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In the problem of target tracking, different types of biases can enter into the measurement collected by sensors due to various
reasons. In order to accurately track the target, it is essential to estimate and correct the measurement bias. Considering practical
backgrounds, the bias is assumed to be locally stationary Gaussian distributed and an iterative estimation algorithm is proposed.
Firstly, a mechanism is established to detect whether the bias switches between different Gaussian distributions. Secondly, the
expectation maximization algorithm with the assistance of extended Kalman filtering and smoothing is proposed to iteratively
estimate the bias and target state in an offline manner. Simulations show the proposed algorithm can suppress the impact of the
measurement bias on target tracking.

1. Introduction

As an emerging type of wireless service, positioning or
tracking a moving target using the measurements collected
by a sensor network has drawn considerable attention over
the past two decades [1]. The problem could be solved in
two steps. First, sensors receive the signal transmitted by the
target to be tracked and then calculate the measurement,
e.g., time of arrival (TOA) and time difference of arrival
(TDOA). Second, the fusion center fuses the complementary
information provided by the measurements of all the sensors
and deduces target trajectory. In practice, the measurement
calculated by sensors can be biased, which is caused by
systematic error (e.g., spatial misregistration), inaccurate
sensor calibration, environmental constraints (e.g., non-line-
of-sight (NLOS) propagation), or other sources [2]. The bias
inherent in the measurements will enter into the fusion
process and lead to false tracks.Therefore, the bias effectmust
be eliminated using estimation and correction methods.

There are mainly two directions for dealing with the
bias. First, the bias is corrected and then the unbiased
measurements are fused to deduce target trajectory, e.g., in
the application of the airport surveillance data fusion system
[3, 4]. Second, the biased measurements are directly fused
into tracking system and the bias is estimated together with
target trajectory. We will focus on the latter in the sequel.

Estimation of measurement bias has been investigated
in a great deal of references [5, 6]. The algorithm for bias
estimation can be divided into two categories, that is, online
and offline. The online algorithm estimates the bias in real
time, but it cannot produce a satisfactory bias estimate in
some cases. By contrast, the offline algorithm estimates the
bias more precisely but with a certain time delay, since it
usually requires batch processing of an amount of data.

The offline algorithm can be found in [2, 7, 8]. The
least squares (LS) [2] and the maximum likelihood (ML)
[7] are used to estimate measurement biases, based on
which target state is estimated subsequently. Alternatively, the
expectation maximization (EM) algorithm is incorporated
with the Kalman filter to give simultaneous estimation of
measurement biases and target state in a linear state-space
model [8].

The online algorithm can be found in [9–11]. In [9], the
unscented Kalman filter is used to estimate measurement
biases and target state together, after the measurement biases
are augmented into the state vector of a nonlinear state-
space model. In [10], the marginalized particle filter is used.
Measurement biases are treated as nuisance parameters and
are marginalized out. After target state is estimated using the
particle filter, the measurement biases are estimated using the
Kalman filter. In [11], a recursive joint estimation algorithm
is proposed by carefully coupling measurement biases and
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Figure 1: An example of locally stationary Gaussian distribution.

target state. The algorithm is qualified to deal with different
types of state-space models and measurement biases.

The aforementioned algorithms assume that the bias is
constant. In contrast, the bias is treated as a random variable
with limited fluctuation in different filtering frameworks [12–
14]. In our previous work [15], the TOA measurement is
employed such that a nonlinear state-space model is used to
formulate the tracking problem [16]. The measurement bias
is assumed to be strictly stationary Gaussian distributed and
incorporated into two different state-space models.Then, the
measurement bias and target state are estimated based on the
EM algorithm [17] that uses the output of extended Kalman
filter (EKF) and smoother.

In this paper, we extend the work in [15] and consider a
more complicated case where the bias is assumed to be a ran-
dom variable with a locally stationary Gaussian distribution.
For this, the random variable follows a Gaussian distribution
in a time interval, but in different time intervals the Gaussian
distribution has different forms, i.e., with different means and
variances. This kind of time interval is referred to here as
stationary time interval, due to stationary statistics observed
in it. An example is given in Figure 1. It is obvious that the
observation period can be divided into four stationary time
intervals in which the random variable follows four Gaussian
distributions, respectively.

In real scenarios, there are lots of physical factors which
could cause measurement biases to follow a locally stationary
Gaussian distribution. For example, in some outdoor scene,
target signal arrives at a sensor via a NLOS propagation path.
In one time interval, the sensor receives the target signal by
reflection on an obstacle between the sensor and target. The
similar propagation paths at successive time steps lead to the
measurement biases of the sensor approximately following
a Gaussian distribution in this time interval. However, in
another time interval, the signal is reflected on another
obstacle, which corresponds to a different propagation path
and leads to a differentGaussian distribution for themeasure-
ment biases.

In order to estimate the measurement bias which follows
a locally stationary Gaussian distribution using the EM
algorithm, we have to cope with two issues in addition to
the work in [15]. First, the stationary time intervals in which
the bias follows different Gaussian distributions should be
divided appropriately. In other words, the time slots should
be detected when Gaussian distributions switch from one to
another. Second, the EM estimation should be adapted to
cope with the measurement biases that have asynchronous
stationary time intervals. By addressing these two issues, the
proposed algorithm can iteratively estimate the measurement
bias and target state.

The remainder of the paper is organized as follows. In
Section 2, we formulate the problem and describe briefly the
proposed algorithm. In Section 3, two EM-based estimation
processes are given in detail, to estimate the measurement
bias in two distinct state-space models. In Section 4, we
present the mechanism of bias switch detection. Simulation
results and conclusions are given in Sections 5 and 6, respec-
tively. In the appendix, the equations of EKF and related
smoother are given.

2. Problem Formulation

We assume that the target to be tracked is radioactive and
moving in a two-dimensional plane according to a Gauss-
Markov random force model. A number of static sensors are
used to localize the target using TOA measurements that are
biased. In this case, the problem can be formulated by the
following state-space model:

𝑥𝑘 = 𝐹𝑥𝑘−1 +𝐺𝑢𝑘−1 (1a)

𝑦𝑘 = ℎ (𝑥𝑘) + 𝑏𝑘 +𝑤𝑘 (1b)

where 𝑘 is the time step. 𝑥𝑘 = [𝑥1,𝑘, 𝑥2,𝑘, V1,𝑘, V2,𝑘]𝑇
denotes the state vector of the target, including instantaneous
position [𝑥1,𝑘, 𝑥2,𝑘] and velocity [V1,𝑘, V2,𝑘]. 𝑦𝑘 denotes the
measurement vector with length of M. M is the number of
sensors involved. 𝑏𝑘 denotes the additive bias vector of the
measurement. Herein, [∙]𝑇 denotes matrix transpose. In (1a),
the matrix 𝐹 and 𝐺 are defined as

𝐹 = [𝐼2×2 �𝑡𝐼2×2
02×2 𝐼2×2

] (2a)

𝐺 = [
[
12�𝑡
2

𝐼2×2

�𝑡𝐼2×2
]
]

(2b)

where 𝐼2×2 denotes an identity matrix of size 2, 02×2 denotes a
null matrix of dimension 2 × 2, and �𝑡 denotes the sampling
interval. In (1b), ℎ(𝑥𝑘) = [ℎ1, ⋅ ⋅ ⋅ , ℎ𝑀]𝑇 is a nonlinear
function mapping the target state to the TOA measurement;
i.e.,

ℎ𝑖 = 1𝑐√(𝑥1,𝑘 − 𝑠1,𝑖)2 + (𝑥2,𝑘 − 𝑠2,𝑖)2, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑀 (3)

where 𝑐 is the propagation velocity of the signal, [𝑥1,𝑘, 𝑥2,𝑘] is
the target position at time step 𝑘, and [𝑠1,𝑖, 𝑠2,𝑖] is the position
of the 𝑖th sensor.
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Figure 2: Flowchart of the proposed algorithm.

As a nonlinear state-space model, (1a) and (1b) are known
as the linear state equation and nonlinear measurement
equation, respectively. Without loss of generality, we assume
that the driving noise vector 𝑢𝑘, the measurement noise
vector 𝑤𝑘, and the bias vector 𝑏𝑘 are uncorrelated with each
other and are Gaussian distributed as follows:

𝑢𝑘 ∼ 𝑁 (02×1,𝑄) (4a)

𝑤𝑘 ∼ 𝑁 (0𝑀×1,𝑅) (4b)

𝑏𝑘 ∼ 𝑁 (𝜇,Σ) (4c)

where covariance matrices 𝑄,𝑅, and Σ are square diagonal
matrices. 𝜇 is a column vector of length M. 𝑄 and 𝑅 can be
determined by the properties of the target and sensors. They
are usually known to us. Σ is an unknown square matrix of
order M. Therefore, the existing problem is to estimate the
target state 𝑥𝑘 and the measurement bias 𝑏𝑘 (or 𝜇 and Σ),
using the measurement 𝑦𝑘.

The proposed estimation procedure in the paper is
summarized in Figure 2. Suppose that we focus on a time
period, e.g., 𝑘 ∈ [𝑘1, 𝑘2], which is exactly the fixed interval

of extended Rauch-Tung-Striebel (RTS) smoother. In other
words, the window size of extended RTS smoother is 𝐿 =𝑘2 − 𝑘1 + 1. In this time period, we implement bias switch
detection and EKF using the measurement at each time
step. Next, extended RTS smoother is conducted using the
measurements at all time steps. Then, the EM estimation is
conducted independently in the stationary time intervals in
which the bias follows Gaussian distribution. Note that the
stationary time intervals are divided by bias switch detection.
The steps above are repeated until the estimation convergence
is achieved. At last, we obtain the estimates of 𝑥𝑘 and 𝑏𝑘
for all 𝑘 ∈ [𝑘1, 𝑘2]. It is worth mentioning that if the total
observation period consists of 𝐾 time steps, the procedure
in Figure 2 should be conducted in ⌈𝐾/𝐿⌉ time periods
continuously. Here, ⌈∙⌉ denotes the operation of rounding
the value to the nearest integer greater than or equal to
it.

Note that bias switch detection is closely related to the
formulations of bias models, EKF and EM estimation. In
order to improve readability of bias switch detection, the EM
estimation will be introduced in advance.

3. EM-Based Estimation

In [15], the measurement bias is incorporated into two differ-
ent state-space models, for which two EM-based estimation
processes are, respectively, given based on the results of EKF
and extended RTS smoother. However, they are only suitable
for strictly stationary bias. In Sections 3.1 and 3.2, we adapt
the EM-based estimation processes for these twomodels (i.e.,
Model 1 and Model 2) to the locally stationary bias.

Suppose that the stationary time intervals in which the
bias has different Gaussian distributions are divided based
on bias switch detection presented in Section 4. In each
stationary time interval, the bias is estimated individually
based on the EM-based estimation process. Depending on the
characteristics of sensors, the biases contributed by different
sensors vary in an asynchronous manner. In other words, the
biases of different sensors have asynchronous stationary time
intervals (see Figure 4). Hence, the EM-based estimation
process should be conducted in an asynchronous way, for
different sensors.

In this section, denote by [𝑘1, 𝑘2] the time frame of
interest, and denote by [𝑘𝑎,𝑖,𝑗, 𝑘𝑏,𝑖,𝑗] the jth stationary time
interval for the bias of the ith sensor in this time frame. Here,𝑖 = 1, ⋅ ⋅ ⋅ ,𝑀, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝐽𝑖 with 𝐽𝑖 being the number of time
intervals for the bias of the ith sensor.

3.1. Estimation Process for Model 1. In Model 1, the measure-
ment bias 𝑏𝑘 is considered as a part of the state. The state-
space model is given as follows:

𝑥𝑘 = 𝐹𝑥𝑘−1 +𝐺𝑢𝑘−1 (5a)

𝑏𝑘 = 𝑏𝑘−1 + 𝑣𝑘−1 (5b)

𝑦𝑘 = ℎ (𝑥𝑘) + 𝑏𝑘 +𝑤𝑘 (5c)
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where 𝑣𝑘 is the noise of 𝑏𝑘 and follows a Gaussian distribution
as

𝑣𝑘 ∼ 𝑁 (0𝑀×1,Σ) . (6)

In Model 1, (5a) and (5b) are known as the evolution
equations of the state.The entire state vector can be written as
𝑧𝑘 = [𝑥𝑇𝑘 , 𝑏𝑇𝑘 ]𝑇. If we define the following matrix and vector:

𝐹̃ = [ 𝐹 04×𝑀
0𝑀×4 𝐼𝑀×𝑀

] (7a)

𝑟𝑘−1 = [𝐺𝑢𝑘−1
𝑣𝑘−1

] , (7b)

Model 1 can be rewritten as

𝑧𝑘 = 𝐹̃𝑧𝑘−1 + 𝑟𝑘−1 (8a)

𝑦𝑘 = ℎ̃ (𝑧𝑘) +𝑤𝑘 (8b)

where ℎ̃(𝑧𝑘) = ℎ(𝑥𝑘) + 𝑏𝑘, 𝑟𝑘 ∼ 𝑁(0(4+𝑀)×1, 𝑄̃), and
𝑄̃ = [𝐺𝑄𝐺𝑇 04×𝑀

0𝑀×4 Σ
] . (9)

Based on the state-space model in (8a) and (8b), we
need to estimate 𝑧𝑘 (including the target state 𝑥𝑘 and the
measurement bias𝑏𝑘) andΣ (the covariancematrix of the bias
noise 𝑣𝑘). To do this, the EKF and extended RTS smoother
are applied to estimate 𝑧𝑘, using the measurements in[𝑘1, 𝑘2]—see 𝑧𝑓𝑘 and 𝑧

𝑠
𝑘 in (A.1a), (A.1b), (A.1c), (A.1d), (A.1e),

and (A.1f) and (A.3) in Appendix A—while the EM is applied
to estimate Σ, using the measurements in [𝑘𝑎,𝑖,𝑗, 𝑘𝑏,𝑖,𝑗]. In the
EM algorithm, 𝑧𝑘 is treated as a vector of hidden variables
while Σ is treated as a matrix of unknown parameters. Since
Σ is assumed to be diagonal, it can be written as

Σ = diag (𝛼1,𝑗, ⋅ ⋅ ⋅ , 𝛼𝑀,𝑗) (10)

where diag(∙) denotes a diagonal matrix with the elements of
the main diagonal taken from the values between parenthe-
ses. Therefore, the unknown parameters are given as

𝜃 = [𝛼1,𝑗, ⋅ ⋅ ⋅ , 𝛼𝑀,𝑗]𝑇 (11)

which can be estimated using the EM algorithm in two
iterative steps:

(i) E-step: calculate function 𝑓(𝜃, 𝜃old),
(ii) M-step: estimate parameters 𝜃new =

argmax𝜃𝑓(𝜃, 𝜃old).
𝜃old and 𝜃new are the EM estimate in the previous and current
iteration, respectively. The function 𝑓(𝜃, 𝜃old) is given as

𝑓 (𝜃, 𝜃old) = ∫𝑝 (𝑧𝑘1:𝑘2 | 𝑦𝑘1:𝑘2 ; 𝜃old)
⋅ log𝑝 (𝑧𝑘1:𝑘2 ,𝑦𝑘1:𝑘2 ; 𝜃) 𝑑𝑧𝑘1:𝑘2

(12)

with

𝑝 (𝑧𝑘1:𝑘2 | 𝑦𝑘1:𝑘2 ; 𝜃old) ∼
𝑘2∏
𝑘=𝑘1

𝑁 (𝑧𝑠𝑘,𝑃𝑠𝑘) (13a)

log𝑝 (𝑧𝑘1:𝑘2 ,𝑦𝑘1:𝑘2 ; 𝜃)
= −𝐿2 log 󵄨󵄨󵄨󵄨󵄨𝑄̃󵄨󵄨󵄨󵄨󵄨
− 12
𝑘2∑
𝑘=𝑘1

(𝑧𝑘 − 𝐹̃𝑧𝑘−1)𝑇 𝑄̃−1 (𝑧𝑘 − 𝐹̃𝑧𝑘−1)
− 𝐿2 log |𝑅|
− 12
𝑘2∑
𝑘=𝑘1

(𝑦𝑘 − ℎ̃ (𝑧𝑘))𝑇𝑅−1 (𝑦𝑘 − ℎ̃ (𝑧𝑘))

(13b)

where 𝐿 = 𝑘2 − 𝑘1 + 1 and 𝜃 is contained in 𝑄̃. Following the
result in [18] and linearizing the model in (8a) and (8b) using
the EKF, we can derive the estimate 𝜃(𝑛) in the nth iteration:

𝛼(𝑛)𝑖,𝑗 = 𝐴𝑖,𝑗 − 2𝐵𝑖,𝑗 + 𝐶𝑖,𝑗 (14)

with

𝐴𝑖,𝑗 = 1𝜖𝑖,𝑗
𝑘𝑏,𝑖,𝑗∑
𝑘=𝑘𝑎,𝑖,𝑗

{[𝑃𝑠𝑘−1](4+𝑖)(4+𝑖) + [𝑏𝑠𝑘−1]2𝑖 }

𝐵𝑖,𝑗 = 1𝜖𝑖,𝑗
𝑘𝑏,𝑖,𝑗∑
𝑘=𝑘𝑎,𝑖,𝑗

{[𝑃𝑠𝑘,𝑘−1](4+𝑖)(4+𝑖) + [𝑏𝑠𝑘]𝑖 [𝑏𝑠𝑘−1]𝑖}

𝐶𝑖,𝑗 = 1𝜖𝑖,𝑗
𝑘𝑏,𝑖,𝑗∑
𝑘=𝑘𝑎,𝑖,𝑗

{[𝑃𝑠𝑘](4+𝑖)(4+𝑖) + [𝑏𝑠𝑘]2𝑖 }

(15)

where 𝜖𝑖,𝑗 = 𝑘𝑏,𝑖,𝑗−𝑘𝑎,𝑖,𝑗+1. [∙]𝑖𝑖 denotes the ith element of the
main diagonal of a matrix, and [∙]𝑖 denotes the ith element of
a vector. 𝑏𝑠𝑘 (a part of 𝑧

𝑠
𝑘), 𝑃
𝑠
𝑘, and 𝑃

𝑠
𝑘,𝑘−1 are the estimates of

extended RTS smoother; see (A.3).
As aforementioned, the stationary time interval is dif-

ferent or asynchronous for the biases of different sensors.
Therefore, the EM estimation should be adapted to cope with
the biases having asynchronous stationary time intervals.
More precisely, the stationary time interval for the EM
estimation, i.e., [𝑘𝑎,𝑖,𝑗, 𝑘𝑏,𝑖,𝑗] in (15), is different for different
values of i and j, which is determined by bias switch detection.
In Section 5, we give an example of asynchronous execution
of the EM estimation based on Figure 4. Such adaption is
validated by the assumption of uncorrelated biases between
sensors; see (4c) and (15). Note that the extended RTS
smoother is conducted in [𝑘1, 𝑘2]; see (13a) and (13b).

The EM-based estimation of 𝑧𝑠𝑘 and 𝜃 (i.e., Σ) is summa-
rized as follows:

(i) assume some initial value 𝜃(0), set 𝑛 = 0, and run the
E-step and M-step,
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(1) E-step: calculate 𝑧𝑠𝑘, 𝑃
𝑠
𝑘 and 𝑃

𝑠
𝑘+1,𝑘 using 𝜃

(𝑛) in
(A.3),

(2) M-step: update 𝜃(𝑛+1) in (14),

(ii) set 𝑛 = 𝑛 + 1 and repeat the E-step and M-step until
the estimate 𝜃(𝑛+1) is stable.

3.2. Estimation Process for Model 2. Model 2 is formulated as
follows:

𝑥𝑘 = 𝐹𝑥𝑘−1 +𝐺𝑢𝑘−1 (16a)

𝑦𝑘 = ℎ (𝑥𝑘) + 𝑏 + 𝜀𝑘 (16b)

where

𝑏 = [𝑏1,𝑗, ⋅ ⋅ ⋅ , 𝑏𝑀,𝑗]𝑇 (17a)

𝜀𝑘 = 𝑤𝑘 + 𝑣𝑘. (17b)

In (17a), 𝑏𝑖,𝑗 denotes the bias of the ith sensor in the jth
stationary time interval, and the vector 𝑏 is constant in each
stationary time interval. In (17b), the mixed noise 𝜀𝑘 follows
𝑁(0𝑀×1, 𝑅̆) with

𝑅̆ = diag (𝛾1,𝑗, ⋅ ⋅ ⋅ , 𝛾𝑀,𝑗) . (18)

The measurement bias 𝑏𝑘 defined in (1a) and (1b) is divided
into two parts in Model 2; that is, 𝑏 deals with the mean of 𝑏𝑘
while 𝜀𝑘 deals with the variance of 𝑏𝑘. In Model 2, 𝑥𝑘, 𝑏, and
𝑅̆ are to be estimated. We can employ the EKF and extended
RTS smoother to estimate 𝑥𝑘, using the measurements in[𝑘1, 𝑘2]; see𝑥𝑓𝑘 in (B.1a), (B.1b), (B.1c), (B.1d), (B.1e), and (B.1f)
and 𝑥𝑠𝑘 in (B.2) in Appendix B. The unknown parameters of
Model 2 contain 𝑏 and 𝑅̆, which are estimated via the EM
using the measurements in [𝑘𝑎,𝑖,𝑗, 𝑘𝑏,𝑖,𝑗]. According to (17a)
and (18), we can write

𝜃 = [𝑏1,j, ⋅ ⋅ ⋅ , 𝑏𝑀,𝑗, 𝛾1,j, ⋅ ⋅ ⋅ , 𝛾𝑀,𝑗]𝑇 . (19)

By using the EM algorithm, we can obtain the estimate 𝜃(𝑛) in
the nth iteration:

𝑏(𝑛)𝑖,𝑗 = 1𝜖𝑖,𝑗
𝑘𝑏,𝑖,𝑗∑
𝑘=𝑘𝑎,𝑖,𝑗

[𝑦𝑘 − ℎ (𝑥𝑠𝑘)]𝑖 (20a)

𝛾(𝑛)𝑖,𝑗
= 1𝜖𝑖,𝑗

𝑘𝑏,𝑖,𝑗∑
𝑘=𝑘𝑎,𝑖,𝑗

{[𝑦𝑘 − ℎ (𝑥𝑠𝑘) − 𝑏(𝑛)]2𝑖 + [𝑀𝑘𝑃𝑠𝑘𝑀𝑇𝑘 ]𝑖𝑖}
(20b)

where 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑀, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝐽𝑖, 𝜖𝑖,𝑗 = 𝑘𝑏,𝑖,𝑗 − 𝑘𝑎,𝑖,𝑗 + 1 and
𝑀𝑘 = 𝜕ℎ (𝑥𝑘)𝜕𝑥𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑘=𝑥𝑠𝑘 . (21)

In (20a) and (20b), 𝑥𝑠𝑘 and 𝑃
𝑠
𝑘 are a posteriori estimates of

extended RTS smoother; see (B.2).
The EM-based estimation of 𝑥𝑠𝑘 and 𝜃 (including 𝑏 and 𝑅̆)

is summarized as follows:

(i) assume some initial value 𝜃(0), set 𝑛 = 0, and run the
E-step and M-step,

(1) E-step: calculate 𝑥𝑠𝑘 and 𝑃
𝑠
𝑘 using 𝜃

(𝑛) in (B.2),

(2) M-step: update 𝜃(𝑛+1) in (20a) and (20b),

(ii) set 𝑛 = 𝑛 + 1 and repeat the E-step and M-step until
the estimate 𝜃(𝑛+1) is stable.

Note that the discussion about the difference in treating
the measurement bias between two models can be found in
[15].

4. Bias Switch Detection

Recall that the measurement bias has a locally stationary
Gaussian distribution in our study case. In order to divide
the stationary time intervals, it is essential to detect if the
measurement bias of each sensor switches between different
Gaussian distributions at each time step, which is referred
to here as bias switch detection. Since we assume that the
biases between different sensors are uncorrelated (see (4c)),
the detection procedure can be processed independently
for different sensors. For brevity, the detection procedure is
presented only for the measurement bias of the ith sensor at
time step k. At the previous time step (i.e., k-1), there exist
two cases, i.e., whether themeasurement is biased or not (bias
presence or absence).

Firstly, let us consider the case with bias presence at time
step k-1. There are three possibilities for the measurement
bias at time step k: first, keeping the same Gaussian distri-
bution as that at the previous time step; second, switching
to another Gaussian distribution; third, switching to zero
(or bias absence). The task is to detect which of the three
possibilities above occurs, which can be conducted in two
steps: first, to detect whether bias switches or not, that is,
to distinguish the first possibility above from the remaining
two; second, if the bias switches, to detect whether the bias
switches to another Gaussian or zero, that is, to distinguish
between the second and third possibilities above.

In the first step of detection, we need to check the
following inequality:

𝑑𝑘,𝑖 = 󵄨󵄨󵄨󵄨󵄨𝑦𝑘,𝑖 − 𝑦̂𝑘,𝑖󵄨󵄨󵄨󵄨󵄨 ><3𝜎𝑘,𝑖 (22)

where 𝑦𝑘,𝑖 and 𝑦̂𝑘,𝑖 denote the true measurement and the
predicted measurement of the ith sensor, respectively. 𝜎̂𝑘,𝑖
denotes the standard deviation of the predicted measure-
ment. 𝑦̂𝑘,𝑖 and 𝜎𝑘,𝑖 can be derived using the EKF prediction,
which is given in (A.1a), (A.1b), (A.1c), (A.1d), (A.1e), and
(A.1f) for Model 1 and (B.1a), (B.1b), (B.1c), (B.1d), (B.1e),
and (B.1f) for Model 2. In Model 1, ℎ̃(𝑧−𝑘 ) is the predicted
measurement vector with the covariance matrix 𝑆𝑘 in (A.1c).
InModel 2, [ℎ(𝑥−𝑘 )+𝑏(𝑛)] is the predictedmeasurement vector
with the covariance matrix 𝑆𝑘 in (B.1c). 𝑏(𝑛) denotes the bias
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estimate vector in the nth EM iteration inModel 2 (see (20a)).
Following this, we can obtain

𝑦̂𝑘,𝑖 = [ℎ̃ (𝑧−𝑘 )]𝑖 ,
𝜎𝑘,𝑖 = [𝑆𝑘]𝑖𝑖

for Model 1,
(23a)

𝑦̂𝑘,𝑖 = [ℎ (𝑥−𝑘 ) + 𝑏(𝑛)]𝑖 ,
𝜎𝑘,𝑖 = [𝑆𝑘]𝑖𝑖

for Model 2.
(23b)

If 𝑑𝑘,𝑖 > 3𝜎𝑘,𝑖 in (22) holds, we can conclude that the
measurement bias of the ith sensor switches, and then we
need to conduct the second step of detection. Otherwise, the
bias does not switch and the detection stops.

In the second step of detection, we check the following
inequality:

𝑑󸀠𝑘,𝑖 = 󵄨󵄨󵄨󵄨󵄨𝑦𝑘,𝑖 − 𝑦̂󸀠𝑘,𝑖󵄨󵄨󵄨󵄨󵄨 ><3𝜎󸀠𝑘,𝑖 (24)

where 𝑦̂󸀠𝑘,𝑖 and 𝜎̂󸀠𝑘,𝑖 denote the predicted measurement and
its standard deviation, respectively, provided that the bias is
absent. In order to cope with bias absence, the bias of the ith
sensor and its variance in two models has to be set as 0. In
Model 1, both the ith element of 𝑏𝑘 and the ith element on
the main diagonal of Σ should be set as 0. Similarly, in Model
2, the ith element of 𝑏 should be set as 0 and the ith element on
the main diagonal of 𝑅̆ should be replaced by the ith element
on the main diagonal of 𝑅. Following this, the formulations
of the EKF for bias absence are not the same as those given
in (A.1a), (A.1b), (A.1c), (A.1d), (A.1e), and (A.1f) and (B.1a),
(B.1b), (B.1c), (B.1d), (B.1e), and (B.1f). Based on the modified
EKF prediction, 𝑦̂󸀠𝑘,𝑖 and 𝜎̂󸀠𝑘,𝑖 can be obtained for both models
using the form in (23a) and (23b). If 𝑑󸀠𝑘,𝑖 > 3𝜎󸀠𝑘,𝑖 in (24)
holds, we can conclude that the measurement bias switches
to another Gaussian distribution as compared to the one at
the previous time step. Otherwise, the bias switches to zero;
namely, it vanishes.

Secondly, let us consider the case where the measurement
of the ith sensor is unbiased at time step k-1, that is, bias
absence. At time step k, there are two possibilities. One is that
the bias is still absent. The other is that the bias appears. To
distinguish these two possibilities, we can resort to checking
the inequality in (24). If 𝑑󸀠𝑘,𝑖 > 3𝜎󸀠𝑘,𝑖 holds, we can conclude
that the bias appears with a Gaussian distribution. Otherwise,
the bias is zero as that at the previous time step.

If the bias between two consecutive time steps is found
to switch between the case of bias absence and the case of
bias presence, or between two distinct Gaussian distributions,
we have to reset the mean and variance of the bias before
implementing the EKF in the flowchart of Figure 2. It is done
as follows. When the bias switches from the case of bias
presence to the case of bias absence, the bias and its variance
are reset as 0.When the bias switches the case of bias absence
to the case of bias presence or switches between two Gaussian

−100 0 100 200 300 400 500

Sensor
True trajectory
IMD
Model 1
Model 2
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100

200

300

400

500

Figure 3: True trajectory and estimated trajectories.

distributions, the bias is reset as 𝑑󸀠𝑘,𝑖 (see (24)) and its variance
is set as a predefined value (see our simulation part).

After the procedure of bias switch detection is completed,
the stationary time intervals in which the bias has different
Gaussian distributions are divided. The EM estimation is
executed independently and asynchronously to estimate the
biases of different sensors in each stationary time interval;
see (15) for Model 1 and (20a) and (20b) for Model 2 in
Section 3.

Note that the proposed detection resembles the inter-
acting multiple model (IMM) method [16] in some sense,
if different Gaussian distributions are thought as different
models. However, the proposed detection does not need the
exact information of all the models involved whereas the
IMM does. Correspondingly, the latter provides more robust
results than the former. In our case, the model information
is not available a priori so that the IMM is not applicable.
The underlying principle of the proposed detection is to
measure the distance between the true measurement value
and the predicted measurement value. The distances indicate
closeness to the models (or Gaussian distributions) and
guide one to select the correct model. As potential future
work, it is interesting to study how to improve the proposed
detection using the curve fitting approach [19], and vice
versa.

5. Simulations

In our simulations, we consider a sensor network with four
static sensors; see Figure 3. The four sensors (marked with
triangle) are located at [-90m, -25m], [500m, 50m], [25m,500m], and [450m, 500m], respectively. Following a Gauss-
Markov random force model, the target starts from [-50m,50m]with an initial velocity of about 10m/s and its trajectory
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Figure 4: Bias structure for 4 sensors.

is plotted in solid line in Figure 3. The sensors record the
signal sent from the targetwith a sampling interval of�𝑡 = 0.1
s. The driving noise covariance matrix is given as 𝑄 = 𝐼2×2.
The measurement noise covariance matrix is set as 𝑅 =400/𝑐2 ∙ 𝐼4×4. 𝑐 is the propagation velocity of the signal.
The time steps amount to 600 in our observation period.
The artificial bias added to the measurements has a mean
selected from (1/𝑐)(100, 150, 180, 200, 220, 250, 3000) and
a variance selected from (1/𝑐2)(100, 225, 400, 25). Since the
TOA measurement is used, the unit of the measurement
bias is the second in time. Note that the constant 𝑐 and the
unit of the bias are omitted in the subsequent figures for
brevity.

The EKF is initialized as follows. The initial mean
of covariance matrix of the target state is set as 𝑥0 =[𝑥1,0, 𝑥2,0, V1,0, V2,0]𝑇 and 𝑃0 = diag(400 400 10 10). The ini-
tial position [𝑥1,0, 𝑥2,0]𝑇 is randomly selected from Gaussian
distribution𝑁([−50, 50]𝑇, 100 ∙ 𝐼2×2).The initial velocity V1,0
is uniformly selected from [0, 10] and it satisfies√V21,0 + V22,0 =10. The initial covariance matrix of the measurement bias
is set as Σ0 = 400/𝑐2 ∙ 𝐼4×4. The EM iteration stops once
the Euclidean distance between the estimates of the state
in two consecutive iterations is smaller than a predefined
threshold 0.1. The allowed maximal iteration number is set as
50.

In Figure 3, the estimated trajectories based on the IMD
[20], Model 1, and Model 2 are given. The IMD algorithm
detects if the bias exists in the measurement and uses the
unbiased measurement. It cannot make use of the infor-
mation provided by the bias. When the measurement is
frequently corrupted by the bias, the IMD fails to track the
target trajectory. In contrast, the EM-based estimation in
Model 1 and Model 2 not only detects bias switch, but also
estimates the bias value. By doing this, it can track the target
trajectory more accurately.

Figure 4 shows the simulated values of the measurement
bias of all four sensors for 600 time steps of observation
period. Assume that the window size L of extended RTS
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Figure 5: RMSE of position estimate w.r.t. time step k.

smoother is set as 100 time steps. The procedure in Figure 2
will be conducted 6 times sequentially. Here, we take the
first 100 time steps as an example to explain the procedure
in Figure 2. We conduct bias switch detection, EKF, and
extended RTS smoother for all 100 measurements. Suppose
that the time slots for bias switch are correctly detected. The
stationary time intervals for the EM estimation of the biases
of four sensors are not the same. For the bias of Sensor 1,
the EM estimation is conducted in the time interval [51, 100].
However, the EM estimation is not conducted in [1, 50] due
to bias absence. For the bias of Sensor 2, the EM estimation
is conducted in [41, 100]. For the bias of Sensor 3, there is
no bias so that the EM estimation is not conducted. For
the bias of Sensor 4, the EM estimation is conducted in[61, 100]. The above steps iterate until the bias estimation
converges.

Figures 5 and 6 show the root mean square error (RMSE)
of target position estimates and bias mean estimates based on
the IMD and two models w.r.t. the time step k, respectively.
The window size L is selected to be 50 time steps. The
results are based on 400 Monte Carlo runs. It is seen that
the EM estimation based on Model 1 outperforms that based
on Model 2, in terms of estimation accuracy of both target
position and bias mean. Moreover, we can find in Figure 5
that the RMSE of the position estimates in both models is
highly affected by the length of L, since the RMSE smoothness
is blocked by a frame of length L. In contrast, the RMSE of
the bias mean estimates varies unregularly and seems not to
be closely related to L, as shown in Figure 6. This is due to
the fact that the bias mean estimates are affected by not only
the window size but also the length of the stationary time
interval in which the EM estimation is conducted (see 𝜖𝑖,𝑗 in
(15), (20a), and (20b)).

Figures 7 and 8 show the RMSE of position estimates and
bias mean estimates w.r.t. the window size L, respectively.
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Figure 6: RMSE of bias mean estimate w.r.t. time step k.
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Figure 7: RMSE of position estimate w.r.t. window size L.

The results are based on 400 Monte Carlo runs. Gener-
ally speaking, the RMSE of the estimates in two models
decreases as the window size L increases. This is due to
the fact that the window size L equals the measurement
size used in the extended RTS smoother. Larger value of
L leads to a more accurate result (i.e., target position) of
the extended RTS smoother. Furthermore, accurate position
estimates contribute to accurate bias estimation results, since
estimation of the target position and the bias is coupled
together. In addition, we can find that the RMSE decrement
is not obvious when L increases from 50 to 100. This
can be explained as follows. Bias mean estimates rely on
the measurement size used in the EM estimation, which
equals the length of stationary time interval, namely, 𝜖𝑖,𝑗
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Figure 8: RMSE of bias mean estimate w.r.t. window size L.

(see (15), (20a), and (20b)). The value 𝜖𝑖,𝑗 that depends on
bias statistics is independent of the window size L, which
becomes a bottleneck in improving estimation accuracy
of bias (and further target position), especially when L is
large.

It is found in our simulation that the EM estimation based
on Model 1 is superior to that based on Model 2. In Model 2,
the measurement bias is separated into two parts; i.e., one is
bias mean and the other is bias variance. The correlation of
the two parts is neglected and they are estimated separately. It
could result in unexpected estimation error, especially under
our bias assumption. In contrast, inModel 1, the bias is treated
in a piece as a random variable, which is supposed to be
more suitable. As future work, we plan to collect real biased
measurements under the condition of NLOS propagation
based on our previous work [14] and use them to test the
performance of the proposed algorithm and some existing
algorithms.

6. Conclusions

We propose an EM-based algorithm to estimate the mea-
surement bias which follows a locally stationary Gaussian
distribution. Based on the two state-space models that for-
mulate the impact of biases on target tracking in different
ways, we use the mechanism of bias switch detection to
detect if the bias switches from one Gaussian distribution
to another or, more precisely, to divide the stationary time
intervals. Next, based on the results of the EKF and extended
RTS smoother, we use the EM-based estimation processes
to independently estimate the biases in asynchronous sta-
tionary time intervals. Eventually, the proposed algorithm
estimates the measurement bias and target state iteratively.
It is able to suppress the impact of the measurement
bias on target tracking, which is validated by simulation
results.
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Appendix

A. EKF and Extended RTS
Smoother in Model 1

The state 𝑧𝑘 in Model 1 is estimated by the EKF and extended
RTS smoother [21, 22]. The EKF has the following prediction
and update equations:

𝑧
−
𝑘 = 𝐹̃𝑧𝑓𝑘−1 (A.1a)

𝑃
−
𝑘 = 𝐹̃𝑃𝑓𝑘−1𝐹̃𝑇 + 𝑄̃ (A.1b)

𝑆𝑘 = 𝐻̃𝑘𝑃−𝑘𝐻̃𝑇𝑘 + 𝑅 (A.1c)

𝐾𝑘 = 𝑃−𝑘𝐻̃𝑇𝑘𝑆−1𝑘 (A.1d)

𝑧
𝑓

𝑘 = 𝑧−𝑘 +𝐾𝑘 [𝑦𝑘 − ℎ̃ (𝑧−𝑘 )] (A.1e)

𝑃
𝑓

𝑘
= (𝐼 −𝐾𝑘𝐻̃𝑘)𝑃−𝑘 (A.1f)

where 𝑧−𝑘 and 𝑃
−
𝑘 are the a priori estimates of the state and its

covariance matrix; 𝑧𝑓
𝑘
and 𝑃𝑓

𝑘
are the a posteriori estimates.

In (A.1d), 𝐾𝑘 denotes the Kalman gain. In (A.1c), 𝐻̃𝑘 =[𝐻𝑘 𝐼𝑀] and𝐻𝑘 is the partial derivative of ℎ(𝑥𝑘) on 𝑥−𝑘 ; i.e.,
𝐻𝑘 = 𝜕ℎ (𝑥𝑘)𝜕𝑥𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑘=𝑥−𝑘 . (A.2)

Note that in the (n+1)th EM iteration, Σ (contained in 𝑄̃) in
(A.1b) should be replaced by the EM estimate in (14).

Furthermore, following the above EKF equations, the
backward recursion equations for the fixed-interval extended
RTS smoother are obtained as

𝐽̃𝑘 = 𝑃𝑓𝑘 𝐹̃𝑇 [𝑃−𝑘+1]−1
𝑧
𝑠
𝑘 = 𝑧𝑓𝑘 + 𝐽𝑘 [𝑧𝑠𝑘+1 − 𝑧−𝑘+1]
𝑃
𝑠
𝑘 = 𝑃𝑓𝑘 + 𝐽𝑘 [𝑃𝑠𝑘+1 − 𝑃−𝑘+1] 𝐽𝑇𝑘

𝑃
𝑠
𝑘+1,𝑘 = 𝑃𝑠𝑘+1𝐽𝑇𝑘

(A.3)

where 𝐽̃𝑘 denotes the smoother gain, 𝑧𝑠𝑘 and 𝑃
𝑠
𝑘 are the a

posteriori smoothed estimates of the state and the covariance
matrix, and𝑃𝑠𝑘+1,𝑘 denotes the a posteriori smoothed estimate
of the cross-covariance matrix.

B. EKF and Extended RTS
Smoother in Model 2

The EKF in Model 2 is given by

𝑥
−
𝑘 = 𝐹𝑥𝑓𝑘−1 (B.1a)

𝑃
−
𝑘 = 𝐹𝑃𝑓𝑘−1𝐹𝑇 +𝐺𝑄𝐺𝑇 (B.1b)

𝑆𝑘 = 𝐻𝑘𝑃−𝑘𝐻𝑇𝑘 + 𝑅̆ (B.1c)

𝐾𝑘 = 𝑃−𝑘𝐻𝑇𝑘𝑆−1𝑘 (B.1d)

𝑥
𝑓

𝑘
= 𝑥−𝑘 +𝐾𝑘 [𝑦𝑘 − ℎ (𝑥−𝑘) − 𝑏] (B.1e)

𝑃
𝑓

𝑘 = (𝐼 −𝐾𝑘𝐻𝑘)𝑃−𝑘 . (B.1f)

Thefixed-interval extendedRTS smoother inModel 2 is given
by

𝐽𝑘 = 𝑃𝑓𝑘𝐹𝑇 [𝑃−𝑘+1]−1
𝑥
𝑠
𝑘 = 𝑥𝑓𝑘 + 𝐽𝑘 [𝑥𝑠𝑘+1 − 𝑥−𝑘+1]
𝑃𝑠𝑘 = 𝑃𝑓𝑘 + 𝐽𝑘 [𝑃𝑠𝑘+1 − 𝑃−𝑘+1] 𝐽𝑇𝑘 .

(B.2)
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