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Enhanced licensed-assisted access (eLAA) is an operational mode that allows the use of unlicensed band to support long-term
evolution (LTE) service via carrier aggregation technology. The extension of additional bandwidth is beneficial to meet the
demands of the growing mobile traffic. In the uplink eLAA, which is prone to unexpected interference from WiFi access points,
resource scheduling by the base station, and then performing a listen before talk (LBT) mechanism by the users can seriously
affect the resource utilization. In this paper, we present a decentralized deep reinforcement learning (DRL)-based approach in
which each user independently learns dynamic band selection strategy that maximizes its own rate. Through extensive
simulations, we show that the proposed DRL-based band selection scheme improves resource utilization while supporting
certain minimum quality of service (QoS).

1. Introduction

The rapidmobile traffic demand has resulted in the scarcity of
the available radio spectrum. To meet this ever-increasing
demand, extending systems like long-term evolution (LTE)
to unlicensed spectrum is one of the promising approaches
to boost users’ quality of service by providing higher data rates
[1]. In this regard, initiatives such as the licensed-assisted
access (LAA) [2], LTE-unlicensed (LTE-U) [3], and Multe-
Fire (MF) systems [4] can be mentioned. The focus of this
article is, however, on the LAA system, which 3GPP has ini-
tially introduced and standardized in Rel.-13 for downlink
operations only [2]. By using the carrier aggregation (CA)
technology, carriers on licensed band are primarily used to
carry control signals and critical data, while the additional
secondary carriers from unlicensed band are used to oppor-
tunistically boost the data rates of the users [5]. To obey
regional spectrum regulations such as restrictions on the
maximum transmitting power and channel occupancy time
[6] while fairly coexisting with the existing systems such as
WiFi, it is mandatory for an LAA base station (BS) to per-
form listen before talk mechanism before transmitting over

unlicensed band [7–9]. The enhanced version of LAA,
named as enhanced licensed-assisted access (eLAA), that
supports both uplink and downlink operations was later
approved in Rel.14 [10]. The uplink eLAA mode over unli-
censed band is designed to meet the channel access mecha-
nisms of the two bands, meaning the BS performs LBT
and allocates uplink resources for the scheduled users, and
then the scheduled users perform the second round of LBT
to check whether the channel is clear or not before uplink
transmission [11]. The degradation of uplink channel access
due to two rounds of LBT mechanism is investigated in
[12–14]. If a scheduled user senses an active WiFi access
point (AP) which is hidden to the BS, then the channel
cannot be accessed, wasting the reserved uplink resource.
Scheduling based approach in uplink eLAA, while there
are unexpected interference sources, can significantly affect
the utilization of uplink resources.

To improve the utilization of unlicensed band resources,
several approaches have been suggested. In [15–17], multi-
subframe scheduling (MSS), a simple modification of the
conventional scheduling, is proposed. MSS enables a single
uplink grant to indicate multiple resource allocation across
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multiple subframes. Providing diverse transmission opportu-
nities may enhance the resource utilization; however, the
resources can still be wasted if the user fails to access the
channels. In [14, 18], schemes that switch between random
access and scheduling are proposed, but their focus is limited
to unlicensed spectrum. Joint licensed and unlicensed band
resource allocation that takes a hidden node into account is
proposed in [19] for the downlink eLAA system. Further-
more in [20], a scheme that does not require uplink grant
along with the required enhancement to the existing LTE
system is proposed.

In this paper, we attempt a new learning approach in
which each user makes dynamic band selection (licensed or
unlicensed) independently for uplink transmission, without
waiting for scheduling from BS. To this end, we implemented
each user as a DRL agent that learns the optimal band selec-
tion strategy relying only on its own local observation, i.e.,
without any prior knowledge of WiFi APs’ activities and
time-varying channel conditions. Through continuous inter-
actions with the environment, the potential users to be
affected by hidden nodes learn the activities of WiFi APs
and make use of it in the band selection process. The learned
policy not only guarantees channel access but also ensures a
transmission rate above a certain threshold, despite the
presence of unpredictable hidden nodes. Such a learning
approach would be a useful means of handling the underly-
ing resource utilization problems in uplink eLAA.

The rest of the paper is organized as follows. Section 2
describes the system model considered in the paper.
Section 3 gives a brief overview on deep reinforcement learn-
ing (DRL), followed byDRL formulation of the band selection
problem. The proposed deep neural network architecture
and training algorithm are also discussed. Simulation results
are presented in Section 4, and finally conclusion is drawn in
Section 5.

2. System Model

We consider a single cell uplink eLAA system that consists of
an eLAA base station (BS) and N user equipment (UE) that
can also operate in unlicensed band through carrier aggrega-
tion technology. Let N = f1, 2,⋯,Ng denote a set of user
indices which are uniformly distributed within the cell and
ℳ = f1, 2,⋯,Mg designate a set of unlicensed band
interference sources such as WiFi access points (APs) which
are located outside the coverage area of the cell within a
certain distance. The system model is shown in Figure 1.

In order to get uplink access, each UE n ∈N makes a
scheduling request to the eLAA BS, who is responsible for
allocating resources. Before granting uplink resources, the
eLAA BS is required to undergo a carrier-sensing procedure
within its coverage limit. Once the channel is clear, it reserves
resources for uplink transmission. Then, the scheduled user
performs another round of listen before talk procedure
before transmission. If the user detects transmission from
hidden nodes, nearby WiFi APs that are outside the carrier-
sensing range of the eLAA BS, then the reserved uplink
resources over unlicensed band cannot be accessed.

We assume the channel between the BS and the n-th UE,
denoted as hnðtÞ, evolves according to the Gaussian Markov
block fading autoregressive model [21] as follows:

hn tð Þ = ρnhn t − 1ð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2n

q
e tð Þ, ð1Þ

where ρn is the normalized channel correlation coefficient
between slot t and ðt − 1Þ. From Jake’s fading spectrum,
ρn = Joð2πf d,nτoÞ where f d,n, τo, and Joð⋅Þ are the Doppler
frequency, slot duration, and the zeroth-order Bessel function
of the first kind, respectively. The error eðtÞ is a circularly
symmetric complex Gaussian variable, i.e., eðtÞ ∼CNð0,ϒ
ðd/doÞαÞ, where ϒ is the path loss corresponding to the
reference at a distance do and α is the path loss exponent.
The channel is initialized as hnð0Þ ∼CNð0,ϒðdn/doÞαÞ,
where dn is distance of the n-th user from the BS.

LetWU andWL be the total bandwidth in unlicensed and
licensed bands, respectively. At time slot t, let the number of
users associated with unlicensed and licensed band be NUðtÞ
and NLðtÞ, respectively. If all UEs on licensed band are
uniformly allocated to orthogonal uplink resources, then the
bandwidth of the UEs is constrained as

BL tð Þ = WL

NL tð Þ : ð2Þ

Similarly, expecting that the total unlicensed bandwidth is
equally shared among UEs in a virtual sense, then the band-
width of UEs on unlicensed band can be constrained as

BU tð Þ = WU

NU tð Þ : ð3Þ

DenotingP andN0 as uplink transmit power and the noise
spectral density, we may compute the signal-to-noise ratio
(SNR) of the received signal at the BS for unlicensed band user
n (assuming it occupies channel) as

SNRn,U tð Þ = P hn tð Þj j2
BU tð Þ ⋅N0

: ð4Þ
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Figure 1: Uplink eLAA system model.
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Likewise, the SNR for licensed band user n is given as

SNRn,L tð Þ = P hn tð Þj j2
BL tð Þ ⋅N0

: ð5Þ

The dynamics of each WiFi APs activity are modeled as a
discrete-time two-state Markov chain as shown in Figure 2.
Each AP can be either in active (state = 0) or inactive
(state = 1) state. The transition probability from state j to k is
denoted as

Pj,k = Pr st+1 = k ∣ st = jf g,∀j, k ∈ 0, 1f g: ð6Þ

Note that the users do not have the knowledge of the
underlying dynamics of WiFi APs’ activities, i.e., transition
probabilities.

Let τ represent the transmission probability of an active
WiFi AP. In slot t, let Nn,contðtÞ be the number of contending
active APs within the sensing range of n-th UE. Assuming
that all activities of WiFi AP’s are independent, the probabil-
ity of UE n having at least one hidden node is

Pn,hid tð Þ = 1 − 1 − τð ÞNn,cont tð Þ: ð7Þ

In order to calculate the uplink rate (throughput) of the
users, we refer to the lookup table, given in Table 1, which
maps the received SNR to spectral efficiency (SE) [22]. Then,
the uplink rate of UE n using unlicensed band is given as

Rn,U tð Þ = BU tð Þ SE tð Þ 1 − Pn,hid tð Þð Þ: ð8Þ

Similarly, the uplink rate of UE n using licensed band is
given as

Rn,L tð Þ = BL tð Þ SE tð Þ: ð9Þ

In each time slot t, the goal of each UE is to select the
band that maximizes the uplink rate. Note that if a certain
band, e.g., licensed band, is overloaded by a large number
of UEs, the individual rate of the users in the band will be sig-
nificantly reduced. This will constraint each UE to take
advantage of the unlicensed band whenever the APs are inac-
tive. Hence, learning the WiFi APs’ activities and channel
conditions is critical to effectively use the uplink resources
while boosting individual data rate.

3. DRL-Based Decentralized Dynamic
Band Selection

3.1. Deep Reinforcement Learning (DRL): Overview. In
reinforcement learning (RL), an agent learns how to
behave by sequentially interacting with the environment.
As shown in Figure 3, at each time t, the agent observes
the state st ∈S, where S is the state space, and executes
action at ∈A from the action space A. The interaction
with the environment produces the next state st+1 and scalar
reward rt+1.

The goal of the agent is to learn an optimal policy that
maximizes the discounted long-term cumulative reward,
expressed as

Rt = 〠
T

t−1
γt−1rt+1, ð10Þ

where γ ∈ ½0, 1�is the discounting factor and T is the total
number of time steps (horizon) [23].

One of the most widely used model-free RL methods is
Q-learning in which the agent learns policy by iteratively
evaluating the state-action value function Qðs, aÞ, defined

P0,0
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P1,0
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Figure 2: Activity model of WiFi AP as a two-state Markov chain.

Table 1: Lookup table for SNR-to-spectral efficiency mapping.

Index Minimum SNR (dB) Spectral efficiency (bps/Hz)

1 −6.7 0.1523

2 −4.7 0.2344

3 −2.3 0.3770

4 0.2 0.6016

5 2.4 0.8770

6 4.3 1.1758

7 5.9 1.4766

8 8.1 1.9141

9 10.3 2.4063

10 11.7 2.7305

11 14.1 3.3223

12 16.3 3.9023

13 18.7 4.5234

14 21.0 5.1152

15 22.7 5.5547

Reward

ActionState Environment
Agent

rt rt+1

St+1

atSt

Figure 3: Reinforcement learning framework.
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as the expected return starting from the state s, taking the
action a, and then, following the policy π. In order to derive
the optimal policy, at a given state s, the action that maxi-
mizes the state-action value function should be selected, i.e.,

a ∗ sð Þ = arg max
a

Q s, að Þ ð11Þ

and then similarly follow optimal actions in the successor
states.

In Q-learning, a lookup table is constructed that stores
the action value Qðs, aÞ for every state-action pair (s, a).
The entries of the table are updated by iteratively evaluating
the Bellman optimality equation as:

Q st , atð Þ⟵Q st , atð Þ
+ β rt+1 + γ max

at+1
Q st+1, at+1ð Þ −Q st , atð Þ

� � ð12Þ

where β ∈ ½0, 1� is the learning rate. However, the look up
table approach in Q-learning is not scalable for problems
with the large state and action spaces. DRL approximates
the value functions with deep neural network (DNN)
instead. In deep Q-network (DQN), the action-value func-
tion Qðs, a ; θÞ is estimated by DNN, parametrized by θ,
which takes the state as input. Then, action is selected
according to the following ε-greedy policy:

at =
random action, with a probability of ε,
arg max

a
Q s, a ; θð Þ, with a probability of 1 − εð Þ:

(

ð13Þ

To stabilize the learning process, it is common to use a
replay buffer D that stores transitions e = ðst , at , rt+1, st+1Þ
and mini batch of samples are randomly drawn from the
buffer to train the network. Moreover, a separate quasi-

static target network, parametrized by θ′, is used to estimate
the target value of the next state. The loss function is
computed as

ℒ θð Þ = E s,a,r,s′ð Þ∼D r + γ max
a′

Q s′, a′ ; θ′
� �

−Q s, a ; θð Þ
� �2

" #

ð14Þ

θ is updated by following stochastic gradient of the loss as
θ⟵ θ − β∇θLðθÞ, while the target parameter θ′ is updated
according to θ′ ⟵ θ every C steps [24]. The details of
DQN algorithm is summarized in Algorithm 1.

3.2. DRL Formulation for Dynamic Band Selection. Each user
is implemented as DRL, specifically by deep Q-network
(DQN) agent that relies on the output of their deep neural
network to make dynamic band selection decisions between
licensed and unlicensed bands. The DRL formulation is
presented below.

(i) Action

In each time slot t, the n-th agent samples an action anðtÞ
from the action set

A = Licensed, Unlicensedf g: ð15Þ

(ii) State

After executing the action anðtÞ, the agent receives binary
observation and reward from the environment. The observa-
tion is either onðtÞ = 1 if the uplink rate in the selected band
exceeds the minimum threshold rate or onðtÞ = 0 otherwise.
The state of the agent is defined as history of an action-
observation pairs with length H:

sn tð Þ ≜ an ið Þ, on ið Þð Þf gti=t−H ð16Þ

Initialize replay buffer D
Initialize action value function Q with parameter θ
Initialize target action value function Q̂ with parameter θ′ = θ
Input the initial state to the DQN
for t = 1, 2, ::⋯ do

Execute action at from Q using ε-greedy policy
Observe rt+1 and st+1 from the environment.
Store the transition ðst , at , rt+1, st+1Þ into the replay buffer D
Sample random minibatch of transitions from D

Evaluate the target yj = r j + γ max
a′

Q̂ðsj+1, a′ ; θ′Þ
Perform a gradient descent step on ðyj −Qðsj, aj ; θÞÞ2 with respect to θ

Every C steps, update the target network Q̂ according to θ′ ⟵ θ
end for

Algorithm 1. DQN algorithm.
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(iii) Reward

Depending on the selected action, the agent receives the
following scalar reward:

If an tð Þ =
Unlicensed, rnt+1 =

Rn,U tð Þ, if Rn,U tð Þ ≥ RU ,min

0, otherwise

(

Licensed, rnt+1 =
Rn,L tð Þ, if Rn,L tð Þ ≥ RL,min

0, otherwise

(
8>>>>><
>>>>>:

ð17Þ

where Rn,UðtÞ and Rn,LðtÞ are given according to Equations
(8) and (9), while RU ,min and RL,min are the uplink minimum
threshold rates on unlicensed and licensed band, respectively.

3.3. Deep Neural Network Description. For dynamic band
selection, each UE trains independent DQN. The structure
of the deep neural network is shown in Figure 4.

The deep neural network consists of long short-term
memory (LSTM) layer, fully connected layers, and rectified
linear unit (ReLu) activation function.

Long short-term memory (LSTM) is one class of recur-
rent neural networks (RNNs) which are designed to learn a
specific pattern in a sequence of data by taking time corre-
lation into account. They were initially introduced to over-
come the vanishing (exploding) gradient problem of RNNs
in the course of back propagation. Regulated by gate func-
tions, the cell (internal memory) state of an LSTM learns
how to aggregate inputs separated by time, i.e., which
experiences to keep or throw away [25]. In our formula-
tion, note that the states of the agents, which are histories
of action-observation pairs, have long-term dependency
(correlation) emanating from the dynamics of WiFi APs’
activities that follow a two-state Markov property, and
the time-varying channel conditions according to Gaussian
Markov block-fading autoregressive model. LSTM is crucial
for the learning process since it can capture the actual state
by exploiting the underlying correlation in the history of
action-observation pairs. Therefore, the state must pass
through this preprocessing step before it is directly fed to
the neural network.

A deep neural network consists of multiple fully con-
nected layers, in which each of the layers abstracts certain
feature of the input. Let x be the input to the layer, while W
and b are the weight matrix and bias vector, respectively.

The output vector of a layer, denoted as y, in a fully con-
nected layer can be described by the following operation:

y = f Wx + bð Þ, ð18Þ

where f is the element-wise excitation (activation) that
adds nonlinearity. In our simulations, we input the states
to an LSTM layer with hidden units of 64, whose out-
put is fed to two fully connected hidden layers with 128
and 64 neurons. The output layer produces action values
Qðs, aÞ for both actions. ReLu activation function is used
on all the layers to avoid the vanishing gradient problem
[26]. The target network also adopts the same neural net-
work structure.

3.4. Training Algorithm Description. The DQNs of the agents
are individually trained according to Algorithm 2. The loss
function given by Equation (14) is used to train the DQN.
The hyperparameters are summarized in Table 2.

Note that the agents do not have a complete knowledge of
the environment, such as the action of other agents, the
underlying dynamics of the WiFi APs’ activities, and varying
channel conditions. Instead, through sequential interaction
with the environment, each agent makes decisions on band
selection solely based on local feedbacks (reward and obser-
vation) from the base station. This significantly reduces the
training complexity (cost) at each user. Moreover, since the
training can be conducted in an offline manner, the trained
weights can be used in deployment phase. Retraining the
weights is done infrequently; for example, if the environment
significantly changes.

4. Simulation Results

4.1. Simulation Setup. For each realization, we first distribute
10 users uniformly in a square area of 100m × 100m. Within
30m distance from the coverage area of the cell, WiFi APs are
distributed in homogeneous Poisson point process (PPP)
with rate λ. Figure 5 illustrates the network model of one
realization for node deployment of BS, users, and APs.

We set the dynamics of each WiFi AP activity according
to the following transition matrix:

P =
0:7 0:3
0:2 0:8

" #
, ð19Þ
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Figure 4: Structure of the proposed deep neural network.
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We further assume that the uplink transmission of a user
over unlicensed band can be interfered from any active WiFi
APm ∈ℳ within 30m range. Table 3 summarizes the values
of all simulation parameters used for evaluating the proposed
algorithm.

4.2. Performance Evaluation. We compared the policy
learned by the DRL agents to two benchmark schemes: ran-
dom policy and fixed distance policy. In random policy, each
user randomly decides which band to select, while in fixed
policy, decision is made based on the location of the user.
Assuming the BS knows the location of the users at each
slot t; hence, the distance from BS, only users within D
meters from the base station transmit using unlicensed band
resources, since they are less susceptible to interfering WiFi
APs. The others transmit using licensed band resources.
Since we assumed transmission from a WiFi AP can affect

for each agent n ∈N do
Initialize replay buffer Dn
Initialize action value function Qn with parameter θn
Initialize target action value function Q̂n with parameter θn′ = θn
Generate initial state sn,1 from the environment simulator

end for
for t = 1, 2, ::⋯ do

for each agent n ∈N do
Execute action an,t from Qn using ε-greedy policy
Collect reward rn,t+1 and observation on,t+1
Observe the next state sn,t+1 from the environment simulator
Store the transition ðsn,t , an,t , rn,t+1, sn,t+1Þ into Dn

Sample random minibatch of transitions from Dn

Evaluate the target yn,j = rn,j + γ max
an, j+1

Q̂nðsn,j+1, an,j+1 ; θn′Þ
Perform a gradient descent step on ðyn,j −Qnðsn,j, an,j ; θnÞÞ2with respect to θn
Every C steps, update the target network Q̂n according to θn′⟵ θn

end for
end for

Algorithm 2. DQN training algorithm for dynamic band selection.

Table 2: Hyperparameters.

Parameter Value

Discount factor γ 0.9

Learning rate β 0.01

Exploration ε in ε-greedy policy 0.05 to 0.01

Target network update frequency C 300

Mini batch size 32

Replay buffer D size 1000
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Figure 5: Network model for node deployment (layout).

Table 3: Simulation parameters.

Parameter Value

Total bandwidth in unlicensed band (WU ) 10MHz
Total bandwidth in licensed band (WL) 10MHz
Uplink transmission power (P) 20 dBm
Receiver noise power (N0) −147 dBm
Path loss exponent (α) 3:76
Reference distance (do) 1m
Channel gain at reference distance (ϒ ) −35:3 dB
Channel correlation coefficient (ρn) 0:95
Doppler frequency (f d,n) 70Hz
Transmission probability of active WiFi AP (τ) 0:7
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unlicensed band uplink transmission of any user within 30m
distance, according to the node deployment in Figure 5, in
fixed policy users with D = 20m from the BS are assigned to
unlicensed band resources. The trained DRL policy of each
agents should learn this distance without any prior assump-
tion while selecting band. Furthermore, by learning the activ-
ities of the APs, the agents should make a dynamic selection.

Figure 6 compares the per user average success rate of
the users for different thresholds at history length H = 5,
λ = 0:5 × 10−2, and RL,min = RU ,min = 4Mbps. The dynamic
DRL agents entertain around 90% of success rate, outper-
forming the users of the fixed distance-based policy with all
of the thresholds we set. The gain from the fixed distance-
based policy is attributed to two factors. The first one is that
DRL agents, without any prior assumption, learn the optimal
distance d∗ from the BS to make a decision on band selection.
In other words, if user n ∈N is located outside the optimal
distance range ðdn > d∗Þ, then it transmits over licensed band
to avoid interference from nearby WiFi APs. The second fac-
tor is that the agents capture the dynamics of both time-
varying channel and WiFi APs’ activities while making use
of it in dynamically selecting band. It implies that during
the absence of transmission from nearby WiFi APs, even if
ðdn > d∗Þ, user n ∈N exploits the opportunity of transmit-
ting over unlicensed band; hence, avoids overloading other
users on licensed band.

To further investigate the gain coming from dynamic
decision on band selection, we evaluate the per user average
success rate of the users for different throughput thresholds
in Figure 7. As the threshold values (over both bands)
increase from 3 to 5, the gap on performance (per user aver-
age success rate) also increases. This indicates that capabil-
ity of the DRL agents is crucial to maintaining appreciable
success rate under a stringent requirement on quality of
service (QoS).

In Figure 8, per user average throughput obtained by
the three policies for history length H = 5, λ = 0:5 × 10−2,

and RL,min = RU ,min = 4Mbps is compared. As depicted, the
per user average throughput achieved by DRL agents outper-
forms the other two schemes. The ability of DRL to adapt to
changing environment and learn robust policy enabled the
agents to outperform a fixed distance-based policy which falls
short when either of the bands is overloaded. In other words,
even if there is an opportunity to transmit on unlicensed band,
due to inactivity of nearby WiFi APs, cell edge users in fixed
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distance-based policy fail to take advantage of it. Further gain
can be obtained by tuning the hyperparameters.

The effect of the number of interfering WiFi APs on the
performance of the DRL agents is investigated for history
length H = 5, and RL,min = RU ,min = 4Mbps in Figure 9. As
the number of WiFi APs increases (when λ increases), the
gain due to dynamic decision on band selection reduces since
the number of contenders for unlicensed band resources
increases. However, the agents still retain the gain coming
from learning the optimal distance for band selection. The
performance of the fixed distance-based policy is unaffected
by the number of WiFi APs.

Next, in Figure 10, we compare the effect of history size on
the performance of the DRL agents. We observe that shorter
history sizes tend to converge relatively faster. The variation
of convergence time of the learned policy is however mar-
ginal. This implies the convergence time of the learned policy
is generally less sensitive to history size. Note that all the
results are averaged from three numerical simulations.

5. Conclusion and Future Works

To improve the underlying resource utilization problem in
uplink eLAA, we presented a learning-based fully decentra-
lized dynamic band selection scheme. In particular, employ-
ing the deep reinforcement learning algorithm, we have
implemented each user as an agent that makes a decision
based on the output of the DQN, without waiting for sched-
uling from BS. It is shown that despite the lack of the knowl-
edge of the underlying dynamics of WiFi APs’ activities, the
DRL agents successfully learn a robust policy to make a
dynamic decision on band selection. Such dynamic and
decentralized learning approach can significantly improve
the resource utilization problem associated with unlicensed
band, due to hidden nodes, in the uplink eLAA system. In a

future study, we want to extend this work to more compli-
cated scenarios that involve joint resource allocation over
the two bands. Moreover, to improve the gain presented in
this paper, different architectures and hyperparameters
should be investigated.

Data Availability

We have not used specific data from other sources for the
simulations of the results. The proposed algorithm is imple-
mented in python with TensorFlow library.
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