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Smart health (s-health) is a vital topic and an essential research �eld today, supporting the real-time monitoring of user’s data by
using sensors, either in direct or indirect contact with the human body. Real-time monitoring promotes changes in healthcare
from a reactive to a proactive paradigm, contributing to early detection, prevention, and long-term management of health
conditions. Under these new conditions, continuous user authentication plays a key role in protecting data and access control,
once it focuses on keeping track of a user’s identity throughout the system operation. Traditional user authentication systems
cannot ful�ll the security requirements of s-health, because they are limited, prone to security breaches, and require the user to
frequently authenticate by, e.g., a password or �ngerprint. ­is interrupts the normal use of the system, being highly inconvenient
and not user friendly. Also, data transmission in current authentication systems relies on wireless technologies, which are
susceptible to eavesdropping during the pairing stage. Biological signals, e.g., electrocardiogram (ECG) and electroencephalogram
(EEG), can o�er continuous and seamless authentication bolstered by exclusive characteristics from each individual. However, it
is necessary to redesign current authentication systems to encompass biometric traits and new communication technologies that
can jointly protect data and provide continuous authentication. Hence, this article presents a novel biosignal authentication
system, in which the photoplethysmogram (PPG) biosignal and a galvanic coupling (GC) channel lead to continuous, seamless,
and secure user authentication. Furthermore, this article contributes to a clear organization of the state of the art on biosignal-
based continuous user authentication systems, assisting research studies in this �eld. ­e evaluation of the system feasibility
presents accuracy in keeping data integrity and up to 98.66% accuracy in the authentication process.

1. Introduction

Smart healthcare (s-health) applications have great potential
to positively impact the daily lives of many people, con-
tributing to early detection, prevention, and long-term
management of health conditions. Health monitoring is a
vital topic and an essential research �eld supported by
sensors in wearable devices which are either in direct contact
with the human body (invasive) or indirect (noninvasive).
Healthcare is moving from a reactive approach to a proactive
one, promoted mainly by the continuous monitoring of
health conditions and the techniques of data analytics

applied to the collected data. ­e monitoring system allows
an individual to closely monitor their changes in vital signs
and provide feedback in real-time, which helps to maintain
optimal health status.

Data privacy is the main concern in s-health [1], given
the vulnerabilities found in wearable devices related to data
collection, resource constraints, and vulnerabilities in
communication technologies, such as wireless communi-
cation [2]. Recent attacks against healthcare providers have
exposed an increasing number of security and privacy
breaches, as pointed out by CynergisTek on its 7th annual
breach report [3]. Also, regulatory worldwide institutions,
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e.g., the U.S. Food and Drug Administration (FDA), request
public and private companies to develop high-quality and
secure healthcare devices and applications [4] by acts such as
the Health Insurance Portability and Accountability Act
(HIPAA). However, preserving data privacy and access in
s-health environment without affecting its usability is a
challenging task.

In this context, user authentication systems are crucial to
grant data access for authorized professionals [5]. Tradi-
tional methods follow one-time event authentication and
demand the user to intentionally engage with the system,
such as scan a fingerprint or key in a password every certain
period [6]. However, the offered security of one-time event
authentication solutions lasts for short periods, being prone
to malicious actions and requiring regular attention and
interaction from users [6]. Also, data transmission in current
authentication systems relies on wireless technologies. +ese
technologies are susceptible to eavesdropping during the
pairing stage, being necessary to design a distinct and secure
communication channel.

Hence, the significance and the challenges of s-health
applications have led to the exploration of new forms of
human-computer interactions and communication tech-
nologies for designing continuous and seamless user au-
thentication [7]. +e literature has highlighted a set of
recurrent biosignals (e.g., electrocardiogram (ECG), elec-
troencephalogram (EEG), galvanic skin response (GSR) [8])
and experimental communication channels (e.g., galvanic
coupling (GC)) [9] applied to continuous authentication and
less interaction from users. Furthermore, advances in mi-
croelectronics and nanoelectronics have assisted the de-
velopment of different types of sensors that provide real-
time vital signs acquisition.+us, it is time to rethink current
authentication systems to encompass new biometric traits
and communication technologies that can protect data and
provide continuous authentication.

+is article presents the Biosignal Enhanced Au+en-
tication system (BEAT), an original continuous authenti-
cation system based on photoplethysmogram (PPG) signals
and data transmission through a secure galvanic coupling
(GC) channel. +e GC channel deals with one of the main
issues regarding the communication between wearable de-
vices, once there are a wide variety of security vulnerabilities
affecting wireless communication technologies [10, 11]. +e
PPG biosignal is one of the easiest biosignals to collect,
becoming popular in commercial wearable devices, such as
fitness trackers. +is article also fills a gap overviewing and
organizing the state of the art on biosignal-based and
continuous user authentication systems. It contributes with
a substantial and relevant holistic view about future research
directions in this crucial topic. +e feasibility of the system
has been evaluated by a prototype using PPG as biosignal
and a synthetic skin as a transmission medium. Evaluation
results show the system accuracy in preserving data integrity
during transmission and up to 98.66% of true positive in the
authentication.

+is article proceeds as follows. Section 2 presents the
literature review of existing biosignal-based continuous
authentication systems. Section 3 details the proposed PPG-

based user authentication system. Section 4 describes its
performance evaluation and results. Finally, Section 5 shows
future directions in this topic and concludes the article.

2. Related Works

+is section presents a literature review and a classification
of authentication systems that employ biosignals. Although
various works in the literature use biosignals as user cre-
dentials for continuous authentication systems, they have
not been organized. Observations from this study have led to
identifying recurrent features, such as diversity in the type of
sensors; focus on a single part of the body as the source of
biosignal; the requirement or not of specific actions from
users; and the heterogeneity in the explored communication
channels. Based on this, Figure 1 summarizes a classification
of these works, following four main categories: (i) sensors,
(ii) sources of biosignals, (iii) actions required from users,
and (iv) communication channels. Each category is
explained, offering an overview of the main existing works.

2.1. Sensors. +is category highlights the type of sensors
employed in continuous user authentication systems, fo-
cusing on biosensors, which collect vital signs from users
and are the basis for different services in the context of
s-health. Among the biosensors, those commonly applied in
continuous authentication systems are mechanical, elec-
trical, and optical, as detailed next. Continuous authenti-
cation systems, such as in [12], rely on mechanical sensors
that utilize mechanical force or pressure to identify the
response of a muscle contraction, the push of a button, or the
pressure of a footstep. Based on an occasional or repetitive
movement, e.g., arm gesture, walking, and leg movement,
the system can identify a pattern, which is employed to
identify the user.

User authentication systems, such as found in [13, 14],
employ electric biosensors to interpret the electrical activity
of the body (e.g., muscle or heart activity) during a period to
get biosignals that will later act as a unique characteristic to
identify each registered user. +ese biosensors require direct
contact (or the use of electrodes) to the activity area to allow
signal acquisition. +e sensors may require or not the use of
conductive gel in the points of contact.

Optical sensors analyze the dilatation of blood vessels to
calculate the user’s heart rate, among other features. +ese
sensors emit light against the user’s skin and measure light
reflection. Optical sensors can collect biosignals from the
heart (PPG and heart rate) and lungs (respiratory rates). For
instance, PPG biosignal is used as a unique identifier for
continuous authentication in [15–17]. PPG generates a pulse
wave in which several features are estimated, analyzed, and
extracted.+ose features are exclusive for each human being,
making it feasible to use them for authentication purposes.

Few continuous user authentication systems also rely on
multisensors, i.e., in general, devices carrying more than one
sensor of different types. Multisensor devices have become
popular given their miniaturization and cheapness. Multiple
sensors in the same device may offer multiple biosignals,
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improving efficiency by their combination. For instance, in
[13] and [18], the authors employ multisensors for user
authentication.

2.2. Sources of Biosignals. +is category observes the con-
tinuous authentication systems under the perspective of the
biosignal source. Identified works from the literature have
commonly collected biosignals from the heart, brain, lungs,
muscles movement, and skin. Each source of biosignals
results in specific characteristics with advantages and dis-
advantages, as discussed next.

Biosignals from the heart are most commonly used in
continuous authentication systems. PPG, ECG, and blood
pressure are biosignals offering information about heart rate
variation. PPG signals depend on optical sensors to be
collected; ECG signals on electrical sensors; and blood
pressure is usually measured from types of equipment with
mechanical sensors. Authentication systems based on heart-
related biosignals are available in the literature, such as
[14, 15, 19].

Brainwaves are biosignals that originate in the brain.
Studies have shown their feasibility to authenticate users,
such as in [20], but it is required repetitive thinking from the
user to create a pattern, e.g., think about an action, a picture
or a geometric shape, or even memorize a speech. EEG is the
most common biosignal from the brain; electrodes con-
nected to sensors and placed on different spots on the head
collect the signal. Less-invasive methods are also available
like headsets and in-ear sensors.

Respiratory rate is a biosignal, once it is possible to create
a breathing pattern, having the biosignal collected through
microphones or the level of oxygen saturation measured
through a PPG signal. +is rate is the most common type of
biosignal observed from the lungs. In [21], the authors
presented an authentication system using the breathing
pattern recorded from a microphone as a user identifier.

Upon contraction, muscles generate small electric sig-
nals. +e signals are constantly measured and stored, aiding
the extraction of a pattern that serves as a user identifier. +e
most common signal observed from muscles is the elec-
tromyogram (EMG). Muscles can trigger a mechanical

sensor, pressing a button or activating a foot pressure sensor
for plantar biometric recognition. Works such as [12, 22, 23]
presented authentication systems based on muscle-related
biosignals.

Finally, different skin properties can be measured and
their values are considered biosignals. For instance, elec-
trodermal activity (galvanic skin response) reflects the
variation of the electrical characteristics in the skin by
mirroring its conductance. Sudden changes in the electrical
conductivity of the skin show stress, fear, and surprise,
among other emotions. +e galvanic skin response is unique
for each user and has been employed to continuously au-
thenticate a user. In [18], the authors evaluated the feasibility
to use galvanic skin response biosignal to authenticate a user.

2.3. Actions from Users. Continuous authentication mech-
anisms are developed to authenticate a legitimate owner
throughout their entire session [24]. Existing systems collect
biosignal with or without the necessity of specific action
from the user. Recent continuous authentication systems
seek to perform authentication seamlessly, i.e., with low user
interaction with the system or no user interaction at all.
However, achieving seamless in this context is still a relevant
challenge. In continuous authentication systems that require
no user action, the sensor continually collects biosignals with
no specific action from the user, e.g., a smartwatch that
collects a biosignal continuously [15].

+ere are authentication systems that require interaction
from the user within periods of time. Examples of in-
teractions are touching the device to collect the biosignal
[14], a specific gesture [23], walking [12], or thinking about a
previously defined theme [20].

Touching is required in different systems, such as
[14, 25]. For instance, ECG-capable smartwatches need
signals from both sides of the body to authenticate a user.
Hence, if the user wears the smartwatch on the right wrist,
he/she will need to touch it with the left hand to generate the
authentication signal. Similarly, gestures and thinking
generate EMG and EEC signals, respectively. +e first is
collected through muscle contraction, whereas the second
requires the user to think about something (shapes, colors,

Biosignal-based continuous authentication

Sensors

Optical
Electrical

Mechanical
Multisensor

Source of biosignals

Heart
Brain
Lungs
Muscle

Skin

Actions from users

Required

Touching
Gesture

�inking

Not
required

Communication channel

Wireless

Wi-Fi
Bluetooth

Zigbee
GC

Wired

Figure 1: Taxonomy for biosignal-based continuous authentication systems.

Wireless Communications and Mobile Computing 3



speeches, etc.) to generate a pattern and then employed for
authentication.

2.4. Communication Channels. Most biosignal-based au-
thentication mechanisms use wireless radio frequency
transmission as a communication channel. However, major
communication technologies such as Bluetooth, Zigbee, and
NFC have presented security flaws [10].+e galvanic coupling
(GC) method is a promising communication channel by the
human body, having the skin and tissues as conductors.
Recently, we have observed an increase in the number of
works employing GC as a communication channel, such as in
[9]. Using human skin as a communication medium pursues
a secure data transmission, once signal interception would not
be possible without skin contact.

3. BEAT Authentication System

+is section presents BEAT, a new biosignal-based and
continuous user authentication system to attain seamless
and secure authentication. BEAT authenticates a user based
on PPG biosignals, collected continuously by wearable
sensors and transmitted by GC from these sensors to a
coordinator device, where the user needs access. BEAT acts
within the s-health concept, considering a star network
topology composed by a coordinator (e.g., a smartphone) as
a central device and wearable devices connected to it. +e
network coordinator usually has higher computational re-
sources (energy, memory and processing power) than other
wearable devices in or on the human body. Furthermore, GC
can protect data transmission between a wearable device and
the network coordinator.

BEAT follows three steps: (i) data collection and pre-
processing, (ii) data transmission by GC, and (iii) the au-
thentication procedure, as shown in Figure 2. Hence,
Figure 2(a) illustrates the network coordinator as a smart-
phone, but it could be any device in direct contact with the
user’s skin and able to serve as a communication gateway
between the wearable network and other networks, e.g., a
wireless local area network (WLAN) or the Internet. It is out
of the scope of this work to handle the communication
between the network coordinator and the Internet; or be-
tween the first and a WLAN.

Figure 2(a) also indicates multiple wearable devices
positioned on different parts of the body, such as head, eyes,
ears, clothing, wrist, and ankle. A wearable device lies in an
autonomous, noninvasive device, performing a specific
function related to the body, e.g., monitor a user’s vital signs.
Examples of wearable devices are smartphones, smart-
watches, physical activity monitors, smart sneakers, and
others. A generic architecture of a wearable device follows
the modules: sensor, low-power processor, and communi-
cation. After data collection, wearable devices convert col-
lected signals into raw data. Depending on the monitoring
task, different types of sensors can be employed. BEAT is
founded on optical sensors, such as those in smartwatches
and physical activity monitors, once this type of sensors
benefits from convenience and usability for users.

3.1.DataAcquisitionandSignalPreprocessing. BEATcollects
PPG signals, allowing the observation and extraction of
unique user features, as the number of peaks and valleys,
peak shapes, wave amplitude, and the distance between
peaks and valleys, as shown in Figure 3. BEAT uses a
combination of these features, using the time-frequency
domain, to correlate the entire set of collected data by wave
segments and improving robustness for user authentication.
Regardless of the extracted trait, the identification of peaks
and valleys is crucial, as the threshold authentication limit is
based on peak overlapping.

After data acquisition, BEAT filters the collected signals
to reduce noise from electromagnetic interference, light
excess, and sudden user movements. Hardware filters are
efficient and fast to extract specific data (e.g., data related to
cardiac variation or breathing), but they are limited in terms
of flexibility because they collect data in a specific range of
frequencies. Similarly, to hardware filters, software filters
limit the amplitude of the collected signal. Although these
filters are slower than hardware filters, they are more flexible
to adjust the filtered frequency band.

Among the filtering techniques, examples are frequency
band segmentation and high-pass, low-pass, and band-pass
filters. +e choice for a given filter depends on the goals.
Also, computational restrictions in wearable devices should
be considered in the filter choice, and it is necessary to select
filters with low computational complexity. +us, high-pass,
low-pass, and band-pass filters are preferable because they
perform signal segmentation in several bands (multidi-
mensional); their configuration allows a cutoff frequency
and a reduced number of operations, leading to efficient
energy use.

3.2. Data Transmission by Galvanic Coupling. BEAT adopts
GC to significantly reduce vulnerability to attacks when
compared to conventional communication technologies,
such as Bluetooth, Zigbee, and others. In GC, data are
encoded and transmitted by low-voltage electrical impulses
sent through human skin, thus being immune to attacks,
such as eavesdropping and others. GC acts on intracorporal
communication, and it is within the scope of the IEEE
802.15.6 standard. In an intracorporal data transmission
using GC, a differential electric signal is applied to two
transmission electrodes on the skin. Most of the signals sent
by the electrodes to the skin are dispersed. However, an
amount of the signal is conducted by the skin and tissues,
reaching the two contact electrodes in the receiver.+emain
feature of the differential signal in GC comprises the model
of sending data through the two electrodes. At each elec-
trode, the biosignals are reversed proportionally before
transmission through the skin. +e receiving device calcu-
lates the difference between the two received signals, getting
the original signal. Figure 4 exemplifies the GC model.

Signal power is strongly influenced by the dielectric
(insulating) properties of the body tissues. +e body is the
medium for sending (Tx) and receiving (Rx) data, the
modulation and power of the signal being relevant issues.
Modulation reflects the characteristics of the GC circuit,
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emphasizing robustness and simplicity. BEAT follows the
Pulse Width Modulation (PWM) for consuming less energy
and conforming to the On-Off nature of digital devices.
PWM represents the digital data through variations in
amplitude and period in a carrier envelope. It estimates data
through the presence or absence of an undercut and its
percentage of duration in each state On-Off.+e existence of
a wave for a specific period means the binary 1, while its
absence for a period means a binary 0.

3.3. Authentication Procedure. +e authentication pro-
cedure (Figure 2(c)) occurs in the network coordinator.
When the coordinator receives the preprocessed PPG signal,

it assigns a function to extract features from the PPG
waveform. +e authentication procedure handles the
waveform in four tasks: peak identification, segmentation,
correlation, and user identifier calculation. +e first one lies
in identifying peaks along the entire length of the collected
and preprocessed biosignal. +is task is fundamental to
define reference points for the segmentation phase. To
identify peaks, BEAT employs specific algorithms, such as
those based on moving averages or a set of features (e.g.,
peak and minimum height) for threshold calculation [26].

+e second task segments the collected biosignal in
cycles related to the wavelength. +us, each cycle is iden-
tified, and then, all detected cycles are overlapped and
aligned taking as reference the center of the previously
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Figure 3: Main features in a PPG signal waveform.
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detected peaks. +is allows us to make the correlation (the
third task) of all segments and calculate their average. +is
average is referred to as a user identifier, its calculation being
the fourth task. +us, when the user identifier matches an
existing reference model in the system, BEAT authenticates
the user. Otherwise, it denies user access to services and data.

+e authentication procedure relies on the previous
registration of the users. +e registration procedure takes
place offline, and its tasks are similar to the authentication
ones, but registration demands a higher amount of data,
considering different user positions and physical states. User
registration begins with data collection, following feature
extraction and signal segmentation. Segmented cycles are
aligned taking peaks as reference. +is allows the correlation
among all segments and their average calculation. Corre-
lation defines an authentication threshold (user reference
model), which is calculated by the minimum average value
for a user to be authenticated. On an authentication attempt,
the reference model is compared to the generated user
identifier following authentication, as previously described.

Figure 5 summarizes the registration and authentication
procedures. +e registration procedure occurs before the
authentication procedure and requires a higher amount of
data compared to the authentication process; this is due to
the need for more data to build the reference model. +e
authentication process occurs online, i.e., when the user
needs to access the system or service.

4. Experimental Design and Analysis

+is section details the real implementation of BEATand its
performance analysis. Evaluations have followed two ap-
proaches: (i) an experimental environment within the
context of the NSF/RNP US-Brazil Healthsense project; (ii)
based on a dataset available in the Physionet online re-
pository. +ese two approaches aim at comparing their
results.

4.1. Implementation of BEAT in an Experimental
Environment. +is implementation of BEAT employs the
PPG Gravity Heart Rate Monitor Sensor from DfRobot,
whose spectral response peak is 570 nm. It has been in-
tegrated into an open Arduino platform version R3, with a
16MHz ATmega328 microcontroller, the same in several
wearable devices. Figure 6(a) shows a picture from the data
collection.

+e galvanic coupling implementation and analysis
employ two 72MHz 32-bit Teensys 3.2 development boards
acting as a signal transmitter (TX) and receiver (RX),
powered by different sources and with no shared ground.
+e PPG signal is amplified, binary encoded, and injected
into a synthetic skin tissue through jump wires that emulate
contact skin electrodes. For evaluation purposes, we transfer
a sample of real PPG signals from the emitter to the receiver
through the synthetic skin using a distance of 8 centimetres.
At the receiver, the signal is amplified once again, as the
synthetic tissue has insulating properties, and then it is
restored to the original form. We evaluate the data integrity

of the signal by the transmitted sample to create an identifier
model. +is model is later compared to the reference model
to perform user authentication, assuring the correctness and
compatibility of the signal. Figure 6(b) shows a picture of the
GC testbed.

+e user registration procedure occurs in a controlled
environment, protected from electromagnetic interference
and from a direct incidence of light. We have collected PPG
signals, and we have recorded both the time of capture and
the numerical values of signal for each individual. +e
outcomes of the registration procedure are two datasets
(NR2/UFPR#1 and #2), comprising data from 30 healthy
individuals from 23 to 53 years old and with no record of
cardiac issues. Each individual had their PPG signal collected
and recorded in two positions: standing and sitting. +e
NR2/UFPR#1 dataset contains a set of files, one for each
individual, with data from the seated individuals, whereas
the NR2/UFPR#2 dataset contains a set of files, one for each
individual, with data from standing individuals. Both
datasets are publicly available at the Healthsense Project
repository (https://github.com/Healthsense-Project). User
registrations have occurred at different times as would
happen in a real situation. Datasets hold a three-minute
sample per individual. Figure 7 shows for a real sample the
original PPG signal (as captured by the sensor); the filtered
signal; and the filtered signal with detected peaks.

+e testbed employs the eighth-order Chebyshev II low-
pass filter over the collected signal using the R software. +is
filter fits wearable devices, which have low computational
power microcontrollers. Feature extraction from the PPG
signal uses the frequency band from 0.5 to 5.0Hz. Earlier,
peaks are detected and segments are overlapped; hence, the
R Cross-Correlation Function (CCF) computes the corre-
lation among all overlapping segments. CCF establishes the
correlation between two distinct series and their respective
confidence intervals. Hence, BEAT calculates the user ref-
erence model (authentication threshold), as seen in Figure 8.

+e authentication procedure has input one-minute
real-time collected data per user in each position. +e
evaluated metrics are the true- and false-positive rates, the
true- and false-negative rates, and the total of inference and
accuracy. Figure 9(a) compares the reference model
recorded for a given user (red wave) and the identifier for the
same user (blue wave) calculated on the authentication
procedure. Although such waves are not fully identical, they
are within the established threshold, showing the existence
of enough similarity to allow user authentication. Figure 9(b)
shows a comparison for a reference model and the identifier
from different users, where the access was denied.

A low-pass filter removes the harmonics from the col-
lected PPG signal, preserving the central band
(FC� 100 kHz). Next, data are sent through the commu-
nication channel within the payload of a frame, which
comprises a preamble (13-bit Barker code) for synchroni-
zation, a data length field, payload (64 bits), and 8-bit CRC.
As the signal propagates through the synthetic skin, analog
receiver hardware uses a high-pass filter to remove any low-
frequency noise from interference. An amplifier (MAX4488
from Maxim Integrated TM) neutralizes the channel
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attenuation and the high-frequency filter raises the signal
level to meet the activation voltage required for the diode.
An envelope detector circuit converts the signal back to
baseband and removes any possible carrier wave oscillations
before delivering the signal to the comparator circuit.

Aside from the tests performed in the described experi-
mental environment, the Beth Israel Deaconess Medical
Center dataset from the Physionet repository [27] has served
as the basis for comparative analysis. +is dataset contains
PPG signals collected from 30 individuals at the 125Hz
frequency by the Israeli center. +e individuals suffer from
some critical health conditions (e.g., heart, respiratory, and
other problems), and when the data were collected, the in-
dividuals were resting in the hospital bed. It is worth to
mention that there was no control over this last dataset
creation, i.e., there was no management about the conditions

of the environment in which data were collected or about the
PPG sensor quality. Signal segments have resulted in handling
three minutes of information from this dataset to create the
user reference model (user registration) and one minute to
calculate the user identifier employed for user authentication.

Table 1 summarizes the results for the analyzed metrics
over the three evaluated datasets. BEAT has shown the best
results for the NR2/UFPR#1 dataset, presenting an accuracy
of 98.66%, 12 false positives, and no false negative. For the
Physionet dataset, it has obtained an accuracy of 89.88% and
no false negative but reached 91 false positives in 900 in-
ferences. +e NR2/UFPR#2 dataset has presented 26 valid
users (peaks satisfactorily identified) of the initial 30 users
and 676 inferences. For valid users, BEAT has achieved an
accuracy of 92.15%, 3 false negatives, and 50 false positives
for the NR2/UFPR#2 dataset.

(a) (b)

Figure 6: Testbeds. (a) PPG. (b) GC.
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Even with the application of filters, some factors could
not be circumvented, such as an excessive movement during
collection, electromagnetic interference, and other envi-
ronmental issues. +e best outcome of the NR2/UFPR#1
dataset is due to the stability offered by the sitting position,
which allows the user’s arm to be in rest position, which
generates less movement and a stable PPG waveform.

Figure 10 shows the validation results for all individuals
of the NR2/UFPR#1 dataset. +e false-positive values in the
authentication map indicate that the collected data are
stable, making it possible to extract several features from the
waveforms. Even with the signal collected from users with
critical health conditions, the system has achieved accuracy
close to 90% for the Physionet dataset. We suspect that the
high number of false positives is due to the low-quality PPG
signal, since four users from the dataset account for 60.4% of
all false positives. Evaluating the two authentication maps,
we observe that none of them got false negatives, showing

that in every situation in which a legitimate user tried to
authenticate, the authentication was successful. Authenti-
cation accuracy yielded by BEAT is equivalent to other PPG
authentication systems such as [28, 29]. However, BEAT
employs GC to provide a secure communication channel,
making it difficult to perform a full comparison once; to the
best of our knowledge, there is no other system that jointly
applies PPG biosignal and GC to user authentication.

5. Conclusion

Smart healthcare (s-health) is an exciting topic that has led to
a considerable number of research studies mainly concerned
with the security of data, which are continuously collected
from users by devices integrated into their clothing or worn
on the body. To provide security, user authentication sys-
tems play a crucial role. However, it is imperative to redesign
them considering the limitations of wearable devices, in
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which the human-computer interaction varies from the
traditional perspective. For instance, one can expect nomore
the use of long-alphabetic passwords in wearable devices
(mainly in the implanted ones) as a way to grant access to
systems, once passwords lack convenience and require users’
regular attention.

Based on the literature overview, this article presented
BEAT, a new authentication system that uses PPG signals
and galvanic coupling (GC), as a communication channel to
authenticate users in a wearable network. BEAT aims at
achieving seamless, i.e., high transparency to the user in the
authentication process, and security. +e acquisition of the
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Figure 9: Authentication process. (a) Access granted. (b) Access denied.

Table 1: Comparing results from the NR2/UFPR and Physionet datasets.

TP FP TN FN IT Accuracy (%)
NR2/UFPR dataset #1 30 12 858 0 900 98.66
NR2/UFPR dataset #2 23 50 600 3 676 92.15
Physionet dataset 30 91 779 0 900 89.88
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Figure 10: Authentication map. (a) NR2/UFPR dataset #1. (b) Physionet dataset.
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PPG signal is nonintrusive, and data are transmitted by GC,
keeping the user continuously connected. Results from real
experimentation have shown high accuracy, high true
positives, and low false positives, being the incidence of false
positives directly related to the quality of the PPG signal.+e
results of the experiments with the system indicate the
feasibility of the PPG signal as a biometric authenticator;
furthermore, using the galvanic coupling communication to
transfer data raises security to a new level.

+is article also presented an organization for the state of
the art in biosignal-based user authentication. +e organi-
zation follows four important categories considering the
type of sensors: the employed biosignal and its source of the
collection; the necessity or not of specific user actions; and
the communication channel. +is article highlighted each
category and associated them with the main existing works
from the literature.

Despite prominent advances, there are still challenges
and opportunities for research studies on this fascinated
topic. First, techniques to extract features and patterns from
biosignals require improvements in efficiency (accuracy and
low false-positive rates) to work on real-time over short time
windows of collected data. Second, it is paramount to design
resilient biosignal-based authentication systems to low
quality in collected signals. A way in this direction would be
aligned with the use of multisensors, which offer different
biosignals or redundancy on the collection of the same
signal. +ird, designing user authentication systems that
require no actions from users, i.e., seamless authentication to
users, is urgent, given the rapid advances in nanotechnology
that allow wearing devices in the body. Fourth, in the search
for seamless, it is necessary to advance in an efficient
communication interfacing body-implanted devices and
network coordinators.

Data Availability

+e datasets used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+e authors would like to thank CAPES, CNPq, and the
Joint NSF and RNP HealthSense Project (Grant no. 99/2017
in Brazil).

References

[1] A. A. Abdellatif, A. Mohamed, C. F. Chiasserini, M. Tlili, and
A. Erbad, “Edge computing for smart health: context-aware
approaches, opportunities, and challenges,” IEEE Network,
vol. 33, no. 3, pp. 196–203, 2019.

[2] M. Kay, J. Santos, and M. Takane, “mhealth: new horizons for
health through mobile technologies,” World Health Organi-
zation, vol. 64, no. 7, pp. 66–71, 2011.

[3] R. CynergisTek, Breach Report 2016: protected health in-
formation (PHI), 2017.

[4] FDA, “Digital health innovation action plan,” Tech. Rep., U.S.
Department of Health and Human services food and Drug
administration, Silver Spring, MD, USA, 2018.

[5] R. S. Sandhu and P. Samarati, “Access control: principle and
practice,” IEEE Communications Magazine, vol. 32, no. 9,
pp. 40–48, 1994.

[6] F. Lin, C. Song, Y. Zhuang, W. Xu, C. Li, and K. Ren, “Cardiac
scan: a non-contact and continuous heart-based user au-
thentication system,” in Proceedings of the 23rd Annual In-
ternational Conference on Mobile Computing and
Networking—MobiCom’17, pp. 315–328, ACM, Snowbird,
UT, USA, October 2017.
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