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Mobile edge computing (MEC) is a promising technique to meet the demands of computing-intensive and delay-sensitive
applications by providing computation and storage capabilities in close proximity to mobile users. In this paper, we study
energy-efficient resource allocation (EERA) schemes for hierarchical MEC architecture in heterogeneous networks. In this
architecture, both small base station (SBS) and macro base station (MBS) are equipped with MEC servers and help smart mobile
devices (SMDs) to perform tasks. Each task can be partitioned into three parts. The SMD, SBS, and MBS each perform a part of
the task and form a three-tier computing structure. Based on this computing structure, an optimization problem is formulated
to minimize the energy consumption of all SMDs subject to the latency constraints, where radio and computation resources are
considered jointly. Then, an EERA mechanism based on the variable substitution technique is designed to calculate the optimal
workload distribution, edge computation capability allocation, and SMDs’ transmit power. Finally, numerical simulation results
demonstrate the energy efficiency improvement of the proposed EERA mechanism over the baseline schemes.

1. Introduction

Driven by the rapid development of Internet of Things and
mobile Internet, many novel applications are emerging [1].
However, most of these applications are computing-
intensive and delay-sensitive, e.g., augmented reality, face
recognition, and healthcare [2]. Running these applications
locally is very challenging for smart mobile devices (SMDs)
when ensuring users’ quality of experience (QoE) because
of the limited resources of SMDs. How to complete the appli-
cations while guaranteeing users’ QoE becomes the focus of
academic and industrial communities. Mobile edge comput-
ing (MEC) is a promising technique to solve this problem,
which endows the radio access network with computation
and storage capabilities. In order to improve users’ QoE,
MEC helps SMDs complete applications by performing some
tasks in the edge nodes of networks, which reduces the
latency and energy consumption of task execution thanks
to the close proximity of edge nodes to SMDs [3, 4].

Extensive research on MEC has been conducted from
many perspectives, e.g., single-server MEC models and mul-
tiserver MEC models. Regarding the single-server MEC

models, much work has been done, e.g., single-user models
[5–9] and multiuser models [10–15]. For a single-user MEC
model, the authors in [5] considered a binary computation
offloading model and derived a data consumption rate
threshold that decided to offload the whole task or execute
the entire task locally. Based on that work, for further reduc-
ing the energy consumption of SMDs, partial offloading was
introduced into the single-user model. The task was parti-
tioned into two parts, one of which was offloaded [6, 7]. Con-
sidering the stochastic arrival of tasks, the optimal task
scheduling policy was derived to minimize the weighted
sum of the energy consumption and latency [8]. In addition,
the energy harvesting technique was incorporated into the
MEC model and the Lyapunov optimization-based dynamic
computation offloading algorithm was proposed in [9]. For a
multiuser MECmodel, to satisfy the requirements of as many
users as possible in a channel environment with wireless
interference, the multiuser offloading system was formulated
as a game and analyzed to admit a Nash equilibrium [10].
Considering inelastic computation tasks and non-negligible
task execution durations, the authors in [11] proposed an
energy-efficient resource allocation schemes. To deal with
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the arbitrary arrival of tasks in multiuser MEC system, tasks
scheduling techniques were utilized in [12, 13]. To reduce the
redundant execution of the same tasks and minimize the
energy consumption, the storage resource of the base station
was utilized in [14]. For further improving users’ QoE, wire-
less power transfer was added into the multiuser MEC model
and an access point energy minimization problem was
formulated [15].

Regarding the multiserver MEC models, many edge
cloud architectures are emerging, e.g., flat edge cloud archi-
tectures [16–19] and hierarchical edge cloud architectures
[20–22]. In the flat edge cloud architectures, MEC servers
are located at the same tier. In the hierarchical edge cloud
architectures, MEC servers are located at different tiers.
And MEC servers in different tiers have distinct computation
and storage capabilities [3, 23]. For a flat edge cloud architec-
ture, geography information of SMDs and MEC servers was
used to reduce the task execution delays in [16]. Considering
maximizing the revenue of service providers, resources from
different service providers were centralized to create a
resource pool and the revenue was allocated by using core
and Shapley values [17]. To minimize the communication
latency, a cloudlet selection model based on mixed integer
linear programming was developed in [18]. Furthermore,
by utilizing the idle computing resources of vehicles, the
authors in [19] proposed a decentralized framework named
Autonomous Vehicular Edge to increase the computational
capabilities of vehicles. For a hierarchical edge cloud archi-
tecture, a three-tier MEC model was built on the basis of
LTE-advanced mobile backhaul network [20]. For improving
the cost efficiency of network operators, the authors in [21]
took the cost disparity of the edge tiers into account. Under
a three-tier MEC model, the Stackelberg game was used to
allocate the limited computing resources of edge severs to
the data service subscribers [22].

Combined with heterogeneous networks, the hierarchical
MEC was further studied. The small base station (SBS) and
macro base station (MBS) are equipped with MEC servers
to serve SMDs. Particularly, in [24], offloading decisions
and radio resource were optimized jointly for minimizing
the system energy cost. Then, the framework was developed
further. SBSs were endowed with computing capabilities.
And a resource allocation problem for minimizing the energy
consumption of mobile users and MEC servers was formu-
lated [25]. Based on the heterogeneous network powered by
hybrid energy, user association and resource allocation were
optimized for maximizing the network utility [26]. Consider-
ing the variability of mobile devices’ capabilities and user
preferences, offloading decisions and resource allocation
were optimized for maximizing system utility [27]. In addi-
tion, a novel information-centric heterogeneous network
framework was designed and a virtual resource allocation
problem was formulated in [28].

1.1. Motivations and Contributions. Hierarchical architec-
tures of edge servers have an advantage over flat architectures
in serving the peak loads [23, 29]. In addition, under the
three-tier MEC architectures, previous studies focused on
the system construction [20–22] and maximization of the

system utility [26–28]. However, it is also important how to
allocate computation and communication resource energy
efficiently under a three-tier MEC architecture to improve
users’ QoE. In this paper, we investigate a multiuser three-
tier computing model under heterogeneous networks. The
SBS integrated with relatively small computation capability
andMBS integrated with great computation capability jointly
execute tasks. Based on this hierarchical MEC model, an
energy-efficient resource allocation (EERA) scheme is pro-
posed. In EERA, the computation and radio resources are
optimized jointly for minimizing the energy consumption
of all SMDs. The main contributions of this paper are sum-
marized as follows:

(1) Based on heterogeneous networks, we establish a
three-tier computing model, including local comput-
ing, SBS computing, and MBS computing. An
energy-efficient optimization problem is formulated.
Workload placement strategy, transmit power, and
computation capability allocation are optimized to
minimize SMDs’ energy consumption under task
delay constraints.

(2) We propose an EERA scheme based on the variable
substitution technique. In this scheme, the optimal
workload distribution and computation capability
allocation are first obtained. Then, the optimal
SMDs’ transmit power is derived through the vari-
able substitution.

(3) Numerical simulation experiments are conducted.
Simulation results are presented to validate that
EERA outperforms other baseline schemes and effec-
tively reduces the SMDs’ energy consumption.

1.2. Organization. The rest of this paper is organized as
follows. In Section 2, the three-tier computing model is
presented and the energy-efficient optimization problem is
formulated. In Section 3, EERA based on the variable substi-
tution technique is proposed, where workload distribution in
three-tier, computation capability allocation from SBS and
SMDs’ transmit power are optimized jointly to minimize
SMDs’ energy consumption. Numerical results are provided
in Section 4, and conclusions are presented in Section 5.

2. System Model and Problem Formulation

As shown in Figure 1, SBS and MBS are equipped with MEC
servers and help SMDs perform tasks. SMDs, SBS, and MBS
execute tasks together and establish a three-tier computing
architecture. In the first tier, there is K SMDs and the set of
SMDs is denoted as K = f1, 2,⋯, Kg. The processing capa-
bility of k-SMD ðk ∈KÞ is denoted as f k,l cycles/s. In the sec-
ond tier, the SBS has the limited computation capability
denoted as F cycles/s. In the third tier, we assume that the
MBS has infinite computational resources and its execution
latency is negligible [9, 30]. In addition, the backhaul link
time delay between SBS and MBS is proportional to the
transfer data size and the proportion coefficient is denoted
as ϕ [24]. We assume that each user has one SMD and each
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SMD has one task. We only consider the case that SBS can
transfer data to MBS and SMDs cannot offload tasks to
MBS directly [24, 25]. Moreover, SMDs occupy orthogonal
wireless channels. The k-SMD has the task denoted as
AkðDk, Ck, TkÞ. The task Ak containing Dk bits needs to
be completed in time Tk. Each bit needs Ck cycles. We
assume the task belongs to data-partitioned oriented tasks
[6], which can be segmented arbitrarily, such as virus scan
task and GZip task. The task can be executed separately in
three tiers, i.e., SMDs, SBS, and MBS (Specially, in virus
scan, the files can be partitioned into three parts. Then,
each tier can scan a part of the total files in parallel.
Finally, the results of three tiers are combined and the
final result is obtained.) αk = ½αk,l, αk,s, αk,m�ð0 ≤ αk,l, αk,s,
αk,m ≤ 1Þ is set as the workload distribution. αk,l, αk,s, and
αk,m denote the proportion of k-SMD workload, SBS work-
load, and MBS workload, respectively. We assume that the
computation results are so small that the time delay from
SBS and MBS to SMDs can be ignored [15, 30, 31].

2.1. Local Computing and Transmitting Model

2.1.1. Local Computing Model. The number of bits needed to
be processed locally is αk,lDk and thus, it needs αk,lDkCk

cycles. The latency of local computing is denoted as tcomp
k,l

and obtained as

tcomp
k,l = αk,lDkCk

f k,l
: ð1Þ

We consider a low voltage task execution model and the
energy consumed by one CPU cycle is denoted as ε given by

ε = κf 2k,l, ð2Þ

where κ is a constant related to capacitance coefficient [15].
Then, the computing energy consumed locally is written as

Ecomp
k,l = αk,lDkCkε = αk,lDkCkκf

2
k,l, ð3Þ

where Ecomp
k,l denotes the k-SMD energy consumption of local

computing.

2.1.2. Local Transmitting Model. The transmitting channel
between SMDs and SBS is assumed as Rayleigh channels

[6]. We assume that the coherence time is larger than the task
deadline Tk, i.e., the channel gain is invariant during the task
execution [31]. The channel gain is denoted as gk, and the
task offloading rate can be obtained as

rk = B log2 1 + pk,txgk

N0

� �
, ð4Þ

where rk, B, pk,tx, and N0 denote k-SMD’s transmit rate,
channel bandwidth, transmit power, and white Gaussian
noise power, respectively. The k-SMD’s transmit power can-
not exceed the maximum transmit power pmax

k,tx . ptx denotes
the SMDs’ transmit power vector, which is expressed as
½p1,tx , p2,tx,⋯,pK ,tx�. The task offloaded to MBS needs to
be transferred to SBS first. Thus, the offloading time of
k-SMD ttransk,l is obtained as

ttransk,l = αk,s + αk,mð ÞDk

rk
: ð5Þ

The offloading energy consumption is the product of
the offloading time and transmit power as

Etrans
k,l = ttransk,l pk,tx =

αk,s + αk,mð ÞDk

rk
pk,tx: ð6Þ

2.2. Computation Model

2.2.1. SBS Computing Model. SBS has limited computation
capabilities because of its limited volume compared with
MBS. k-SMD has a priority βk from the telecom operator,
which decides the portion of SBS computation capability
allocated to k-SMD. The SBS computation ability of k-SMD
is denoted as f k,s cycles/s. fs = ½ f1,s, f2,s,⋯,f K ,s� denotes SBS
computation capability allocation vector of K SMDs. And
the following limitations exist:

0 ≤ f k,s ≤ βkF,

〠
K

k=1
βk = 1:

ð7Þ

SMD 1

SMD 2

SMD K

Backhaul

Small BS with an 
MEC server integrated Macro BS

Figure 1: Multiuser task execution in three-tier computing architecture.
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The SBS workload from k-SMD is αk,sDk, and the number
of its computation cycles is αk,sDkCk. The time delay of SBS
execution is obtained as

tcomp
k,s = αk,sDkCk

f k,s
: ð8Þ

The total delay of SBS computing is made up of offload-
ing delay and execution delay, which is given by

tk,s = ttransk,l + tcomp
k,s : ð9Þ

2.2.2. MBS Computing Model. The backhaul link delay ttransk,m is
proportional to the transfer data size, i.e., the transfer delay
between SBS and MBS is calculated as

ttransk,m = ϕDkαk,m: ð10Þ

The MBS execution latency can be ignored. Therefore,
the delay of MBS computing tk,m is the sum of offloading
delay and backhaul link delay as

tk,m = ttransk,l + ttransk,m : ð11Þ

2.3. Problem Formulation. Based on equations (3) and (6),
the energy consumption of k-SMD Ek, which consists of
computing consumption and transmitting consumption, is
written as

Ek = Ecomp
k,l + Etrans

k,l : ð12Þ

The task of k-SMD is executed parallel in three-tier (local
devices, SBS, and MBS), and thus, the execution delay tk is
obtained as

tk =max tcomp
k,l , tk,s, tk,m

� �
: ð13Þ

The energy-efficient problem under tasks delay con-
straints is formulated as

P1 : min
αk ,ptx ,fs

〠
K

k=1
Ek, ð14aÞ

s:t: tk ≤ Tk, ð14bÞ
0 ≤ f k,s ≤ βkF, ð14cÞ

〠
K

k=1
βk = 1, ð14dÞ

αk,l + αk,s + αk,m = 1, ð14eÞ
0 ≤ αk,l, αk,s, αk,m ≤ 1, ð14fÞ
0 ≤ pk,tx ≤ pmax

k,tx , ð14gÞ
∀k ∈K , ð14hÞ

where (14b) means that the delay needs to meet the demand.
(14c) indicates that the SBS computation capability allocated
to k-SMD cannot exceed the maximum allocation frequency.
(14e) denotes that the sum workload of the local device, SBS,
and MBS needs to be equal to the total task load of k-SMD.

3. Problem Solution

In this section, for gaining some engineering insights, an
EERA scheme based on the variable substitution technique
[6, 32] is proposed to solve problem P1. Firstly, we fix ptx
and find the optimal workload distribution α∗k and SBS
computation capability allocation f∗s by minimizing ∑K

k=1Ek.
Then, we use α∗k and f∗s to find the optimal transmit
power p∗tx.

According to equations (3), (6), and (12), Ek can be
rewritten as

Ek = αk,lDkCkκf
2
k,l +

αk,s + αk,mð ÞDk

rk
pk,tx: ð15Þ

Substituting equation (14e) into (15), Ek can be written as

Ek = αk,l DkCkκf
2
k,l −

Dkpk,tx
rk

� �
+ Dkpk,tx

rk
: ð16Þ

3.1. Problem Decomposition. Fixing transmission power ptx ,
problem P1 is simplified to problem P2, where the second
term of equation (16) is fixed and can be eliminated.

P2 : min
αk ,fs

〠
K

k=1
αk,l DkCkκf

2
k,l −

Dkpk,tx
rk

� �
, ð17aÞ

s:t: tk ≤ Tk, ð17bÞ
0 ≤ f k,s ≤ βkF, ð17cÞ

αk,l + αk,s + αk,m = 1, ð17dÞ

〠
K

k=1
βk = 1, ð17eÞ

0 ≤ αk,l, αk,s, αk,m ≤ 1, ð17fÞ
∀k ∈K , ð17gÞ

where transmit power vector ptx is fixed. Substituting the
solution of problem P2 into equation (15) and optimizing
ptx by minimizing ∑K

k=1Ek, we formulate problem P3 as

P3 : min
ptx

〠
K

k=1
αk,lDkCkκf

2
k,l + αk,s + αk,mð ÞDk

pk,tx
rk

, ð18aÞ

s:t: tk ≤ Tk, ð18bÞ
0 ≤ pk,tx ≤ pmax

tx , ð18cÞ
∀k ∈K : ð18dÞ
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3.2. Energy-Efficient Resource Allocation Scheme. We define
the transmission energy consumption per bit as vk, which is
obtained as

vk =
pk,tx
rk

: ð19Þ

Lemma 1. vk increasesmonotonically with the increase of pk,tx.

Proof. See Appendix A.
Define ek as

ek = αk,l DkCkκf
2
k,l −

Dkpk,tx
rk

� �
: ð20Þ

Lemma 2. Based on Lemma 1, ek changes with vk as follows:
(1) vk > κCkf

2
k,l, ek decreases monotonically with the

increase of αk,l.
ð2Þ vk < κCkf

2
k,l, ek increases monotonically with the

increase of αk,l.
ð3Þ vk = κCkf

2
k,l, ek is independent of αk,l.

Proof. The derivative of ek is ðdek/dαk,lÞ =DkCkκf
2
k,l −

ðDkpk,tx/rkÞ. When vk > κCkf
2
k,l, ðdek/dαk,lÞ < 0 and ek

decreases monotonically with the increase of αk,l. The second
case and the third case can be proved by the same way as
the first case.

Based on Lemma 1 and Lemma 2, we can judge whether
problem P1 has a solution or not and get Lemma 3.

Lemma 3. Problem P1 is feasible.

Proof. See Appendix B.

Remark 4. When vk > κCkf
2
k,l, i.e., the energy consumed per

bit by offloading is more than the energy consumed per bit
by local execution. More bits will be processed in the local
device to save energy. That is why ek decreases monotonically
with the increase of αk,l. In the second case of Lemma 2,
vk < κCkf

2
k,l, i.e., the energy consumed per bit by offloading

is less than the energy consumed per bit by local execution.
More bits will be processed by offloading to save energy. That
is why ek increases monotonically with the increase of αk,l.

Remark 5. According to Lemma 1, vk increases monotoni-
cally with the increase of pk,tx. From equation (4), a larger
rk is due to a larger pk,tx and a larger pk,tx induces a larger
rk. Wherefore, the larger is rk, the larger is vk. According to
equation (15), when vk becomes larger, Ek becomes larger.
Thus, Ek increases with the increase of rk, i.e., the energy con-
sumption of SMDs increases with the increase of rk. In other
words, the SMD will consume more energy when having a
higher offloading rate.

Substituting equation (13) into inequality (14b), we get

tcomp
k,l ≤ Tk,
tk,s ≤ Tk,
tk,m ≤ Tk:

8>><
>>: ð21Þ

In order to simplify problem P2, tk,s and tk,m are com-
pared and then, problem P2 becomes problem P2.1 and
problem P2.2.

When tk,s ≥ tk,m, i.e., the delay of SBS computing is larger
than MBS computing, problem P2 becomes problem P2.1,
which is written as

P2:1 : min
αk ,fs

〠
K

k=1
αk,l DkCkκf

2
k,l −

Dkpk,tx
rk

� �
, ð22aÞ

s:t:tcomp
k,l ≤ Tk, ð22bÞ
tk,s ≤ Tk, ð22cÞ
tk,s ≥ tk,m, ð22dÞ

17cð Þ − 17gð Þ: ð22eÞ
When tk,s < tk,m, i.e., the delay of MBS computing is larger

than that in SBS computing, problem P2 becomes problem
P2.2, which can be written as

P2:2 : min
αk ,fs

〠
K

k=1
αk,l DkCkκf

2
k,l −

Dkpk,tx
rk

� �
, ð23aÞ

s:t: tcomp
k,l ≤ Tk, ð23bÞ
tk,m ≤ Tk, ð23cÞ
tk,s < tk,m, ð23dÞ

17cð Þ − 17gð Þ: ð23eÞ
According to Lemma 2, three cases are dealt with, respec-

tively, to solve problem P1.
(1) vk > κCkf

2
k,l: when the energy consumed per bit by off-

loading is more than the energy consumed per bit by local
execution, the following derivations exist.

Lemma 6. Both problems P2.1 and P2.2 have the same opti-
mal local task load α∗k,l as

α∗k,l =
f k,lTk

DkCk
: ð24Þ

Proof. From inequalities (22b) and (23b), αk,l ≤ ð f k,lTk/DkCkÞ
is obtained. In the light of the first case of Lemma 2, ek
decreases monotonously with the increase of αk,l. Wherefore,
we take α∗k,l = ð f k,lTk/DkCkÞ.

Remark 7. According to equation (24), the local workload is
related to local computation ability and the task delay
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constraint. Larger local computation ability brings a larger
local workload. In order to save energy, SMDs will process
as many bits as possible locally if the processing latency meets
the task delay constraint. Looser delay constraint brings the
SMD a larger local workload. Looser delay constraint means
that the local device has more time to execute the task and
thus process more bits locally to save energy.

Lemma 8. Define α∗k,s, α
∗
k,m, and f ∗k,s as the optimal SBS work-

load, MBS workload, and computation ability allocated from
SBS, respectively. When vk > κCkf

2
k,l, both problem P2.1 and

problem P2.2 have

α∗k,s =
ϕf ∗k,s
Ck

α∗k,m, ð25Þ

f ∗k,s = βkF: ð26Þ
Proof. See Appendix C.

Remark 9. According to equation (25), α∗k,s is related to back-
haul link delay coefficient ϕ and the computation ability f ∗k,s
allocated from SBS. When much SBS computation ability is
allocated to k-SMD or backhaul link delay is large, the SBS
workload will be large. In other words, the task will be exe-
cuted prior in SBS unless MBS execution costs less time.

When vk > κCkf
2
k,l , based on Lemma 6 and Lemma 8, the

solution of problem P2 can be obtained as Theorem 10.

Theorem 10. The optimal workload distribution α∗k and the
optimal allocation of SBS computation ability f∗s can be
obtained as

f ∗k,s = βkF, ð27Þ

α∗k,l =
f k,lTk

DkCk
,

α∗k,s =
ϕf ∗k,s DkCk − f k,lTk

� �
CkDk Ck + ϕf ∗k,s

� �
α∗k,m = DkCk − f k,lTk

Dk Ck + ϕf ∗k,s
� � :

8>>>>>>>>><
>>>>>>>>>:

, ð28Þ

Proof. Substituting equations (24)–(26) into equation (17d),
the optimal allocation of SBS computation ability and the
optimal workload distribution can be obtained.

In the light of Remark 5, the optimal transmission rate r∗k
can be calculated by Lemma 11 and then, problem P3 can
be solved.

Lemma 11. Problem P2.1 and problem P2.2 have the same
optimal transmission rate r∗k as

r∗k =
1 − α∗k,l
� �

Dk

Tk − α∗k,sDkCk/f ∗k,s
: ð29Þ

Proof. According to inequalities (C.3) and (C.9), we choose
the lower boundary of rkas r

∗
k for saving energy. Considering

Lemma 8, r∗k of problems P2.1 and P2.2 are same and equa-
tion (29) is obtained.

Then, substituting equation (29) into equation (4), we
attain the optimal solution of problem P3 by Theorem 12.

Theorem 12. The optimal transmission power p∗k,tx is given by

p∗k,tx =
N0

gk
2

1−α∗
k,lð ÞDk

B Tk−α
∗
k,sDkCk / f

∗
k,sð Þ − 1

0
B@

1
CA: ð30Þ

Remark 13. As can be seen from equation (30), smaller α∗k,l
and larger α∗k,s induce larger k-SMD’s transmission power
p∗k,tx . When the proportion of the task executed locally is
small, the offloading rate should be large enough to meet
the task delay constraint, which results in large transmission
power. Similarly, larger α∗k,s means more bits will be processed
in SBS and means a larger offloading rate, which accounts for
larger transmit power.

(2) vk < κCkf
2
k,l: when the energy consumed by offloading

per bit is less than the energy consumed by local execution
per bit, offloading will be prior to local execution for saving
energy, i.e., smaller αk,l will be better for saving energy.

Considering problem P2.1, we have the optimal local
workload as Lemma 14.

Lemma 14. The optimal αk,l of problem P2.1 can be given by

αk,l = 1 −
Tkrk
Dk

+ αk,sCkrk
f k,s

: ð31Þ

Proof. We have αk,l ≥ 1 − ðTkrk/DkÞ + ðαk,sCkrk/f k,sÞ by
substituting equations (5), (8), and (9) into inequality (22c).
Smaller αk,l leads to less energy consumption of k-SMD.
Therefore, we take αk,l = 1 − ðTkrk/DkÞ + ðαk,sCkrk/f k,sÞ:

Similarly to Lemma 14, we obtain the optimal local work-
load of problem P2.2 as Lemma 15 using inequality (23c).

Lemma 15. The optimal αk,l of problem P2.2 can be calcu-
lated as

αk,l = 1 −
Tkrk
Dk

+ ϕαk,mrk: ð32Þ

Lemma 16. When vk < κCkf
2
k,l, the optimal MBS workload

α∗k,m and SBS workload α∗k,s have

α∗k,m = Ck

ϕf k,s
α∗k,s: ð33Þ
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Proof. Considering problem P2.1, we obtain tk,s ≥ tk,m,
where αk,s ≥ ðϕf k,s/CkÞαk,m is attained according to equa-
tions (9) and (11). From equation (31), smaller ðαk,s/f k,sÞ
will be better for saving energy. Thus, we take αk,s =
ðϕf k,s/CkÞαk,m: Considering problem P2.2, we get αk,m >
ðCk/ϕf k,sÞαk,s from tk,s < tk,m.

According to equation (32), smaller αk,m brings smaller
αk,l and saves more energy. In addition, αk,m can approach
ðCk/ϕf k,sÞαk,s as much as possible because of the continuity
of αk,m: Hence, we obtain α∗k,m = ðCk/ϕf k,sÞα∗k,s.

Remark 17. There always exists α∗k,s = ðϕf k,s/CkÞα∗k,m whether

vk is larger than κCkf
2
k,l or not. It indicates that the energy

consumed by offloading per bit has nothing to do with the
relation between α∗k,s and α∗k,m. The relation depends on the
computation ability allocated from SBS and transfer delay
of backhaul link, i.e, the distribution of workload between
SBS and MBS is decided jointly by the computation ability
allocated from SBS and MBS time cost.

Remark 18. Based on Lemma 14, Lemma 15, and Lemma 16,
we easily find that problem P2.1 and problem P2.2 have the
same optimal αk,l. In other words, the optimal workload of
local devices α∗k,l is independent of the workload distribution
between SBS and MBS.

Remark 19. In the second case of Lemma 2, problem P2.1
and problem P2.2 have the same optimal local workload
α∗k,l and same relation between α∗k,s and α∗k,m. Therefore,
according to equation (17d), problem P2.1 and problem
P2.2 have the same optimal solution about α∗k :

Based on Remark 19, the solution of problem P2 can be
obtained by Theorem 20.

Theorem 20. When vk < κCkf
2
k,l, the optimal computation

ability allocation from SBS f ∗k,s and the optimal workload dis-
tribution α∗k among SMDs, SBS, and MBS can be attained as

f ∗k,s = βkF, ð34Þ

α∗k,l = 1 −
Tkrk
Dk

+ CkTkϕr
2
k

Dk ϕCkrk + Ck + ϕf ∗k,s
� � ,

α∗k,s =
Tkrkϕf

∗
k,s

Dk ϕCkrk + Ck + ϕf ∗k,s
� � ,

α∗k,m = TkrkCk

Dk ϕCkrk + Ck + ϕf ∗k,s
� � :

8>>>>>>>>><
>>>>>>>>>:

ð35Þ

Proof. Substituting equations (31) and (33) into equation
(17d), the optimal workload distribution α∗k can be obtained.
In addition, from equation (31), αk,l decreases with the
increase of f k,s. A larger f k,s brings a smaller αk,l and saves
more energy. Thus, we take f ∗k,s = βkF.

Considering problem P3, we substitute equations (34)
and (35) into Ek and get the optimal transmit power p∗k,tx as
Theorem 21.

Theorem 21. When vk < κCkf
2
k,l, the optimal transmission

power p∗k,tx is

p∗k,tx =min p, v−1k κCkf
2
k,l

� �� �
, ð36Þ

where ðdQ/dpk,txÞjpk,tx=p = 0 and v−1k denotes the inverse func-

tion of vkQ is defined as

Q = Tkpk,tx − κCkf
2
k,lTkrk

ϕCkrk + Ck + ϕf k,s
: ð37Þ

Proof. See Appendix D.

It is difficult to solve v−1k and ðdQ/dpk,txÞjpk,tx=p = 0. Hence,

some tools are used to get the optimal transmission power
p∗k,tx . In the first step, we use MATLAB to get the maximum

transmission power pendk,tx from pendk,tx = v−1k ðκCkf
2
k,lÞ. In the

second step, we use the binary search technique to search
the optimal transmit power p∗k,tx between 0 and pendk,tx for min-
imizing Q. The variables e, d, and pmid

k,tx denote the search
error, search interval, and interval midpoint, respectively.
The search is not stopped until d < e. The detailed search pro-
cess is summarized in Algorithm 1.

(3) vk = κCkf
2
k,l: when vk = κCkf

2
k,l, i.e., ek = 0, αk,l cannot

change ek. In this case, the energy consumed per bit by local
execution equals the energy consumed per bit by offloading.
Offloading cannot reduce energy consumption of task execu-
tion. We choose to execute tasks in local devices or the entire

Input: error e, start point pstartk,tx , end point pendk,tx
Output:p∗k,tx
Initialization:

pstartk,tx = 0
pendk,tx = v−1k ðκCkf

2
k,lÞ

pmid
k,tx =

pstartk,tx + pendk,tx
2

d = pendk,tx − pstartk,tx
1: while d > e do
2: if Qðpmid

k,tx − e/2 Þ ≥Qðpmid
k,tx + e/2Þ then

3: pstartk,tx = pmid
k,tx

4: else
5: pendk,tx = pmid

k,tx
6: d = pendk,tx − pstartk,tx

7: pmid
k,tx =

pstartk,tx + pendk,tx
2

8: return pmid
k,tx

Algorithm 1: Binary search for p∗:k,tx
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offloading to minimize execution latency and get the follow-
ing Theorem 22.

Theorem 22. (1) When tallk,l ≤ t∗k,of f , the task will be executed
entirely by the local device and have

f ∗k,s = 0,
p∗k,tx = 0,
α∗k,l = 1,
α∗k,s = 0,
α∗k,m = 0:

8>><
>>:

ð38Þ

(2) When tallk,l > t∗k,off , the task will be executed entirely by
offloading and have

f ∗k,s = βkF,

p∗k,tx = v−1k κCkf
2
k,l

� �
,

α∗k,l = 0,

α∗k,s =
ϕf ∗k,s

Ck + ϕf ∗k,s
,

α∗k,m = Ck

Ck + ϕf ∗k,s
:

8>>>>>><
>>>>>>:

ð39Þ

In (1) and (2), the latency of local execution entirely is
denoted as tallk,l and t

all
k,l = ðDkCk/f k,lÞ. The minimum offloading

latency is denoted as t∗k, off and t∗k,off = ðDk/Blog2ð1 +
ðv−1k ðκCkf

2
k,lÞgk/N0ÞÞÞ + ðϕDkCk/Ck + ϕf ∗k,sÞ:

Proof. See Appendix E.

By now, the optimal solution of problem P1 is given
by the theorems and the procedure is described in
Algorithm 2.

3.3. Analysis of Special Cases. From the first four theorems,
we not only consider energy minimization but also

consider the delay constraint. That is why we still allocate
resources when we know the case with the least energy
consumption.

In Theorem 22, we only consider the latency. In this
case, energy consumed per bit by offloading equals the
energy consumed per bit by local execution, i.e., the offload-
ing will not reduce energy consumption of the task execu-
tion. We cannot use the offloading to reduce SMDs’ energy
consumption. However, we can choose the solution with
the least delay to try to improve users’ QoE. Wherefore, we
choose to execute the task either locally or remotely accord-
ing to the latencies of the task execution in the local device
and offloading.

4. Numerical Results

In this section, numerical results are given to evaluate the
performances of the proposed EERA scheme, as compared
to the following baseline schemes.

(i) Local Computing Only: all SMDs perform their own
tasks by only local computing

(ii) Full Offloading: all SMDs accomplish their own
tasks by fully offloading

(iii) Computing without MBS: the tasks are performed
only by local devices and SBS server. Resource allo-
cation for minimizing all SMDs’ energy consump-
tion only takes place on local devices and the SBS
server

Some parameters are set as follows unless stated
otherwise. The tasks models of all SMDs are set to
be identical, i.e., Dk = 10 kbits [15], Ck = 1000 cycles/bit
[15], and Tk = 2ms ðk ∈KÞ [9]. The local computation
capability f k,l equals 5 × 108 cycles/s [33]. The energy
coefficient of local computation κ is 10−28 [15]. The
maximum transmission power pmax

k is 0.1 watts [6].
The computation capability of the SBS server is 8 × 1
09 cycles/s [34]. The backhaul time delay coefficient
ϕ is set to be 1:25 × 10−8 sec/bit [24]. We consider a
Rayleigh fading channel model, and the channel gain
gk = λ�gk. λ is an independent exponential random

Step 1: According to Theorem 10 and Theorem 12, calculate
α∗k , f∗s and p∗tx .
Step 2: Based on equation (19), compute v∗k by substituting
the results of Step 1.
Step 3:
if v∗k < κCkf

2
k,l then

recompute α∗k f ∗k,s and p∗k,tx according to Theorem 20
and Theorem 21.
else if v∗k = κCkf

2
k,l then

recompute α∗k f ∗k,s and p∗k,tx according to Theorem 22.

Algorithm 2: The Main Process of the Energy-Efficient Resource Allocation Scheme
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variable of unit mean. �gk follows the free-space path
loss model as

�gk = Ad
3 × 108
4πf cdk

� �de

, ð40Þ

where Ad = 4:11 denotes the antenna gain, f c = 915
MHz denotes the carrier frequency, dk = 18m denotes
the distance from the SBS to k-SMD [6], and de =
2:8 denotes the path loss exponent. The channel band-
width B is 2MHz [31].

4.1. Performances of EERA. In this subsection, we analyze
the performances of EERA compared with local-comput-
ing-only, full-offloading, and computing-without-MBS.
Figures 2–5 present the energy consumption of SMDs
under different conditions. It is shown that the proposed
EERA achieves the lowest energy consumption among those
four methods.

Figure 2 plots the sum energy consumption of all
SMDs versus the user number K . It is shown that the
energy consumption by all the schemes increases as the
user number grows. Besides, the energy consumption of
computing-without-MBS is close to full-offloading when
the user number is less than 15 while close to local-
computing-only when the user number is greater than
15. The reason is that the computation resource that each
user obtains from the SBS server becomes less as the user
number increases. And SMDs process more bits locally
for meeting the tasks’ deadline. It is also observed that

EERA outperforms the other schemes. This is because EERA
has more computation capacity thanks to the MBS server.
And lower execution latency gives more time to offload
computation bits.

Figure 3 depicts the sum energy consumption of all
SMDs versus the computation tasks size D. It is shown that
the energy consumption by the four schemes rises with the
computation task size growth. When the computation task
size is small, the energy consumption of computing-
without-MBS is less than that of local-computing-only and
more than that of full-offloading. When the computation
task size is large, computing-without-MBS is close to full off-
loading. It indicates that the number of local computation
bits decreases with the computation task size increase under
the task latency constraints. The energy consumption of
EERA is the least among these methods. In addition, the gap
between EERA and full-offloading is gradually widening
when the computation task size is less than 9.45 kbits and
narrowing when the computation task size is greater than
9.45 kbits. The reason is that offloading consumes less
energy and EERA processes more bits by offloading when
the computation task size is small. To meet the task latency
demand, more bits are offloaded when the computation task
size grows.

Figure 4 shows the sum energy consumption versus the
channel bandwidth B. As we can see, with the increase of
the channel bandwidth, the energy consumption by local-
computing-only remains invariant while other schemes
decrease. The reason is that local-computing-only has noth-
ing to do with offloading. However, other schemes can
reduce transmit power owing to a bigger bandwidth under
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Figure 2: Energy consumption versus user number.
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time delay constraints. The gap between full-offloading
and computing-without-MBS is widening as the channel
bandwidth grows. Full-offloading has more computation

capability than computing-without-MBS and has lower
execution latency, which leaves more time for offloading
and lowers the transmit power. EERA is gradually close
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to full-offloading as the channel bandwidth rises. It indi-
cates that EERA processes more bits by offloading when
the channel bandwidth is widening.

Figure 5 shows the sum energy consumption versus dis-
tance from the SBS to users. It is observed that these schemes
except local-computing-only rise when the distance becomes
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Figure 5: Energy consumption versus the distance from the SBS to users.
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larger. Similar to Figure 4, local-computing-only has nothing
to do with the communication distance. Longer distance
leads to a larger path loss, which needs high transmit power
to meet the time delay constraint. It is shown that the energy
consumption by EERA is less than computing-without-MBS.

That is because the existence of the MBS server lowers the
execution latency and the transmit power. Moreover, the
gap between EERA and full-offloading is widening. It illus-
trates that the offloading bit number becomes less owing to
the longer communication distance.
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4.2. Impacts of Backhaul Time Delay Coefficient ϕ. In this
subsection, we analyze the energy consumption with respect
to the backhaul time delay coefficient in different conditions,
e.g., the varying latency constraint, the varying user number,
and the varying computation task size.

Figure 6 plots the sum energy consumption of all SMDs
in different backhaul time delay coefficients ϕ versus the exe-
cution latency constraints. It is shown that the energy con-
sumption decreases as the execution latency increases. The
reason is that more time will be used to offload. And the
low transmit power is allowed when the execution latency
constraints relax.

Figure 7(a) shows the energy consumption versus user
number under different ϕ. Figure 7(b) depicts the energy
consumption versus computation task size given different ϕ.
Combined with Figure 6, it is observed that a larger backhaul
time delay coefficient results in larger energy consumption
with the rise of the execution latency, user number, and com-
putation task size. The reason is that a larger backhaul time
delay coefficient increases the execution time and reduces
the offloading time. Thus, transmit power increases for satis-
fying the task latency constraints.

5. Conclusion

In this paper, we investigated resource allocation mecha-
nisms for three-tier MEC architecture in heterogeneous net-
works. We considered that both MBS and SBS are integrated
with MEC servers and are combined with local devices to
form a three-tier computing architecture. Each task from
SMDs can be divided into three parts. SMDs, SBS, and
MBS perform a part of the task, respectively. We formulated
an optimization problem to minimize all SMDs’ energy
consumption under the time delay constraints. To improve
the efficiency of resource allocation, we proposed an EERA
mechanism based on the variable substitution technique,
which jointly optimized the computation and radio resources.
The optimal workload placement strategy among SMDs,
SBS, and MBS was derived. And the optimal computation
capability allocation and SMDs’ transmit power were
obtained. Finally, numerical simulation results are presented.
Compared with the benchmark schemes, the proposed
EERA scheme can reduce the SMDs’ energy consumption
significantly.

Appendix

A. Proof of Lemma 1

Substituting equation (4) into equation (19), we rewrite vk as

vk =
pk,tx
rk

= pk,tx
Blog2 1 + pk,txgk/N0

� �� � : ðA:1Þ

The derivative of rk with respect to transmit power pk,tx is
denoted as rk′ and it can be calculated as

rk′ =
drk
dpk,tx

= Bgk

N0 + pk,txgk
� �

ln 2 : ðA:2Þ

Based on equation (A.2), the derivative of vk is

dvk
dpk,tx

= rk − rk′pk,tx
p2k,tx

= Blog2 1 + pk,txgk/N0
� �� �

− Bgkpk,tx/ N0 + pk,txgk

� �
ln 2

p2k,tx
:

ðA:3Þ

Define Z as

Z = B log2 1 + pk,txgk
N0

� �
−

Bgkpk,tx
N0 + pk,txgk
� �

ln 2 : ðA:4Þ

Furthermore, we get the derivative of Z as

dZ
dpk,tx

= Bgk
N0 + pk,txgk
� �

ln 2 −
BgkN0

N0 + pk,txgk
� �2 ln 2

= Bpk,txg
2
k

N0 + pk,txgk
� �2 ln 2

:

ðA:5Þ

Obviously, ðdZ/dpk,txÞ ≥ 0 and Z increases with the
increase of pk,tx. In addition, Z = 0 when pk,tx = 0. Thus,
Z ≥ 0 exists. Then, we have ðdvk/dpk,txÞ ≥ 0 and vk increases
monotonically with the increase of pk,tx. The Proof is
completed.

B. Proof of Lemma 3

The energy consumption should be semipositive, i.e., Ek ≥ 0
always holds. According to Lemma 2, we have the following
three cases:

(1) In the first case of Lemma 2, i.e., ðpk,tx/rkÞ > κCkf
2
k,l.

From equation (16), we assume

Ek = αk,l DkCkκf
2
k,l −

Dkpk,tx
rk

� �
+ Dkpk,tx

rk
≥ 0: ðB:1Þ

Then, we obtain

αk,l ≤
Dkpk,tx/rk

Dkpk,tx/rk −DkCkκf
2
k,l
: ðB:2Þ
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Define M as

M = Dkpk,tx/rk
Dkpk,tx/rk −DkCkκf

2
k,l
: ðB:3Þ

It is easy to get M ≥ 1. According to inequality (14f),
αk,l ∈ ½0, 1�, i.e., αk,l ≤M always holds.

(2) In the second case of Lemma 2, i.e., ðpk,tx/rkÞ < κCk

f 2k,l. It is similar to the first case and there exists
αk,l ∈ ½0, 1�.

(3) In the third case of Lemma 2, i.e., ðpk,tx/rkÞ = κCkf
2
k,l.

It is obvious that Ek ≥ 0.

Based on above (1), (2), and (3), problem P1 is feasible.
The Proof is completed.

C. Proof of Lemma 8

(1) Problem P2.1

Substituting equations (5), (8), and (9) into inequality
(22c), we obtain

ttransk,l + tcomp
k,s ≤ Tk,

αk,s + αk,mð ÞDk

rk
+ αk,sDkCk

f k,s
≤ Tk:

ðC:1Þ

According to equation (17d), we substitute αk,s + αk,m
for 1 − αk,l and get

1 − αk,lð ÞDk

rk
+ αk,sDkCk

f k,s
≤ Tk: ðC:2Þ

Then, get the inequality about rk as

rk ≥
1 − αk,lð ÞDk

Tk − αk,sDkCk/f k,s
: ðC:3Þ

In the light of Lemma 1 and Remark 5, smaller vk
induces smaller Ek and smaller rk induces smaller vk.
Wherefore, rk should better be small to save energy.
ðαk,s/f k,sÞ should better be small to make the lower
boundary of rk small. From inequality (17c), we take
f ∗k,s = βkF.

Considering tk,s ≥ tk,m, from equations (9) and (11),
we get

ttransk,l + tcomp
k,s ≥ ttransk,l + ttransk,m : ðC:4Þ

Eliminating ttransk,l , we rewrite the equation (C.4) as

tcomp
k,s ≥ ttransk,m ,

αk,sDkCk

f k,s
≥ ϕDkαk,m,

αk,s ≥
ϕf k,s
Ck

αk,m:

ðC:5Þ

We take αk,s = ðϕf k,s/CkÞαk,m for getting small ðαk,s/f k,sÞ.

(2) Problem P2.2

Substituting equation (11) into inequality (23c), we
get

ttransk,l + ttransk,m ≤ Tk: ðC:6Þ

From equations (5) and (10), we rewrite (C.6) as

αk,s + αk,mð ÞDk

rk
+ ϕDkαk,m ≤ Tk: ðC:7Þ

Based on equation (17d), we substitute αk,s + αk,m for
1 − αk,l and get

1 − αk,lð ÞDk

rk
+ ϕDkαk,m ≤ Tk: ðC:8Þ

And thus, the lower boundary of rk can be obtained as

rk ≥
1 − αk,lð ÞDk

Tk − ϕDkαk,m
: ðC:9Þ

We take αk,m as small as possible to make rk small for
saving energy. Considering tk,s < tk,m, from equations
(9) and (11), we get

ttransk,l + tcomp
k,s < ttransk,l + ttransk,m , ðC:10Þ

14 Wireless Communications and Mobile Computing



where we obtain the lower boundary of αk,m as

αk,m > αk,sCk

ϕf k,s
: ðC:11Þ

According to the continuity of αk,m, ∀δ > 0, there always
exists a αk,m that makes 0 < αk,m − ðαk,sCk/ϕf k,sÞ < δ. Thus,
we take αk,m = ðCk/ϕf k,sÞαk,s. In addition, αk,m decreases with
the increase of f k,s. From inequality (17c), we take f ∗k,s = βkF.

Given above cases (1) and (2), both problems P2.1 and
P2.2 have α∗k,m = ðCk/ϕf ∗k,sÞα∗k,s and f ∗k,s = βkF. The Proof is
completed.

D. Proof of Theorem 21

Based on Theorem 20, we substitute α∗k,l into equation (16)
and get

Ek = 1 − Tkrk
Dk

+ ϕTkCkrk
2

Dk ϕCkrk + Ck + ϕf k,s
� �

 !

× DkCkκf
2
k,l −

Dkpk,tx
rk

� �
+ Dkpk,tx

rk

=DkCkκf
2
k,l +

Tkpk,tx − κCkf
2
k,lTkrk

ϕCkrk + Ck + ϕf k,s
Ck + ϕf k,s
� �

:

ðD:1Þ

For simplifying equation (D.1) and getting the optimal
transmission power p∗k,tx, we define Q as

Q = Tkpk,tx − κCkf
2
k,lTkrk

ϕCkrk + Ck + ϕf k,s
: ðD:2Þ

In equation (D.1), a smallerQ induces a smaller Ek. Thus,
we will try to minimize Q by optimizing pk,tx.

Furthermore, for simplifying the expression of Q, we set
A = Ck + ϕf k,s and D = κCkf

2
k,lTk. Thus, Q can be rewritten as

Q = Tkpk,tx −Drk
ϕCkrk + A

: ðD:3Þ

Then, the derivative of Q can be calculated as

dQ
dpk,tx

= ATk + TkϕCkrk − AD + ϕCkTkpk,tx
� �

rk′
ϕCkrk + Að Þ2 : ðD:4Þ

Define M as

M = ATk + TkϕCkrk − AD + ϕCkTkpk,tx
� �

rk′: ðD:5Þ

The second derivative of rk is computed as

d2rk
dpk,tx2

= −
Bg2k

N0 + pk,txgk
� �2 ln 2

: ðD:6Þ

Obviously, the second derivative of rk is negative. The
derivative of M is obtained as

dM
dpk,tx

= − AD + ϕCkTkpk,tx
� �

rk′′: ðD:7Þ

In the light of equation (D.6), equation (D.7) shows that
the first derivative of M is positive. Hence, M increases
monotonously with the increase of pk,tx . When pk,tx = 0,

M 0ð Þ = ATk −
ADBgk
N0 ln 2 = ATk 1 − κCkf

2
k,lBgk

N0 ln 2

 !
: ðD:8Þ

For simplifying expressions, define a = ðκCkf
2
k,lBgk/

N0 ln 2Þ and there exists two cases according to the value
of a.

(1)WhenMð0Þ ≥ 0, i.e., a ≤ 1, this case does not exist. We
prove this case by contradiction in the following. Firstly,
suppose this case is feasible, then, we have

κCkf
2
k,lBgk

N0 ln 2 ≤ 1,

κCkf
2
k,l ≤

N0 ln 2
Bgk

:

ðD:9Þ

According to vk < κCkf
2
k,l, we get

vk < κCkf
2
k,l ≤

N0 ln 2
Bgk

: ðD:10Þ

From equations (4) and (19), we obtain

pk,tx
rk

< N0 ln 2
Bgk

,

pk,tx
B log2 1 + pk,txgk/N0

� �� � < N0 ln 2
Bgk

,

pk,txgk
N0

< ln 1 + pk,txgk
N0

� �
:

ðD:11Þ

For simplifying the expression, we set x = ðpk,txgk/N0Þ
and y = x − ln ð1 + xÞ. Then, the first derivative of y is
given by

dy
dx = x

1 + x
, ðD:12Þ

where x = ðpk,txgk/N0Þ ≥ 0 that makes ðdy/dxÞ ≥ 0. Thus, y
increases with the increase of x. Moreover, yjx=0 = 0.
Wherefore, y ≥ 0 and x ≥ ln ð1 + xÞ, i.e., ðpk,txgk/N0Þ ≥ ln ð
1 + ðpk,txgk/N0ÞÞ. It is in conflict to inequality (D.11).
Thus, this case does not exist

(2) When Mð0Þ < 0, i.e., a > 1, we define p that makes
ðdQ/dpk,txÞjpk,tx=p = 0. Q decreases when pk,tx ∈ ð0, pÞ and

15Wireless Communications and Mobile Computing



increases when pk,tx ∈ ðp,+∞Þ. According to vk < κCkf
2
k,l,

we have

p∗k,tx =
p, p

rk
< κCkf

2
k,l,

v−1k κCkf
2
k,l

� �
, p

rk
≥ κCkf

2
k,l:

8>><
>>: ðD:13Þ

Wherefore, from Lemma 1, p∗k,tx =min fp, v−1k ðκCkf
2
k,lÞg.

The Proof is completed

E. Proof of Theorem 22

When tasks are executed entirely by local devices, substitut-
ing αk,l = 1 into equation (1), we obtain the execution latency
tallk,l as

tallk,l =
DkCk

f k,l
: ðE:1Þ

When tasks are offloaded entirely, according to vk =
κCkf

2
k,l, the transmission power is v−1k ðκCkf

2
k,lÞ. Substitute

it into equation (4), and get the offloading rate as

rk = B log2 1 + v−1k κCkf
2
k,l

� �
gk

N0

 !
: ðE:2Þ

Then, the offloading latency ttransk,l can be obtained as
ttransk,l = ðDk/rkÞ. Substituting ttransk,l into equations (9) and
(11), we get the offloading latency tk,off as

tk,off = max tk,s, tk,m
� �

: ðE:3Þ

We decompose equation (E.3) into two cases, i.e.,
tk,s ≥ tk,m and tk,s < tk,m.

When tk,s ≥ tk,m, i.e., the delay from SBS is larger than the
delay from MBS, tk,off = tk,s and minimizing tk,off becomes
minimizing tk,s. From equation (17d), we obtain

αk,s ≥
ϕf k,s

Ck + ϕf k,s
: ðE:4Þ

According to equation (8), a smaller αk,s brings a smaller
tk,s and thus a smaller tk,off . Wherefore, we take

αk,s =
ϕf k,s

Ck + ϕf k,s
: ðE:5Þ

Substituting equation (E.5) into equation (17d), we get

αk,m = Ck

Ck + ϕf k,s
: ðE:6Þ

When tk,s < tk,m, interestingly, it is similar to tk,s ≥ tk,m
and we also get equations (E.5) and (E.6). Based on the above
derivations, we attain that tk,off is smallest when tk,s = tk,m.

Substituting equations (E.5) and (E.6) into equation
(E.3), we obtain the optimal latency of total offloading t∗k,off as

t∗k,off =
Dk

Blog2 1 + v−1k κCkf
2
k,l

� �
gk/N0

� �� � + ϕDkCk

Ck + ϕf k,s
,

ðE:7Þ

where we take f k,s = βkF to minimize t∗k,off .
Wherefore, (1) when tallk,l ≤ t∗k,off , we choose entire local

execution to minimize the execution latency, i.e., α∗k,l = 1,
α∗k,s = 0, α∗k,m = 0, p∗k,tx = 0, and f ∗k,s = 0; (2) when tallk,l > t∗k,off ,
we choose entire offloading, i.e, α∗k,l = 0, α∗k,s = ððϕf k,sÞ/ðCk

+ ϕf k,sÞÞ, α∗k,m = ððCkÞ/ðCk + ϕf k,sÞÞ, p∗k,tx = v−1k ðκCkf
2
k,lÞ,

and f ∗k,s = βkF.
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