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Mobile communications, not infrequently, are disrupted by multipath propagation in the wireless channel. In this context, this
paper proposes a new blind concurrent equalization approach that combines a Phase Transmittance Radial Basis Function Neural
Network (PTRBFNN) and the classic Constant Modulus Algorithm (CMA) in a concurrent architecture, with a Fuzzy Controller
(FC) responsible for adapting the PTRBFNN and CMA step sizes. Differently from the Neural Network (NN) based equalizers
present in literature, the proposed Fuzzy Controller Concurrent Neural Network Equalizer (FC-CNNE) is a completely self-taught
concurrent architecture that does not need any training. The Fuzzy Controller inputs are based on the estimated mean squared
error of the equalization process and on its variation in time. The proposed solution has been evaluated over standard multipath
VHF/UHF channels defined by the International Telecommunication Union. Results show that the FC-CNNE is able to achieve
lower residual steady-stateMSE value and/or faster convergence rate and consequently lower Bit Error Rate (BER) when compared
to Constant Modulus Algorithm-Phase Transmittance Radial Basis Function Neural Network (CMA-PTRBFNN) equalizer.

1. Introduction

Digital communication over wireless channels may suffer
severe signal distortion due to occurrence of multipath along
the transmission channel. Not infrequently, nonlinearities at
the receiver analog front-end and at the transmitter high
power amplifier also impose distortions on the transmitted
and received signals. Furthermore, the effects of all these
impairments are worsened by the presence of additive white
Gaussian noise (AWGN) [1–3].

Multipath arises, perhaps, as the most relevant impair-
ment in digital wireless links [4]. Multipath propagation may
cause Intersymbol Interference (ISI) [5], compromising the
received signal intelligibility. Multipath effects are mitigated
bymeans of channel equalization techniques [6], which basi-
cally implement the deconvolution of the channel impulse
response [7].

In a general sense, channel equalizers can be divided into
two categories: blind and nonblind equalizers [8]. Nonblind

equalizers are inefficient in terms of data rate, since they
require the transmission of a training sequence known by
the receiver. In this context, blind equalizers [9] arise as an
option to avoid waste of bandwidth, as they do not require
any training sequence to achieve satisfactory convergence.
Constant Modulus Algorithm (CMA) [10] is one of the most
used algorithms for adaptive blind equalizers in Quadrature
Amplitude Modulation (QAM) [11].

Nevertheless, CMA algorithm has a drawback: a CMA
based equalizer presents moderate residual Mean Squared
Error (MSE) after convergence [4, 9]. In [9], De Castro
et al. proposed a concurrent blind channel deconvolution
algorithm to circumvent this issue. The concurrent equalizer
is composed by the CMA and by the Direct Decision (DD)
[12] algorithms operating in a concurrent architecture. This
proposed architecture increases the equalizer performance
when compared to conventional CMA [9].

In [2], a concurrent blind equalizer architecture based
on CMA algorithm and a complex Radial Basis Function
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(RBF) neural network, called Phase Transmittance Radial
Basis Function Neural Network (PTRBFNN), was presented
as CMA-PTRBFNN.This CMA-PTRBFNN treats linear and
nonlinear channels, keeping the input signal phase infor-
mation. Thus, it is able to cope with the nonlinearities that
usually occur at the transmitter power amplifier and at the
receiver analog front-end. As shown in [2], this approach is
able to reduce the residual steady-state MSE after conver-
gence even when the receiver RF front-end operates near the
upper limit of its dynamic range, situation that distorts the
received signal. Such distortion, in the demodulated signal,
usually occurs due to nonlinear transmittances at the analog
blocks of the receiver RF front-end [2, 3].

In a broad sense, adaptive blind channel equalization aims
to achieve two main goals: fast convergence rate and low
residual steady-state MSE after convergence [2, 4, 13], which,
in most cases, leads to a lower BER (Bit Error Rate), although
BER and MSE are not necessarily related [14]. Achieving
both goals is not a simple task, particularly for channels with
significant echoes and long path delays. In order to reduce
the residual steady-state MSE, a smaller adaptation step value
is required, but it will slow down the equalizer convergence
rate. On the other hand, to achieve faster convergence, a
larger adaptation step value is necessary. However, a larger
adaptation step will also result in a larger residual MSE and
possibly a higher chance of instability [15].

In [6], Das proposed a complex fuzzy system for adapting
the multi-level sigmoid function of a Decision Feedback
Equalizer (DFE). This architecture reduced the bit error rate
and presented a fast convergence rate. Hu et al. proposed
the Simplified Fuzzy Stochastic Gradient (SFGF) to improve
MSEperformance [15] with satisfactory convergence rate. For
subband adaptive channel equalization, Ng et al. proposed
the Block-based Fuzzy Step Size (BFSS) strategy for the
Normalized LeastMean Square (NLMS) algorithm.TheBFSS
updates the adaptation step over fixed time intervals in
order to reduce computational complexity without sacrificing
convergence rate and MSE performance [16]. The main
drawback of SFGF and BFSS algorithms is the necessity to
transmit a training sequence, which is used to update the
adaptation step [15, 16].

In this context, this paper proposes a blind equalization
approach that combines a Phase Transmittance Radial Basis
Function Neural Network and the classic CMA algorithm
in a concurrent architecture, with a Fuzzy Controller (FC)
responsible for adapting the PTRBFNN and CMA step sizes.
Differently from the Neural Network (NN) based equalizers
present in literature, the proposed fuzzy controlled concur-
rent equalizer, called FC-CNNE, is a completely self-taught
concurrent architecture that does not need any training. The
Fuzzy Controller inputs are based on the estimated mean
squared error of the equalization process and on its variation
in time.With the continuous adjustment of the step sizes, the
proposed approach is able to achieve lower residual steady-
state MSE, lower BER, and/or faster convergence rate, when
compared to CMA-PTRBFNN.

The remaining of this paper is organized as follows.
Section 2 briefly describes the CMA-PTRBFNN architec-
ture. In Section 3, the main contribution of this paper is
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Figure 1: Constant Modulus Algorithm-Phase Transmittance
Radial Basis FunctionNeuralNetwork (CMA-PTRBFNN)proposed
by Loss et al. [2].

presented: the proposed FC algorithm for the FC-CNNE.
In Section 4, the performance of the proposed equalizer
is presented. Simulation results of FC-CNNE are compared
to results obtained by CMA-PTRBFNN, considering several
benchmark multipath channel models. Section 5 concludes
the paper, summarizing the main ideas and results presented
in this work.

2. Constant Modulus Algorithm-Phase
Transmittance Radial Basis Function Neural
Network (CMA-PTRBFNN)

The CMA-PTRBFNN combines the CMA algorithm and a
Phase Transmittance Radial Basis Function Neural Network
[2]. Figure 1 presents the equalizer block diagram. Complex
baseband samples received from the channel are stored in
a FIFO buffer of length 𝐿 called channel regressor. Channel
regressor is here represented by u = [𝑢0 𝑢1 ⋅ ⋅ ⋅ 𝑢𝐿−1]𝑇
vector, where 𝑇 denotes the transpose operator. Both CMA
and PTRBFNN blocks receive as input the channel regressor
u.

The CMA-PTRBFNN output 𝑦[𝑛] is obtained by the
summation of CMAfilter output 𝑦𝑐[𝑛] and PTRBFNNoutput𝑦𝑃𝑇[𝑛], as shown in Figure 1, and given by

𝑦 [𝑛] = 𝑦𝑐 [𝑛] + 𝑦𝑃𝑇 [𝑛] . (1)

The CMA block output is obtained by

𝑦𝑐 [𝑛] = 𝐿−1∑
𝑙=0

V𝑙 [𝑛] 𝑢𝑙 [𝑛] , (2)

where 𝑢𝑙 is the 𝑙𝑡ℎ component of the channel regressor u and
V𝑙 is the 𝑙𝑡ℎ component of k = [V0 V1 ⋅ ⋅ ⋅ V𝐿−1]𝑇. k is the
vector that represents the CMA FIR filter coefficients, which
is adjusted by the Godard cost function [10].

The CMA coefficients update is given by

k [𝑛 + 1] = k [𝑛] + 𝑦 [𝑛] 𝜂V (𝛾 − 󵄨󵄨󵄨󵄨𝑦 [𝑛]󵄨󵄨󵄨󵄨2)u∗ [𝑛] , (3)

where ∗ is the complex conjugate operator, 𝜂V is the adapta-
tion step, and 𝛾 is the dispersion constant defined as

𝛾 = E {|𝐴|4}
E {|𝐴|2} , (4)
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Figure 2: PTRBFNN architecture proposed by Loss et al. [2].

with E{⋅} being the expectation operator and 𝐴 the set of
digital IQ symbols of the reference constellation. For example,
a 16-QAMmodulation with a unit variance alphabet has 𝛾 =1.32.

The PTRBFNN block output is obtained by

𝑦𝑃𝑇 [𝑛] = 𝐾−1∑
𝑘=0

𝑤𝑘 [𝑛]Φ𝑘 [𝑛] , (5)

with𝐾 being the number of neurons of the PTRBFNN block,
where each neuron represents a Gaussian center, as shown
in Figure 2. 𝑤𝑘 is the 𝑘𝑡ℎ component of the complex valued
synaptic weights vector w = [𝑤0 𝑤1 ⋅ ⋅ ⋅ 𝑤𝐾−1]𝑇 and Φ𝑘 is
the output of the 𝑘𝑡ℎ neuron, given by

Φ𝑘 = exp(−󵄩󵄩󵄩󵄩Re {u} − Re {Ψ𝑘}󵄩󵄩󵄩󵄩22
Re {𝜎2
𝑘
} )

+ 𝑗 exp(−󵄩󵄩󵄩󵄩Im {u} − Im {Ψ𝑘}󵄩󵄩󵄩󵄩22
Im {𝜎2
𝑘
} ) ,

(6)

where Re{⋅} and Im{⋅} are the real and imaginary oper-
ators, respectively. Ψ𝑘 is the 𝑘𝑡ℎ center vector of Ξ =
[Ψ0 Ψ1 ⋅ ⋅ ⋅ Ψ𝐾−1]𝑇 associated with the 𝑘𝑡ℎ Gaussian center
with variance 𝜎2𝑘 .

The update of the PTRBFNN block free parameters (𝑤𝑘,
Ψ𝑘, and 𝜎2𝑘) is controlled by𝐷[𝑛] function, as follows:

𝐷[𝑛] = {{{
1, 𝑄 {𝑦 [𝑛]} = 𝑄 {𝑦 [𝑛]}
0, 𝑄 {𝑦 [𝑛]} ̸= 𝑄 {𝑦 [𝑛]} , (7)

where the operator 𝑄{𝑦[𝑛]} returns the reference constel-
lation IQ symbol with smallest Euclidean distance from its
argument {⋅} and 𝑦[𝑛] is the CMA-PTRBFNN output after
update of the CMA filter coefficients k by (3). Thus, 𝑦[𝑛] is
obtained by

𝑦 [𝑛] = w𝑇 [𝑛]Φ [𝑛] + k𝑇 [𝑛 + 1]u [𝑛] . (8)

According to (7), if 𝐷[𝑛] = 1, the CMA-PTRBFNN
output 𝑦[𝑛] and its updated version 𝑦[𝑛] resulted in the same

IQ symbol. In this case, the PTRBFNN block free parameters
are updated. Otherwise, if 𝐷[𝑛] = 0, free parameters are not
updated.

The free parameters of the PTRBFNN block are updated
as follows:

Ψ𝑘 [𝑛 + 1] = Ψ𝑘 [𝑛] + 𝜂Ψ𝐷[𝑛]
⋅ (Re {Θ𝑘 [𝑛]} 𝜉𝑘 [𝑛] + Im {Θ𝑘 [𝑛]} 𝜌𝑘 [𝑛]) ,

𝜎2𝑘 [𝑛 + 1] = 𝜎2𝑘 [𝑛] + 𝜂𝜎22 𝐷 [𝑛]
⋅ (Re {𝜁𝑘 [𝑛]} 𝜉𝑘 [𝑛] + Im {𝜁𝑘 [𝑛]} 𝜌𝑘 [𝑛]) ,

w [𝑛 + 1] = w [𝑛] + 𝜂𝑤𝐷 [𝑛] 𝑒 [𝑛]Φ∗ [𝑛] ,

(9)

where 𝑒[𝑛] = 𝑄{𝑦[𝑛]} − 𝑦[𝑛] is the error signal. 𝜂Ψ, 𝜂𝜎2 ,
and 𝜂𝑤 are the adaptive steps of the center vectors Ψ𝑘,
variances 𝜎2𝑘 , and synaptic weights 𝑤𝑘, respectively. Θ𝑘, 𝜁𝑘,𝜉𝑘, and 𝜌𝑘 are auxiliary variables used in order to simplify
the PTRBFNN equations. These variables are defined by the
following relations:

Θ𝑘 [𝑛]
= Re {Φ𝑘 [𝑛]} (Re {u [𝑛]} − Re {Ψ𝑘 [𝑛]})

Re {𝜎2
𝑘 [𝑛]}

+ 𝑗 Im {Φ𝑘 [𝑛]} (Im {u [𝑛]} − Im {Ψ𝑘 [𝑛]})
Im {𝜎2
𝑘 [𝑛]} ,

(10)

𝜁𝑘 [𝑛]
= Re {Φ𝑘 [𝑛]} 󵄩󵄩󵄩󵄩Re {u [𝑛]} − Re {Ψ𝑘 [𝑛]}󵄩󵄩󵄩󵄩22(Re {𝜎2𝑘 [𝑛]})2

+ 𝑗 Im {Φ𝑘 [𝑛]} 󵄩󵄩󵄩󵄩Im {u [𝑛]} − Im {Ψ𝑘 [𝑛]}󵄩󵄩󵄩󵄩22(Im {𝜎2
𝑘 [𝑛]})2 ,

(11)

𝜉𝑘 [𝑛] = 𝑤∗𝑘 [𝑛] 𝑒 [𝑛] + 𝑤𝑘 [𝑛] 𝑒∗ [𝑛] , (12)

𝜌𝑘 [𝑛] = 𝑤∗𝑘 [𝑛] 𝑒 [𝑛] − 𝑤𝑘 [𝑛] 𝑒∗ [𝑛] . (13)

3. Blind Fuzzy Adaptation Step Control for
the Concurrent Neural Network Equalizer

In the CMA-PTRBFNN presented in Section 2, the adapta-
tion steps, i.e., 𝜂V, 𝜂Ψ, 𝜂𝜎2 , and 𝜂𝑤, are constant values. They
are defined aiming to achieve satisfactory trade-off between
fast convergence and low residual steady-state MSE.

This paper proposes a Blind Fuzzy Adaptation Step
control in order to iteratively adjust the CNNE adaptation
steps, so that an improvement of the CMA-PTRBFNN per-
formance in terms of convergence rate and/or residual mean
squared error is achieved. Blind fuzzy adaptation step control
algorithm is based on a fuzzy controller [17]. The proposed
architecture of the FC-CNNE is shown in Figure 3. Note that
it receives two input signals: 𝐸[𝑛] the estimated MSE andΔ𝐸[𝑛] the estimated MSE variation.
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Figure 3: FC-CNNE block diagram.

Table 1: Fuzzy rules base.

Estimated Estimated MSE variation Δ𝐸[𝑛]
MSE 𝐸[𝑛] LN MN SN ZE SP MP LP
VL ME ME PL PL LO LO VL
LO PH PH ME ME PL PL VL
PL HI PH PH ME PL PL VL
ME HI HI PH HI ME VL VL
PH HI HI HI VH ME VL VL
HI VH VH VH VH ME VL VL
VH VH VH VH VH HI VL VL
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Figure 4: Details of the Fuzzy controller presented in Figure 3.

The estimated MSE is computed applying a Moving
Average Filter (MAF) on the estimated instant square error|𝑒[𝑛]|2. 𝐸[𝑛] is given by

𝐸 [𝑛] = 1𝑃
𝑃−1∑
𝑝=0

󵄨󵄨󵄨󵄨𝑒 [𝑛 − 𝑝]󵄨󵄨󵄨󵄨2 , (14)

being 𝑃 the filter window length.
The variation of the MSE is defined as

Δ𝐸 [𝑛] = 𝐸 [𝑛] − 𝐸 [𝑛 − 1] . (15)

Figure 4 depicts the proposed fuzzy controller architec-
ture, which uses the Mamdani inference method [18].The FC
outputs 𝜂 = [𝜂𝑤[𝑛] 𝜂Ψ[𝑛] 𝜂𝜎2[𝑛]]𝑇 and 𝜂V[𝑛] are applied to
(3) and (9), respectively, adjusting the adaptive steps of FC-
CNNE.

Fuzzy rules were defined in seven categories of linguistic
variables, Very High (VH), High (HI), Partially High (PH),
Medium (ME), Partially Low (PL), Low (LO), and Very
Low (VL), aiming to obtain better partition of the universe

of discourse. These linguistic variables are used to describe
the fuzzifier input variable 𝐸[𝑛] and the defuzzifier output
variable 𝜂[𝑛].

For the fuzzifier input variable Δ𝐸[𝑛], another seven
categories of linguistic variables were defined: Large Positive
(LP), Medium Positive (MP), Small Positive (SP), Zero (ZE),
Small Negative (SN), Medium Negative (MN), and Large
Negative (LN).

The Fuzzy controller membership functions are com-
posed by triangular and trapezoidal distributions as can be
seen in Figure 5. All curve parameters were defined according
to a set of simulation tests and a priori knowledge about
adaptation step influence in the stochastic gradient.

Table 1 presents the fuzzy inference engine rules for the
membership functions shown in Figure 5. The fuzzy base
presented in Table 1 constructs a set of “IF...THEN” rules.
Since there are seven fuzzy sets for the inputs (Δ𝐸[𝑛] and𝐸[𝑛]) and output (𝜂[𝑛]), the number of statements is forty-
nine.

Some examples of interpretations presented in Table 1 are
listed as follows:

(i) IF 𝐸[𝑛] is VL and Δ𝐸[𝑛] is LN, THEN 𝜂[𝑛] is ME;
(ii) IF 𝐸[𝑛] is VL and Δ𝐸[𝑛] is MN, THEN 𝜂[𝑛] is ME;
(iii) ...............................................
(iv) IF 𝐸[𝑛] is VH and Δ𝐸[𝑛] is LP, THEN 𝜂[𝑛] is VL.
Fuzzy controller implication and aggregation methods

use the minimum operator. Defuzzification converts the
aggregated fuzzy value to the adaptive step using the centroid
technique, which returns the area center under the aggregated
fuzzy value.
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Figure 5: Membership Functions: (a) Input variable 𝐸[𝑛], (b) Input variable Δ𝐸[𝑛], (c) Output variable 𝜂[𝑛].
Table 2: Computational complexities.

Equalizer Multiplications Additions exp(⋅) evaluations
CMA-PTRBFNN 12𝐾𝐿 + 12𝐿 + 30𝐾 + 7 14𝐾𝐿 + 12𝐿 + 18𝐾 2𝐾
FC-CNNE 12𝐾𝐿 + 12𝐿 + 30𝐾 + 117 14𝐾𝐿 + 12𝐿 + 18𝐾 + 𝑃 + 203 2𝐾

At the 𝜂 Generator block, shown in Figure 4, the
defuzzified output 𝜂[𝑛] is converted into CMA adaptive
step 𝜂V[𝑛] and into PTRBFNN adaptive step vector 𝜂 =[𝜂𝑤[𝑛] 𝜂Ψ[𝑛] 𝜂𝜎2[𝑛]]𝑇. 𝜂V[𝑛] and 𝜂[𝑛] are applied to CMA
and PTRBFNN blocks, respectively, as shown in Figure 3 and
(3) and (9). CMA adaptation step is defined as 𝜂V[𝑛] = 𝜂[𝑛]
and PTRBFNN adaptive step vector is defined as

𝜂 [𝑛] = [𝜂𝑤 [𝑛] 𝜂Ψ [𝑛] 𝜂𝜎2 [𝑛]]𝑇
= [10𝜂 [𝑛] 100𝜂 [𝑛] 100𝜂 [𝑛]]𝑇 . (16)

Table 2 presents the CMA-PTRBFNN and the FC-CNNE
computational complexities, recalling that 𝐿 is the channel
regressor size, 𝐾 is the number of neurons, and 𝑃 is the filter
window length. Note that the FC-CNNE approach presents a
minimally higher complexity.

4. Simulation Results

The proposed blind FC-CNNE equalizer has been imple-
mented in C language. The equalizer has been evaluated with
16-QAM modulation, using an oversampling factor of two
samples per symbol. The oversampling aims to avoid the
noise enhancement effect on the equalizer performance that
occurs when the equalizer is not fractionally spaced and the
transmission channel presents zeros on the 𝑧-plane unit circle
[19].

The proposed approach has been compared to CMA-
PTRBNN presented in [2] over five VHF/UHF multipath
scenarios, the so-called Brazil channels, standardized by the
International Telecommunication Union (ITU) [20]. For the
MSE simulations, AWGN with Signal-to-Noise Ratio (SNR)
of 35 dB has been added in all evaluated scenarios. Figure 6

presents the impulse response of Brazil channels A, B, C, D,
and E for two samples per symbol, where 𝑆𝑅 is the symbol
rate.

Both CMA-PTRBNN and FC-CNNE operate under the
same conditions. Regressor size 𝐿 is made equal to the delay
spread resulting from the channel multipath scenario. The
number of neurons adopted for the neural network is 𝐾 = 5.
For both equalizers, the initialization scheme is as follows:

(i) Initialization of the CMAfilter coefficients follows the
single spike method [21];

(ii) PTRBFNN synapses vector is initialized with w[0] =
0 + j0;

(iii) The 𝐿 components of the 𝑘𝑡ℎ center Ψ𝑘[0] are initial-
ized by randomly drawing IQ symbols from the 16-
QAM reference constellation;

(iv) The 𝐾 values of 𝜎2𝑘[0] are initialized with half of the
maximum Euclidean distance among all respective
vectors Re{Ψ𝑘[0]} and Im{Ψ𝑘[0]}, with index 𝑘 =0, 1, . . . , 𝐾 − 1.

For CMA-PTRBNN, the adaptation steps are defined as𝜂V = 0.0001, 𝜂𝑤 = 0.001, 𝜂Ψ = 0.1, and 𝜂𝜎2 = 0.1. On the
other hand, adaptation steps for FC-CNNE are adjusted at
each iteration, as presented in Section 3. The performance
is measured by means of the MSE filtered by the MAF with𝑃 = 100 coefficients.

Figure 7 presents results comparison between CMA-
PTRBNN and FC-CNNE equalizers over the five multipath
scenarios defined in Figure 6.Notice that, for all five evaluated
channels, the FC-CNNE achieved better results.

For Brazil A channel (Figure 7(a)), FC-CNNE obtained
faster convergence rate and similar residual error. A MSE of
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Figure 6: Impulse responses: (a) Brazil A channel, 𝑆𝑅 = 10.5MHz, (b) Brazil B channel, 𝑆𝑅 = 10.1MHz, (c) Brazil C channel, 𝑆𝑅 = 10.7MHz,
(d) Brazil D channel, 𝑆𝑅 = 10.7MHz, and (e) Brazil E channel, 𝑆𝑅 = 10.7MHz.

0.10 is achieved after 5000 received symbols, while CMA-
PTRBNN (with fixed step) achieved a MSE of 0.12. For chan-
nels Brazil B (Figure 7(b)), Brazil C (Figure 7(c)), and Brazil E
(Figure 7(e)) the proposed equalizer obtained lower residual
MSE and faster convergence rate compared to the fixed step
algorithm. For Brazil D channel (Figure 7(d)), FC-CNNE
yielded reduced residual MSE with similar convergence rate
when compared to CMA-PTRBNN.

Figure 8 compares BER performance between CMA-
PTRBNN and FC-CNNE equalizers, over the five Brazil
channels. Through the set of results presented in Figures 7
and 8, it is possible to verify the correlation betweenMSE and
BER. Note that, for Brazil A, both equalizers present similar
residual MSE and, consequently, similar BER performance,
while for the other evaluated channels, FC-CNNE achieved a
lower residual MSE and, consequently, a lower BER.

As shown in Figure 6, Brazil D and Brazil E are the
channels that present strongest echoes among the five evalu-
ated multipath scenarios. Figure 9 presents CMA-PTRBFNN
and FC-CNNE output constellations for these two scenarios,
considering the last ten thousand IQ symbols. It is possible
to see that, for both cases, the output constellation of the
proposed equalizer presents smaller dispersion around the
IQ symbols of the reference constellation when compared
to CMA-PTRBFNN. Results for the remaining scenarios are
presented in the Appendix.

Observe that, for 16-QAM modulation, the FC-CNNE
yields a slightly better BER than the CMA-PTRBFNN for
Eb/No > 17 dB, as shown in Figure 8. This just slightly
better BER performance of the FC-CNNE stems from the
somewhat large decision regions of the 16-QAM demapper.
In fact, the dispersion of the received 16-QAM symbols
around the reference symbols of the 16-QAM alphabet is
noticeable smaller for the FC-CNNE, as shown in Figure 9,
indicating an intrinsic lower MER (Modulation Error Ratio)
[22] yielded by the FC-CNNE with respect to the CMA-
PTRBFNN. Such smaller symbol dispersion, or MER, gives
a superior operational margin for the FC-CNNE in dynamic
scenarios, such as wireless mobile operation, in which the
channel impulse response varies over time.

5. Conclusion

This paper presented a new blind concurrent equalizer
approach, based on complex radial basis function neural
networks and the CMA algorithm. The proposed approach
applies a blind Fuzzy Controller, responsible for adapting the
step size of both concurrent PTRBFNNandCMAalgorithms.
The fuzzy controller adjusts the adaptation steps based on the
estimated mean squared error of the equalization process and
on its variation in time.The fuzzy inference engine rules have
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Figure 7: Comparison of simulation results obtained by the CMA-PTRBFNN and the FC-CNNE considering the five Brazil channel
multipath scenarios: (a) Brazil A channel, 𝑆𝑅 = 10.5MHz, (b) Brazil B channel, 𝑆𝑅 = 10.1MHz, (c) Brazil C channel, 𝑆𝑅 = 10.7MHz,
(d) Brazil D channel, 𝑆𝑅 = 10.7MHz, and (e) Brazil E channel, 𝑆𝑅 = 10.7MHz.



8 Wireless Communications and Mobile Computing

7 9 11 13 15 17 19

BE
R

10−1

10−2

10−3

10−4

10−5

10−6

CMA-PTRBFNN
FC-CNNE

％＜/．0 (dB)

(a)

BE
R

10−1

10−2

10−3

10−4

10−5

10−6

7 9 11 13 15 17 19 21

CMA-PTRBFNN
FC-CNNE

％＜/．0 (dB)

(b)

7 9 11 13 15 17 19 21

BE
R

10−1

10−2

10−3

10−4

10−5

10−6

CMA-PTRBFNN
FC-CNNE

％＜/．0 (dB)

(c)

7 9 11 13 15 17 19 21

BE
R

10−1

10−2

10−3

10−4

10−5

10−6

CMA-PTRBFNN
FC-CNNE

％＜/．0 (dB)

(d)

7 9 11 13 15 17 19

CMA-PTRBFNN
FC-CNNE

BE
R

10−1

10−2

10−3

10−4

10−5

10−6

％＜/．0 (dB)

(e)

Figure 8: CMA-PTRBFNN and FC-CNNE BER performance: (a) Brazil A channel, (b) Brazil B channel, (c) Brazil C channel, (d) Brazil D
channel, and (e) Brazil E channel.



Wireless Communications and Mobile Computing 9

−4 −2

4

I (In-phase)
0 2 4−3 −1 1 3

Q
 (Q

ua
dr

at
ur

e)

3

2

1

0

−1

−2

−3

−4

(a)

−4 −2

4

I (In-phase)
0−3 −1 2 41 3

Q
 (Q

ua
dr

at
ur

e)

3

2

1

0

−1

−2

−3

−4

(b)

4−4 −2

4

I (In-phase)
0 2−3 −1 1 3

3

2

1

0

−1

−2

−3

−4

Q
 (Q

ua
dr

at
ur

e)

(c)

4−4 −2

4

I (In-phase)
0 2−3 −1 1 3

3

2

1

0

−1

−2

−3

−4

Q
 (Q

ua
dr

at
ur

e)

(d)

Figure 9: CMA-PTRBFNN and FC-CNNE output constellations: (a) CMA-PTRBFNN, Brazil D channel, (b) FC-CNNE, Brazil D channel,
(c) CMA-PTRBFNN, Brazil E channel, and (d) FC-CNNE, Brazil E channel.

been carefully defined to achieve satisfactory control of the
FC-CNNE adaptation steps.

The proposed equalizer has been implemented in a 16-
QAM system using C programming language. The equalizer
performance has been evaluated over five benchmark mul-
tipath scenarios, defined by the International Telecommuni-
cation Union, in terms of residual MSE, convergence rate,
and BER. Results of the proposed FC-CNNE were compared
to CMA-PTRBFNN. The results show that the proposed
approach has significantly improved performance, achieving
a faster convergence rate and lower residual steady-state MSE
for the channel delay profiles Brazil B, Brazil C, and Brazil
E. Consequently, the lower residual MSE resulted in a lower
BER. For Brazil A channel, the residualMSE andBER for both
equalizers are similar and the proposed equalizer presents
a faster convergence rate. For Brazil D channel, the conver-
gence rates are similar for both equalizers, with the proposed
equalizer presenting a reduced residual MSE and BER.

Both equalizers last ten thousand output IQ symbols
have been graphically depicted for the two most dispersive
multipath scenarios (Brazil D and Brazil E channels). Results
show that, for both cases, the output constellation of the
proposed equalizer presents small dispersion around the IQ
symbols of the reference constellation when compared to
CMA-PTRBFNN.

It is known that the good performance of an adaptive
channel equalizer is related to the appropriate selection of
the equalizer parameters, such as the adaptation step and
the filter coefficients initialization procedure. Thus, param-
eter selection in adaptive channel equalizers must be care-
fully considered, not only for wireless applications but also
for the latest generations of single-carrier coherent optical
receivers.

For future works, the authors intend to redesign the
fuzzy block as a neuro-fuzzy system, such that the FC
block would not require a specialist knowledge, being able
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Figure 10: CMA-PTRBFNN and FC-CNNE output constellations: (a) CMA-PTRBFNN, Brazil A channel, (b) FC-CNNE, Brazil A channel,
(c) CMA-PTRBFNN, Brazil B channel, (d) FC-CNNE, Brazil B channel, (e) CMA-PTRBFNN, Brazil C channel, and (f) FC-CNNE, Brazil C
channel.

to achieve a satisfactory performance via a self-learning
structure. Another possibility is to evaluate the use of the pro-
posed FC-CNNE in order to mitigate chromatic and polar-
ization mode dispersion in single-carrier coherent optical
receivers.

Appendix

Figure 10 presents the Brazil A, B, and C constellation and
outputs for CMA-PTRBFNN and FC-CNNE. The proposed
FC-CNNE has smaller dispersions around the reference



Wireless Communications and Mobile Computing 11

symbols than the CMA-PTRBFNN, which resulted in the
better MSE results.
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