝑅min and
Grid Bounds. We would like to show how the minimum
speech quality (𝑅min) and the maximum height of the grid
(ℎmax) used in the problem have a direct impact in the
energy consumption of ground users. We perform a different
experiment for each constraint:

(i) Limited altitude scenario: we create a large area
(10 000 m2) with a range ground users from 10 to
100 and limit the maximum altitude of the grid to
(ℎmax = {10, 25, 40} meters). In this scenario it
is expected that the low upper bound results into
more UAVs in the solutions and, in turn, less users
per drone which should translate into less energy
consumption.

(ii) Higher speech quality scenario: we create a small
area of 100 m2 with a range of ground users from 10
to 100 so that coverage is not demanding. Then we
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(b) High user density, small area scenario

Figure 10: Comparison of various revisions of standard IEEE 802.11.

0

2

4

6

8

ob
je

ct
iv

e f
un

ct
io

n

40 60 80 10020
U

100Ｇ
2

10000Ｇ
2

(a) Objective function

0.1

0.2

0.3

0.4

0.5

E 
(W

)

40 60 80 10020
U

100Ｇ
2

10000Ｇ
2

(b) Average energy consumption

av
g.

 al
tit

ud
e (

m
)

30

20

10

40

40 60 80 10020
U

100Ｇ
2

10000Ｇ
2

(c) Average UAV altitude

Figure 11: Energy consumption analysis.

solve our deployment problem for different values of
the speech quality constraint (𝑅min = {70, 75, 80}).
It is expected that higher quality turns into more
UAVs and consequently, as previously stated, should
translate into less energy consumption.

The results obtained in both scenarios are shown in
Figures 12 and 13 respectively. Results suggest that our
rationale is confirmed: the greater maximum height is, the
less UAVs are launched and as a consequence the energy
expenditure in ground user stations tends to decrease. The
same logic applies to decreasing the minimum speech quality𝑅min. Choosing one or the other constraint to regulate
the energy consumption has various implications. Limiting
the altitude in the grid bound will be more effective in
large areas where users are disperse, while increasing the
minimum speech quality will have more impact in scenarios
with higher density of ground users. However, note than
choosing very strict bounds (i.e., too high quality or too low
altitude) can severely overestimate the number of UAVs to be
deployed.

9. Discussion of the applicability to
SAR Missions and Open Issues

As stated in Section 1, this work is a first step into the
provision of a WiFi network that enables a reliable com-
munication service for SAR missions. The problem defined
in Equation (3) is aimed at solving the initial deployment
of UAVs, but it can also be applied to provide service to
ground users gathered in specific areas such as meeting
points or rescue areas, or in situations when ground users
remain semistatic (e.g., users are conducted to remain still
by the communication broadcast channel). In this section we
provide a brief analysis of its applicability when ground users
are moving and identify key issues to be addressed in further
research.

9.1. Conditions for the Validity of the Solutions. Given a
solution obtained at time 𝑡1, the conditions for its validity in𝑡2 (being 𝑡1 < 𝑡2) are

(i) 𝐶𝑖(𝑡1) = 𝐶𝑖(𝑡2), ∀𝑖 ∈ D (i.e., wireless clients do not
change their AP)
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Figure 12: Experiment: limited altitude scenario.
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Figure 13: Experiment: higher speech quality scenario.

(ii) 𝑅𝑆𝑆𝐼𝑖𝑗(𝑡1) ≤ 𝑅𝑆𝑆𝐼𝑖𝑗(𝑡2), ∀𝑖, ∀𝑗 ∈ U (i.e., ground
station’s data rate, energy, and speech quality are not
negatively affected)

When ground users can freely move the previous conditions
are unlikely to be satisfied after a while. In such case, a new
solution search has to be carried out, arising new issues to be
discussed next.

9.2. Preliminary Analysis of the Applicability When Users Are
Moving. Assuming that ground users can be tracked, their
position could be periodically checked in a process such as
the one illustrated in Figure 14 where 𝑇 represents the period
between consecutive observations (an alternative scheme to
Figure 14 is to ignore validity conditions and recalculate new
solutions every𝑇 seconds.). In such process, the following key
points have to be considered:

(i) The observation period (𝑇): it should be set according
to how ground users are expected tomove (e.g., speed
and direction). Note that the difference between the
theoretical set of user locations {𝑤𝑘} at the beginning

of each observation period and the actual position of
ground users at the end of such period will likely grow
with 𝑇. As such, long values of 𝑇 will produce less
accurate speech quality prediction and higher chances
of not satisfying the validity conditions. Although
in Figure 14 we assume that 𝑇 is long enough to
relocate UAVs, its strict lower bound simply requires𝑇 ≥ 𝑇sol, where 𝑇sol stands for the time required
to compute a new solution. Obviously, the shorter
computation delay the better, which in turn depends
on the computational resources available aswell as the
heuristic method used to find solutions (our heuristic
method can be sped up in various ways and other
alternative heuristics could also be explored).

(ii) Relocating UAVs: relocating drones may result in
transient periods where the problem constraints are
not met for some users. The actual strategy for
UAVs displacement constitutes a problem itself that
deserves further analysis as it should minimize not
only the relocation delay (e.g., see [51]) but also ser-
vice disruption to ground users. For example, initial



Wireless Communications and Mobile Computing 15

3T2TT0 UAVs deployed

solution computation time

compute new solution

initial
deployment

check validity
conditions
(pass)

check validity
conditions
(fail)

UAVs deployment time

check validity
conditions
(pass)

UAVs relocated

time

Figure 14: Continuous process for the provision of the communication service.

strategies could include minimizing the sum of all
UAVs displacements, the longest UAV displacement,
or the number of users affected by service outages.

(iii) Problem objective function: after the previous dis-
cussion it seems reasonable to define a new problem
targeted to the relocation of UAVs during service
provision.This new problem could be an extension of
the one defined in this paper but including a cost that
accounts periods of disrupted communication, which
allows one to balance the pros and cons of relocating
UAVs. For example, it may be reasonable to keep the
last solution as long as the problem constraints are
satisfied if the new solution implies a transient period
where some users lose their connectivity.

For illustrative purposes and as a prospective exercise, we
have performed the following experiment: using the scenario
and parameters shown in Table 4 we have placed users who
move according to a correlated random walk model (each
ground user moves at a walking speed of 5.3 km/h with a
probability of 0.8 and, in such case, the direction remains
unchanged with probability 0.8. Users rotate 180 degrees
when they reach the area bounds.). Then, we perform an off-
line computation (i.e., 𝑇sol = 0) of the optimal solution every𝑇 seconds. Algorithm 2 is used for the initial deployment and
the number of drones deployed𝐷 remains unchanged for the
remainder of the simulation (30 min). When recalculating
new solutions we simply get the best solution possible with𝐷
drones found by our GA (even though problem constraints
were not satisfied). With every new solution, drones are
relocated (considering a speed of 60 Km/h) so that the sum
of the distances travelled by all drones is the minimum
possible. Every five seconds the position of ground users
is sampled and the problem constraints (i.e., coverage and
speech quality) are verified. For each user, we define a service
disruption event when the speech quality constraint is not
satisfied for two consecutive samples.

Figure 15(a) shows the percentage of the simulation time
(i.e., 30 minutes) that a ground user on average experiences
a service free of disruption events. As expected, results show
that longer observation periods provide worse performance,
obtaining uneventful service during more than 90% of the
time for 𝑇 ≤ 60 seconds. In our simulations, the longest
distance ever travelled by any drone was always shorter than

20meters, which results in amaximum relocation delay of 1.2
seconds.

A final experiment was done similar to the previous one
but launching one extra drone (𝐷 + 1) in the initial deploy-
ment (i.e., one extra iteration in the loop in Algorithm 2).The
results obtained are plotted in Figure 15(b) and suggest that
launching more drones than strictly necessary (𝐷 + 1 in our
case) can be an effective method to avoid service degradation
during transient periods.

10. Conclusions and Further Work

In this paper we have addressed the problem of UAVs
deployment to provide a reliable emergency communication
service usable in SAR missions. We have formulated a new
problem suited for the initial deployment of UAVs which can
also be applied to provide service to ground users gathered
in specific areas such as meeting points or rescue areas or
in situations when ground users remain semistatic. We have
also analyzed the limits of its applicability to moving users.
Our optimization problem minimizes the number of drones
required to provide a reliable communication service. Among
equivalent solutionswe choose the one thatminimizes energy
expenditure at ground user’s stations due to communication.
Optimal solutions are found using well-knownmetaheuristic
such as GA since exhaustive search is not generally feasible
due to its high computational complexity.

Numerical results suggest large area scenarios with highly
disperse users benefit from IEEE standards using 2.4 GHz
and the lowest bandwidth possible, as less drones will be
needed to provide the service.The average number of ground
users associated with each UAV will also have impact in
the energy consumption and, therefore, in the ground users
battery life. For that reason, problem constraints such as the
maximum altitude allowed to UAVs or the minimum speech
quality required can be used to increase energy expenditure
at ground user stations.

A number of open issues linked to users’ mobility have
been pointed for further research. In addition to including
the cost of relocating drones, other optimization problems
can also be studied in the context of SARmissions (e.g., opti-
mizing drones’ energy expenditure, maximizing the number
of covered users given a fixed number of drones, etc.).
Relocation strategies should also be explored, considering not
only the minimization of the deployment delay but also the
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(a) Launching𝐷 drones using the optimal solution
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(b) Launching optimal solution plus one extra drone

Figure 15: Experiment: percentage of time with uneventful communication per average user.

number of users affected and the level of degradation of the
service.

Appendix

A. Expected Time per Slot: 𝐸[𝑇]
The expected time per slot represents the expected length of
each state of the Markov chain modelling the IEEE 802.11
system. To come up with a closed-form expression of 𝐸[𝑇],
we follow the approach presented in [34], which considers the
probability of being on each of the following states:

(i) Idle state, when nobody attempts to transmit.
(ii) Success state, when only a single station attempts to

transmit with no channel related errors.
(iii) Error state, when a single station attempts to transmit

but channel errors occur.
(iv) Collision state, when more than one station attempts

to transmit simultaneously (same slot).

Consequently, we can obtain 𝐸[𝑇] by weighting the time
spent on each state as shown in (A.1).

𝐸 [𝑇] = 𝑇𝐼 + 𝑇𝑆 + 𝑇𝐸 + 𝑇𝐶 (A.1)

In the previous equation, 𝑇𝐼 can be calculated as follows:

𝑇𝐼 = 𝑃𝑖𝜎 (A.2)

where 𝜎 stands for the timeslot duration as defined in the
corresponding IEEE 802.11 revision. 𝑃𝑖 is the probability that
the channel is not busy in a randomly chosen slot, which can
be expressed as

𝑃𝑖 = 𝑆∏
𝑗=1

(1 − 𝜏(𝑗)) (A.3)

where 𝑆 was the number of stations in the system (including
the AP).

The time spent on successful (𝑇𝑆 ) and erroneous (𝑇𝐸) slots
in (A.1) are as follows:

𝑇𝑆 = 𝑆∑
𝑗=1

𝑃(𝑗)𝑠 (1 − FER(𝑗)) 𝑇(𝑗)𝑠 (A.4)

𝑇𝐸 = 𝑆∑
𝑗=1

𝑃(𝑗)𝑠 FER(𝑗)𝑇(𝑗)𝑒 (A.5)

where 𝑇(𝑗)𝑠 and 𝑇(𝑗)𝑒 represent the average time that sta-
tion 𝑗 spends in successful and erroneous transmissions,
respectively. Their calculus depend on the used standard and
physical data rate due to the fact that every waiting interframe
periods (DIFS, SIFS. . .) and time spent in transmission
(headers, payload, ack.) must be taken into account (note
that in the case of the access point, these times may be
averaged considering every conversation with different data
rates and/or codecs). In the previous equations, 𝑃(𝑗)𝑠 stands
for the probability that only an observed station 𝑗 attempts to
transmit while the rest remain silent, which can be expressed
as

𝑃(𝑗)𝑠 = 𝜏(𝑗) 𝑆∏
𝑘=1,𝑘≠𝑗

(1 − 𝜏(𝑘)) (A.6)

Finally, the time spent in collided transmissions is repre-
sented by 𝑇𝐶 in (A.1). Each station has an average time for
collision, 𝑇(𝑗)𝑐 , according to the time spent in an erroneous
transmission (i.e., 𝑇(𝑗)𝑐 = 𝑇(𝑗)𝑒 ). Nevertheless, when packets
sent by two different stations suffer collision, the time to
be considered corresponds with the longest average collision
time. In order to address this concern we will group stations
in traffic classes according to its 𝑇(𝑗)𝑐 (all stations belonging
to the same class have the same average collision time). We
consider𝑁𝑐 traffic classes taggedwith𝑑 ∈ {1, . . . ,𝑁𝑐} ordered
from higher to lower channel occupancy during collisions.
Hence, we define 𝐶(𝑑) as the set of stations that belongs to
class 𝑑.
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Now we can calculate the probability that at least one
station from the d-th class transmits

𝑃𝐶(𝑑)𝑡𝑥 = 1 − ∏
𝑗∈𝐶(𝑑)

(1 − 𝜏(𝑗)) (A.7)

as well as the probability that at least one station from a
higher or lower class transmits

𝑃𝐻(𝑑)𝑡𝑥 = 1 − 𝑁
𝑐∏

𝑖=𝑑+1

∏
𝑗∈𝐶(𝑖)

(1 − 𝜏(𝑗)) (A.8)

𝑃𝐿(𝑑)𝑡𝑥 = 1 − 𝑑−1∏
𝑖=1

∏
𝑗∈𝐶(𝑖)

(1 − 𝜏(𝑗)) (A.9)

Due to the fact that lower classes slow down higher ones
as a result of longer transmissions, 𝑇𝐶 can be calculated as

𝑇𝐶 = 𝑁
𝑐∑

𝑑=1

(𝑃𝐶(𝑑)𝑐 + 𝑃𝐻(𝑑)𝑐 ) 𝑇(𝑑)𝑐 (A.10)

where 𝑇(𝑑)𝑐 is the average time that any station from class 𝑑
spends on a collided transmission and 𝑃𝐶(𝑑)𝑐 represents the
probability that any collision occurs between stations from
the same class 𝑑:

𝑃𝐶(𝑑)𝑐 = (1 − 𝑃𝐻(𝑑)𝑡𝑥 ) ⋅ (1 − 𝑃𝐿(𝑑)𝑡𝑥 )
⋅ (𝑃𝐶(𝑑)𝑡𝑥 − ∑

𝑗∈𝐶(𝑑)

𝑃(𝑗)𝑠 ) , (A.11)

and 𝑃𝐻(𝑑)𝑐 accounts for the probability that class 𝑑 is involved
in a collision with at least one station from a higher class.

𝑃𝐻(𝑑)𝑐 = 𝑃𝐶(𝑑)𝑡𝑥 ⋅ 𝑃𝐻(𝑑)𝑡𝑥 ⋅ (1 − 𝑃𝐿(𝑑)𝑡𝑥 ) (A.12)

A closed-form expression of 𝐸[𝑇] is obtained with the
proper substitution of 𝑇𝐼, 𝑇𝑆, 𝑇𝐸, and 𝑇𝐶 in (A.1).

B. Expected Energy Consumption
per Slot: 𝐸[𝐽]

During a slot, different events can happenwith a certain prob-
ability each one with different energy consumption. Then it is
possible to estimate the average energy consumption during a
slot as specified in expression (24).This appendix details how
to calculate each term of such equation.

B.1. Probabilities Associated with Each Event. The channel is
idle with a probability of

𝑃𝑖 = 𝑆∏
𝑗=1

(1 − 𝜏(𝑗)) (B.1)

Probability of successful packet transmission by station 𝑗:
𝑃(𝑗)𝑡𝑥,𝑠 = (1 − FER(𝑗)) ⋅ 𝑃(𝑗)𝑠 (B.2)

where 𝑃(𝑗)𝑠 is defined in (A.6). Probability of transmitting a
corrupted packet by station 𝑗:

𝑃(𝑗)𝑡𝑥,𝑒 = FER(𝑗) ⋅ 𝑃(𝑗)𝑠
(B.3)

Probability of collision by station 𝑗
𝑃(𝑗)𝑡𝑥,𝑐 = 𝜏(𝑗) ⋅ (1 − 𝑆∏

𝑖=1,𝑖 ̸=𝑗

(1 − 𝜏(𝑖))) (B.4)

Probability of receiving a successful packet (destinated to
station 𝑗) by station 𝑗 ̸= 𝑎𝑝:

𝑃(𝑗)𝑟𝑥,𝑠 = 𝑃(𝑎𝑝)𝑡𝑥,𝑠

𝜆(𝑗)𝑟𝑥𝜆(𝑎𝑝) (B.5)

Probability of listening to a successful packet (with destina-
tion other station) by station 𝑗:

𝑃(𝑗)𝑜,𝑠 = ( 𝑆∑
𝑖=1,𝑖 ̸=𝑗

𝑃(𝑖)𝑡𝑥,𝑠) − 𝑃(𝑗)𝑟𝑥,𝑠 (B.6)

Probability of listening to a corrupted packet (to any destina-
tion) by station 𝑗:

𝑃(𝑗)𝑟𝑥,𝑒 = 𝑆∑
𝑖=1,𝑖 ̸=𝑗

𝑃(𝑖)𝑡𝑥,𝑒 (B.7)

Probability of listening to a collision (any destination) by
station 𝑗:

𝑃(𝑗)𝑟𝑥,𝑐 = 1 − 𝑃𝑖 − 𝑃(𝑗)𝑡𝑥,𝑐 − 𝑆∑
𝑖=1

𝑃(𝑖)𝑠 (B.8)

B.2. Energy Consumption Terms Associated with Each of the
Previous Events

𝐽𝜎 = 𝜌𝑖𝑑𝑙𝑒𝜎 (B.9a)

𝐽(𝑗)𝑡𝑥,𝑠 = 𝜌𝑡𝑥𝑇(𝑗)𝑡𝑥,𝑑𝑎𝑡𝑎
+ 𝜌𝑟𝑥𝑇𝑎𝑐𝑘

+ 𝜌𝑖𝑑𝑙𝑒 (SIFS + 2𝛿 +DIFS) (B.9b)

𝐽(𝑗)𝑡𝑥,𝑐 = 𝜌𝑡𝑥𝑇𝑑𝑎𝑡𝑎|𝑐 + 𝜌𝑖𝑑𝑙𝑒 (EIFS + 𝛿) (B.9c)

𝐽(𝑗)𝑡𝑥,𝑒 = 𝜌𝑡𝑥𝑇𝑑𝑎𝑡𝑎|𝑒 + 𝜌𝑖𝑑𝑙𝑒 (EIFS + 𝛿) (B.9d)

𝐽(𝑗)𝑟𝑥,𝑠 = 𝜌𝑟𝑥𝑇(𝑗)𝑟𝑥,𝑑𝑎𝑡𝑎
+ 𝜌𝑡𝑥𝑇𝑎𝑐𝑘

+ 𝜌𝑖𝑑𝑙𝑒 (SIFS + 2𝛿 +DIFS) (B.9e)

𝐽(𝑗)𝑟𝑥,𝑐 = 𝜌𝑟𝑥𝑇𝑑𝑎𝑡𝑎|𝑐 + 𝜌𝑖𝑑𝑙𝑒 (EIFS + 𝛿) (B.9f)

𝐽(𝑗)𝑟𝑥,𝑒 = 𝜌𝑟𝑥𝑇𝑑𝑎𝑡𝑎|𝑒 + 𝜌𝑖𝑑𝑙𝑒 (EIFS + 𝛿) (B.9g)

𝐽(𝑗)𝑜,𝑠 = 𝜌𝑟𝑥𝑇𝑑𝑎𝑡𝑎|𝑠 + 𝜌𝑟𝑥𝑇𝑎𝑐𝑘
+ 𝜌𝑖𝑑𝑙𝑒 (SIFS + 2𝛿 +DIFS) (B.9h)
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where

𝑇(𝑗)𝑡𝑥,𝑑𝑎𝑡𝑎 = PLCP + (𝐿(𝑗)ℎ𝑒𝑎𝑑𝑒𝑟 + 𝐿(𝑗)𝑑𝑎𝑡𝑎)𝑅(𝑗)
𝑏

(B.10a)

𝑇(𝑗)
𝑟𝑥,𝑑𝑎𝑡𝑎

= 𝑇(𝑗)
𝑡𝑥,𝑑𝑎𝑡𝑎

+ 𝐵𝐶𝐻 ⋅ 𝑇(𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡)𝑡𝑥,𝑑𝑎𝑡𝑎1 + 𝐵𝐶𝐻 (B.10b)

𝑇𝑎𝑐𝑘 = PLCP + 𝐿𝑎𝑐𝑘𝑅 (B.10c)

where 𝑅𝑏 (physical data bit-rate) depends on the MCS, 𝑅
corresponds to the lowest bit-rate (MCS 0), 𝐵𝐶𝐻 represents
the number of broadcast channels, and 𝑇(𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡)

𝑡𝑥,𝑑𝑎𝑡𝑎
represents

the transmission time of data.
In the previous equations 𝜌𝑡𝑥, 𝜌𝑟𝑥, and 𝜌𝑖𝑑𝑙𝑒 represent the

power consumption on each power state in the NIC; 𝑇(𝑗)
𝑑𝑎𝑡𝑎

and 𝑇(𝑗)
𝑎𝑐𝑘

indicate the duration of the reception/transmission
of a data packet or ACK at station 𝑗; 𝑇𝑑𝑎𝑡𝑎|𝑐, 𝑇𝑑𝑎𝑡𝑎|𝑒, and𝑇𝑑𝑎𝑡𝑎|𝑠 represent the average duration of the transmission of
a data packet that has collided, suffered error, or successfully
transmitted, respectively.

𝑇𝑑𝑎𝑡𝑎|𝑠 = 1
∑𝑆
𝑗=1 𝑃(𝑗)𝑡𝑥,𝑠

⋅ 𝑆∑
𝑗=1

𝑃(𝑗)𝑡𝑥,𝑠𝑇(𝑗)𝑡𝑥,𝑑𝑎𝑡𝑎 (B.11a)

𝑇𝑑𝑎𝑡𝑎|𝑒 = 1
∑𝑆
𝑗=1 𝑃(𝑗)𝑡𝑥,𝑒

⋅ 𝑆∑
𝑗=1

𝑃(𝑗)𝑡𝑥,𝑒𝑇(𝑗)𝑡𝑥,𝑑𝑎𝑡𝑎 (B.11b)

The expression of 𝑇𝑑𝑎𝑡𝑎|𝑐 is more complex as if a collision
between two stations occurs, it must preserve the longest
duration collision time (the slowest stations negatively affect
the fastest ones). To capture this effect we take the termi-
nology from Appendix A, where 𝑑 ∈ {1, . . . , 𝑁𝑐} represents
different traffic classes in the set of stations considered.

𝑇𝑑𝑎𝑡𝑎|𝑐 = ∑𝑁
𝑐

𝑑=1
(𝑃𝐶(𝑑)𝑐 + 𝑃𝐻(𝑑)𝑐 )𝑇(𝑑)

𝑡𝑥,𝑑𝑎𝑡𝑎∑𝑁
𝑐

𝑑=1
(𝑃𝐶(𝑑)𝑐 + 𝑃𝐻(𝑑)𝑐 ) (B.11c)

C. Raw Fitness Criteria Evaluation

Algorithm 3 detaills how the raw fitness score has been
evaluated. In sum, It requires solving the following tasks:

(i) First, signal constraints are calculated by computing
every RSSI and SNR for each possible user-drone
association (lines (1)-(6)). Then, each user station is
associated with its best drone (lines (7)-(15)).

(ii) The set of stations is created for each drone (i.e., each
drone mounts an AP and consequently forms its own
network) (line (18)).

(iii) The performance for each IEEE 802.11 network is
evaluated by solving the nonlinear equation system
iteratively (lines (22)-(36)). The output is the quality
factor 𝑅 and the average energy consumption 𝐸.

Input: U,D, {𝑤𝑖}, {𝑥𝑘}
Initialization: 𝑓fitness = 𝐷 + 2
Output: 𝑓fitness

(1) for 𝑖 = 1 to 𝑈 do
(2) for 𝑗 = 1 to 𝐷 do
(3) solve RSSI𝑖,𝑗 ; // Eq. (4)
(4) solve SNR𝑖,𝑗; // Eq. (6)
(5) end
(6) end
(7) for 𝑖 = 1 to 𝑈 do
(8) for 𝑘 = 1 to 𝐷 do
(9) if 𝑅𝑆𝑆𝐼𝑖,𝑘 ≥ 𝑅𝑆𝑆𝐼min and𝑆𝑁𝑅𝑖,𝑘 ≥ 𝑆𝑁𝑅min then
(10) if 𝑅𝑆𝑆𝐼𝑖,𝑘 > 𝑅𝑆𝑆𝐼𝑖,𝑗, ∀𝑗 ̸= 𝑘

then
(11) C(𝑘) = C(𝑘) ∪ 𝑖;
(12) end
(13) end
(14) end
(15) end
(16) if ∑𝐷

𝑖=1 |C(𝑖)| = 𝑈 then
(17) for 𝑘 = 1 to 𝐷 do
(18) build set S = C(𝑘) ∪AP;
(19) for 𝑗 = 1 to |S| do
(20) solve 𝑇(𝑗)𝑠 , 𝑇(𝑗)

𝑐 , 𝑇(𝑗)
𝑒 , FER(𝑗);

(21) end
(22) 𝜏(𝑗)next = 𝑇(𝑗)

𝑐 , ∀𝑗;
(23) while 𝑑𝑖𝑓𝑓 > Δ do
(24) 𝜏(𝑗) = 𝜏(𝑗)next;
(25) solve 𝐸[𝑇]; // Appendix A
(26) for 𝑗 = 1 to |S| do
(27) sol. 𝐸[𝐵(𝑗)]; // Eq. (13)
(28) solve 𝑟(𝑗), 𝑞(𝑗);

// Eqs. (11), (12)
(29) solve 𝑝(𝑗) ; // Eq. (14)
(30) solve 𝜏(𝑗)next; // Eq. (9)
(31) end
(32) 𝑑𝑖𝑓𝑓 = max (󵄨󵄨󵄨󵄨󵄨𝜏(𝑗)next − 𝜏(𝑗)󵄨󵄨󵄨󵄨󵄨), ∀𝑗;
(33) end
(34) solve R(𝑘); // Eq. (23)
(35) solve 𝐸(𝑘); // Eq. (28)
(36) end
(37) if 𝑅(𝑘) ≥ 𝑅min, ∀𝑘 ∈ {1, . . . , 𝐷} then
(38) 𝑓fitness = 𝐷 + 1𝐷

𝐷∑
𝑘=1

𝐸(𝑘)𝐸max
;

(39) else
(40) 𝑓fitness = 𝐷 + 1 +1𝐷

𝐷∑
𝑘=1

(𝐸(𝑘)𝐸max
[R(𝑘) < Rmin]);

(41) end
(42) end

Algorithm 3: Fitness function evaluation.

(iv) Finally, raw fitness scores are calculated by applying
a fitness function which depends on the objective
function we introduced in (3) (lines (37)-(41)).
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