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Here, a high-precision mutual coupling coefficient estimation method is proposed that is more suitable for adaptive beamforming
than traditional algorithms. According to the relationship between the designed transition matrix and the signal, the proposed
algorithm selects the transition matrix corresponding to the high-power signal. The high-precision estimation of the mutual
coupling coefficient is obtained by using the selected transition matrix estimation, which yields relatively good estimation
accuracy for the mutual coupling coefficient when the desired signal-to-noise ratio (SNR) is low and relatively robust adaptive
beamforming with unknown mutual coupling. Simulation results demonstrate the validity of the proposed method.

1. Introduction

Signal processing technology, such as direction of arrival
(DOA) and robust adaptive beamforming (RAB), has been
widely used in radar, sonar, communication, etc. [1–7]. As
a kind of array error, mutual coupling seriously affects the
performance of various signal processing algorithms [8–11].
To avoid the influence of mutual coupling, a middle
subarray-based (MSB) approach is proposed in [12], and a
maximum interelement spacing constraint (MISC) array is
designed in [13]. In addition, many algorithms for calibrating
mutual coupling have been proposed. Since the mutual cou-
pling matrix (MCM) can be modeled as a banded symmetric
Toeplitz matrix for a uniform linear array (ULA), a subspace-
based method is proposed in [14], and a fourth-order cumu-
lant- (FOC-) based method is proposed in [15]. In addition,
an iterative autocalibration algorithm based on the eigende-
composition of the sampling covariance matrix for a uniform
circular array (UCA) is proposed to calibrate unknown
mutual coupling since the MCM has a complex symmetric
circular Toeplitz structure in a UCA in [16]. Furthermore, a
joint DOA estimation and mutual coupling self-calibration
for ULA-based bistatic multiple-input-multiple-output
(MIMO) radar is proposed in [17]. Based on [16], a parame-

ter estimation method for direction-dependent mutual cou-
pling is proposed in [18]. However, the MSB approach
reduces the degree of freedom (DOF) of the array, and the
complex structure of the MISC array increases the difficulty
of signal processing, while the subspace-based method in
[14] constructs a high-dimensional matrix, and the algorithms
proposed in [16, 18] both need an iterative process. To reduce
the computational complexity in estimating mutual coupling,
two low-complexity algorithms for direction-dependent
mutual coupling and direction-independent mutual coupling
were proposed in [19, 20], respectively.

To improve the robustness of adaptive beamforming in
the presence of unknown mutual coupling, a middle subar-
ray-plus-reconstruction-based (MSRB) method combining
the MSB algorithm with interference-plus-noise covariance
matrix (INCM) reconstruction [21] is proposed in [22].
However, the MSRB approach requires a large array aperture
for high performance. Similarly, the desired signal steering
vector with unknown mutual coupling is calibrated by using
the specific structure of the MCM, and the new beamfor-
mer is obtained by combining a diagonal loading beamfor-
mer with the desired signal steering vector estimation [11].
To reduce the computational load, a subspace-plus-recon-
struction-based (SRB) beamformer is then designed by
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incorporating the subspace-based mutual coupling coeffi-
cient estimation method [14], and INCM reconstruction is
designed in [10]. Obviously, the algorithms proposed in
[20] can be utilized to design beamformers to further reduce
the computational load. However, the algorithm proposed in
[20] cannot obtain a high accuracy for the mutual coupling
coefficients when there is a high power difference between
signals since the accuracy of the subspace-based method is
positively correlated with the signal-to-noise ratio (SNR).

To further improve the robustness of adaptive beam-
forming to unknown mutual coupling, a novel subspace-
based algorithm is proposed to estimate mutual coupling
coefficients and is utilized to design a novel adaptive beam-
former. Different from the algorithms proposed in [20], we
add the process of selecting several suitable transitional
matrices and calculating their inverses. After estimating a
group of transitional matrices, we select the transitional
matrix corresponding to the maximum spectral peak to esti-
mate the mutual coupling coefficient vector and the MCM.
Then, the signal steering vector is calibrated with the esti-
mated MCM. Finally, by combining the estimated MCM
and the INCM reconstruction, we propose a novel adaptive
beamforming algorithm. According to simulation, compared
with several existing approaches, the proposed mutual cou-
pling estimation method has a higher estimation accuracy,
especially in the case of SNR differences between several sig-
nals. The designed beamformer is more robust than the exist-
ing beamformer to mutual coupling.

2. Signal Mode

We assume that a ULA of N sensors is impinged by L nar-
rowband uncorrelated signals, and the noise is additive white
Gaussian noise. We assume that the signal and noise are sta-
tistically independent. When the direction-independent
mutual coupling effect is considered, the received snapshot
at the kth time instant can be expressed as

x kð Þ = xs kð Þ + n kð Þ = C〠
L

l=1
sl kð Þa θlð Þ + n kð Þ, ð1Þ

where xsðkÞ and nðkÞ stand for the N × 1 vector of the signal
and noise, respectively. θl is the lth signal DOA, and slðkÞ and
aðθlÞ ∈ℂN×1 are the corresponding complex envelope and
steering vector, respectively. C ∈ℂN×N denotes the MCM,
which can be molded as a banded symmetric Toeplitz matrix
for a ULA since the mutual coupling coefficients between the
elements are inversely proportional to their distance. In gen-
eral, we assume that the mutual coupling coefficient becomes
zero when the spacing of two elements exceeds an interele-
ment spacing of P; hence, the mutual coupling coefficient
vector and the MCM can be defined as

c = c0, c1, c2,⋯,cP−1½ �T ,
C = Toeplitz cN , cNð Þ,

ð2Þ

where c0 = 1 and cN = ½cT , 0�T ∈ℂN×1.

Recall that in Equation (1), the covariance matrix of xðkÞ
can be given by

R = E x kð ÞxH kð Þ� �
=CARsAHCH + σ2nIN , ð3Þ

where E½·� and ð⋅ÞH represent the expectation and conjugate
transpose, respectively. A = ½a1, a2,⋯,aL� ∈ℂN×L denotes the
manifold matrix, and Rs = diag ðσ21, σ2

2,⋯,σ2LÞ ∈ℝL×L is the
covariance matrix of signals, where σ2

l is the power of the l
th signal. σ2n is the power of the noise, and IN ∈ℝN×N is an
identity matrix.

In practice, the sampling covariance matrix is usually
used in lieu of the covariance matrix, and the sampling
covariance matrix R̂x can be expressed as

R̂x =
1
K
〠
K

k=1
x kð ÞxH kð Þ, ð4Þ

where K stands for the number of snapshots. After eigende-
composing R̂x, we can obtain

R̂x =UΛUH =UsΛsUH
s +UnΛnUH

n , ð5Þ

where U is the eigenvector matrix and Λ denotes the corre-
sponding eigenvalue matrix. Λs and Λn are diagonal matrices
that contain L large eigenvalues and the remaining small
eigenvalues, respectively. Us and Un are the corresponding
eigenvector matrices. In general, Us is called the signal sub-
space, and Un is called the noise subspace. Additionally,
fCaðθlÞgLl=1 can span the signal subspace.

For instance, when DOA estimation is performed using a
subspace algorithm, the spatial spectral function shown
below is usually used [13]:

P θð Þ = 1
aH θð ÞUnUH

n a θð Þ : ð6Þ

Obviously, if the MCM is unknown, the spectral peaks do
not correspond to the true DOA of the signals since Un is
orthogonal to CaðθÞ, not aðθÞ. That is, if C can be estimated,
then the DOA of signals can be estimated.

3. Proposed Algorithm

3.1. Mutual Coupling Coefficient Estimation. According to
the banded symmetric Toeplitz structure of MCM C, we
can obtain [19]

Ca θð Þ = T θð Þc, ð7Þ

where

T θð Þ = E1a θð Þ, E2 θð Þa θð Þ,⋯,EP θð Þa θð Þ½ �, ð8Þ
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where

Ep

� �
ij
=

1, if C½ �ij = cp

0, otherwise

(
, p = 0, 1,⋯, P − 1: ð9Þ

Based on the orthogonality between CaðθlÞ and the noise
subspace Un, we can obtain

aH θlð ÞCHUnUH
n Ca θlð Þ = 0: ð10Þ

Recall that Equations (7) and (10) can be rewritten as

cHQ θlð Þc = 0, ð11Þ

where QðθÞ is a transitional matrix and is defined as

Q θð Þ = TH θð ÞUnUH
n T θð Þ, ð12Þ

which is a P × P matrix, and its dimensions are smaller than
those of the transitional matrix in [11, 13].

When P ≤N − L, QðθÞ is a nonsingular matrix for a gen-
eral θ since the ranks of TðθÞ andUn are P and N − L, respec-
tively. However, if θ is one DOA of the incident signals, QðθÞ
is a singular matrix, and its determinant is zero [23]. When
QðθÞ is a singular matrix, we can find that Equation (11)
holds and that c is an eigenvector of the matrix QðθÞ corre-
sponding to the eigenvalue zero, since c is a nonzero vector.
That is to say, the degree of freedom of the proposed algo-
rithm is N − P.

Namely, the mutual coupling coefficient vector c can be
estimated by

cl =
vl min
vl min 1

, ð13Þ

ĉ =
1
L
〠
L

l=1
cl, ð14Þ

where vl min denotes the eigenvector corresponding to the
minimum eigenvalue of QðθlÞ, and vl min 1 is the first entry
of vl min.

From Equation (12), we can find that the matrix QðθlÞ
can be easily calculated by the known DOA of the incident
signals, but the DOAs are unknown. Hence, we construct a
new spectral function

Pdet θð Þ = 1
det Q θð Þ½ � , ð15Þ

where det ½⋅� stands for the determinant of a matrix. Finally,
QðθlÞ can be obtained through spectral peak searching since
the first L peaks correspond to fQðθlÞgLl=1.

Since the noise subspace is estimated by the sampling
covariance matrix, the correlation between the signal steering
vector and the signal subspace improves with increasing
SNR. Namely, as the SNR increases, the orthogonality of
the signal and noise subspace becomes more obvious. That

is, at a low SNR, the signal steering vector and the noise sub-
space may not be orthogonal, i.e.,

aH θrð ÞCHUnUH
n Ca θrð Þ ≠ 0, ð16Þ

where θr stands for the DOA corresponding to a signal with a
low SNR.

Further, we can obtain

cHQ θrð Þc ≠ 0: ð17Þ

Distinctly, c is not the eigenvector of the matrixQðθrÞ. In
other words, if there are two signals, one with a high SNR and
the other with a low SNR, such as an interference signal and a
desired signal simultaneously incident on an array, the esti-
mation accuracy decreases when Equations (13) and (14)
are used to estimate the mutual coupling coefficients. In this
case, we can eigendecompose onlyQmax corresponding to the
maximum peak of Equation (15); hence, the estimation of c
can be given by

ĉ =
vm−min
vm−min 1

, ð18Þ

where vm−min is the eigenvector corresponding to the mini-
mum eigenvalue of the matrix Qmax, and vm−min 1 is the first
entry of vm−min.

Obviously, when multiple incident SNRs are similar, the
use of Equation (18) to estimate the mutual coupling coeffi-
cients results in errors. However, in most cases, the SNRs of
incident signals are not the same. For example, in RAB, due
to the simultaneous existence of interference signals and the
desired signal, the estimation accuracy of mutual coupling
coefficients is higher when using Equation (18) than when
using Equations (13) and (14).

3.2. Adaptive Beamforming with Unknown Mutual Coupling.
Based on Equation (18), when there are one desired signal
and L interference signals, the received data can be calibrated
as

x̂ kð Þ = Ĉ−1x kð Þ = Ĉ−1C s0 kð Þa θ0ð Þ + 〠
L

l=1
sl kð Þa θlð Þ

" #

+ Ĉ−1n kð Þ ≈ s0 kð Þa θ0ð Þ + 〠
L

l=1
sl kð Þa θlð Þ + Ĉ−1n kð Þ:

ð19Þ

where Ĉ ≜ ToeplitzðĉN , ĉNÞ, ĉN = ½ĉT, 0�T ∈ℂN×1, θ0 is the
direction of the desired signal, and s0ðkÞ is the corresponding
signal complex envelope.

Recall that in Equation (3), the covariance matrix can be
rewritten as

Rx̂ = E x̂ kð Þx̂H kð Þ� �
= σ20a θ0ð ÞaH θ0ð Þ

+ 〠
L

l=1
σ2l a θlð ÞaH θlð Þ + σ2nĈ

−1Ĉ−H
:

ð20Þ
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Distinctly, after the received data are calibrated, the noise

covariance matrix is no longer σ2nIM but is σ2
nĈ

−1Ĉ−H
;

namely, the white Gaussian noise becomes nonwhite Gauss-
ian noise, which seriously affects the performance of the
beamformer. Therefore, we compensate for Rx̂ to obtain

~Rx̂ = R̂x̂ − bσ2
nĈ

−1Ĉ−H + bσ2
nIM , ð21Þ

where bσ2
n is the noise power estimate, which can be expressed

as

bσ2
n =

1
M − L − 1

〠
M

m=L+2

bλm, ð22Þ

where bλm (m = 1, 2,⋯,M) in descending order are the
eigenvalues of the sample covariance matrix R̂x̂. Similarly,
R̂x̂ is given by

R̂x̂ =
1
K
〠
K

k=1
x̂ kð Þx̂H kð Þ: ð23Þ

Further, the INCM can be reconstructed by [24]

~Ri+n = ~Rx̂ − bσ2
0a θ0ð ÞaH θ0ð Þ + γIM , ð24Þ

where γ is a diagonal loading factor set to further reduce the
impact of nonwhite Gaussian noise and bσ2

0 can be calculated
as

bσ2
0 =

1
aH θ0ð Þ~R‐1

x̂ a θ0ð Þ
: ð25Þ

Under the minimum variance distortionless response
principle for RAB, the weight vector is usually expressed as
[25]

wopt =
R−1
i+na θ0ð Þ

aH θ0ð ÞR−1
i+na θ0ð Þ , ð26Þ

where Ri+n denotes the ideal INCMwithout mutual coupling.
Using ~Ri+n in lieu of Ri+n yields

ŵopt =
~R−1
i+na θ0ð Þ

aH θ0ð Þ~R−1
i+na θ0ð Þ

: ð27Þ

However, Equation (11) cannot be used to estimate the
MCM whenM − L − 1 < P, since QðθÞ is a singular matrix
for any θ. Namely, the DOF of the proposed algorithm is lim-
ited for a fixed ULA.

The main computational load of the designed beamfor-
mer is caused by estimating mutual coupling coefficients.
The process of estimating mutual coupling coefficients con-
sists of two parts: one is the construction of spectral function,
and the other is the search of spectral peaks. Hence, the com-
putational load of the proposed method is approximately O

ðM3Þ + S ×OðP3Þ, where OðM3Þ is due to the construction
of spectral function, S ×OðP3Þ is caused by the search of
spectral peaks, and S is the number of spectral peak searches.

In other words, the proposed beamformer can be sum-
marized as follows:

Step 1. Estimate the covariance matrix R~x using Equation
(4), and eigendecompose it using Equation (5).

Step 2. Construct the transformation matrix and the tran-
sitional matrix using Equations (7) and (12), respectively.

Step 3. Estimate the transitional matrixQmax correspond-
ing to the highest SNR signal by searching for the highest
peak of Equation (15), and estimate the mutual coupling
coefficient vector using Equation (18).

Step 4. Reconstruct the INCM by calibrating the received
data and compensating for calibration errors using Equation
(24).

Step 5. Calculate the weight using Equation (27).

4. Simulations

In this section, we implement several simulations to validate
the effectiveness and superiority of the proposed algorithm.
A ULA with N = 12 elements spaced a half-wavelength apart
is used. The additive noise in the elements is modeled as spa-
tially and temporally independent complex Gaussian noise
with zero mean and unit variance. We assume that the
mutual coupling coefficient vector is

c = 1, 0:90e−jπ/3, 0:75ejπ/4, 0:45e−jπ/10, 0:15e−jπ/6
� �T

: ð28Þ

According to the previous analysis, an iterative algorithm
and two subspace-based methods without iteration are
selected for comparison, and the three algorithms are called
Liao’s method [14], Elbir’s method [18], and Wen’s method
[20]. In each trial, the number of angular sectors is selected
as 12, and ε = 10−4 in Elbir’s method. In addition, the
Cramér-Rao bound (CRB) of the real and imaginary parts
of the mutual coupling coefficients is provided in simula-
tions. Note that the calculation of CRB is performed as in
[26], and the CRB is modified to correspond to the real and
imaginary parts of the mutual coupling coefficients.

Example 1. The directions of the desired signal and two inter-
ferences are assumed to be 10°, -20°, and 40°, respectively, and
the corresponding SNR and interference-to-noise ratio (INR)
are set to 10 dB and 40 dB, respectively. The number of snap-
shots is 500, and 100Monte Carlo runs are performed. In this
experiment, the results of the estimation of mutual coupling
coefficients are listed in Table 1 (a single run). The proposed
method successfully estimates all mutual coefficients with
high accuracy. Figure 1 displays the root mean square error
(RMSE) of the real and imaginary parts of all mutual cou-
pling coefficients versus SNR and the number of snapshots,
where the RMSE is calculated by

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M P − 1ð Þ 〠
M

m=1
〠
P−1

p=1
ŵp

m −wpð Þ2
vuut , ð29Þ
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whereM is the number of Monte Carlo runs, wp denotes the
real or imaginary part of cp, and ŵp

m stands for the estimated
value of wp in the mth trial.

Figure 1(a) displays the RMSE values of the estimation of
the real and imaginary parts of all the mutual coupling coef-
ficients versus the SNR. The RMSE of the real and imaginary
parts of all the mutual coupling coefficients versus the num-
ber of snapshots is shown in Figure 1(b). As we can see, the
mutual coupling coefficient estimation accuracy of the pro-
posed algorithm is always close to the CRB; when the differ-
ence in the signal power is large, the performance of the
proposed method is closer to the CRB, and the larger the dif-
ference is, the more obvious the advantage of the proposed
algorithm. However, when the power of each signal is similar,
the performance of the proposed method is worse than that
of Liao’s method and Wen’s algorithm but is still better than
that of Elbir’s algorithm. These results occur because when all
the signal powers are similar, the mutual coupling coeffi-
cients estimated by all the transitional matrices are close to
each other, and the mutual coupling coefficients obtained
using more information have higher accuracies. Additionally,
when the SNR of the desired signal is significantly higher
than the INR of the interference signal, the proposed method
still yields better performance.

Example 2. The performance of the proposed beamformer
and several classical robust adaptive beamformers, such
as LSMI, MSB, MSRB, and SRB, is investigated in this
example. In addition, the simulation compares a simplified
SRB (SSRB) beamformer obtained utilizing Wen’s method
to replace the mutual coupling coefficient estimation algo-
rithm in the SRB beamformer. The output signal-to-inter-
ference-plus-noise ratio (SINR) versus the SNR with the
number of snapshots fixed at 500 and the output SINR
versus the number of snapshots with the SNR fixed at
10 dB are analyzed. Figure 2(a) displays the output SINR
of different beamformers versus SNR, while Figure 2(b)
shows the output SINR of those approaches versus the num-
ber of snapshots.

In Figure 2, the output SINR of the proposed beamformer
is always close to the optimal SINR. In addition, at a high
SNR, its performance is close to that of the SRB beamformer
and SSRB beamformer, which is obviously better than that of
the other algorithms. However, at a low SNR, the perfor-
mance of the designed beamformer is obviously higher than
that of the SRB beamformer and the SSRB beamformer due

to the high-precision estimation of the mutual coupling
matrix. The performance of the MSRB beamformer is limited
by the array aperture and is always lower than that of the pro-
posed beamformer. In addition, the designed beamformer
has a faster convergence rate than the SRB beamformer and
SSRB beamformer and is always close to the optimal output
SINR.

Example 3. The performance of the designed beamformer
with the unknown direction error is analyzed in this example.
It is assumed that there is a random direction error of the
desired signal, and it is uniformly distributed in ½−2°, 2°� in
each trial. Namely, the direction error of the desired signal
changes from run to run but remains fixed in one trial. The
results are shown in Figure 3.

Compared with Figure 2, the performance of the pro-
posed beamformer, the SRB beamformer, and the SSRB
beamformer is basically unchanged in Figure 3 because these
three beamformers can estimate the desired signal direction
when estimating the mutual coupling coefficients. The per-
formance of the MSRB beamformer is only slightly degraded,
but that of the MSB beamformer is seriously degraded
because INCM reconstruction is utilized in the MSRB beam-
former but not in the latter. Note that the convergence rate of
the proposed beamformer is also very fast compared to those
of other beamformers.

Example 4. The performance of the designed beamformer
with incoherent local scattering.

The influence of incoherent local scattering is consid-
ered in this experiment. Generally, incoherent local scatter-
ing always occurs and seriously affects the performance of
the beamformer. Here, we assume that in the case of inco-
herent local scattering, the received desired signal can be
expressed as

xs kð Þ = a θ0ð Þs0 kð Þ + 〠
3

q=1
sq kð Þa θq

� �
, ð30Þ

where θqðq = 1, 2, 3Þ denotes the direction of the qth local
scattering signal and is subject to uniform distribution in
½θ0 − 2∘, θ0 + 2∘� and sqðkÞ and aðθqÞ are the corresponding
signal waveform and the steering vector, respectively. The
simulation results are shown in Figure 4.

Figure 4 displays the simulation result of each tested
beamformer with incoherent local scattering. Compared
with Figure 2, since local scattering signals disturb the sam-
pling covariance matrix, the performance of all tested
beamformers deteriorates to varying degrees, especially at
high SNRs. Since the incoherent scattering signal causes
serious errors in the estimation of the mutual coupling
coefficient at a high SNR, the performance of all algorithms
is seriously degraded at a high SNR. However, at a low
SNR, the influence of the incoherent scattered signal is small,
and the proposed algorithm only utilizes the highest power
signal to estimate mutual coupling coefficients; thus, the per-
formance of the proposed beamformer is always close to the
optimal output SINR. In addition, the convergence rate of

Table 1: Mutual coupling coefficient estimation (SNR = 10 dB).

Mutual coupling coefficients
Real part (α)

Imaginary part
(β)bα α bβ β

c1 0.4488 0.4500 -0.7766 -0.7794

c2 0.5288 0.5303 0.5284 0.5303

c3 0.4264 0.4280 -0.1392 0.1391

c4 0.1303 0.1299 -0.0742 -0.0750
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the proposed beamformer is very fast compared to those of
other beamformers.

5. Conclusion

In this paper, a modified subspace-based mutual coupling
coefficient estimation algorithm for beamforming is pro-
posed. The main contribution of this manuscript includes
two parts: (1) to improve the mutual coupling coefficient

estimation accuracy, we propose a strategy to improve
the estimation accuracy by choosing appropriate transition
matrices; (2) to improve the robustness of the beamformer to
unknown mutual coupling, a beamformer is designed com-
bining the calibrated steering vector and the interference-
plus-noise covariance matrix reconstruction method. The
proposed beamformer has superior performance than exit-
ing algorithms especially when there is a big power gap
between different interferences. Simulations demonstrate
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Figure 2: (a) Output SINR versus SNR, INR = 40 dB, K = 500. (b) Output SINR versus the number of snapshots, SNR = 10 dB, INR = 40 dB.
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the superiority of the modified subspace-based mutual cou-
pling coefficient estimation algorithm and the robustness of
the designed beamformer to unknown mutual coupling.
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Figure 4: (a) Output SINR versus SNR with incoherent local scattering, INR = 40 dB, K = 500. (b) Output SINR versus the number of
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