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In the next-generation wireless communications system of Beyond 5G networks, video streaming services have held a surprising
proportion of the whole network traffic. Furthermore, the user preference and demand towards a specific video might be
different because of the heterogeneity of users’ processing capabilities and the variation of network condition. Thus, it is a
complicated decision problem with high-dimensional state spaces to choose appropriate quality videos according to users’ actual
network condition. To address this issue, in this paper, a Content Distribution Network and Cluster-based Mobile Edge
Computing framework has been proposed to enhance the ability of caching and computing and promote the collaboration
among edge severs. Then, we develop a novel deep reinforcement learning-based framework to automatically obtain the
intracluster collaborative caching and transcoding decisions, which are executed based on video popularity, user requirement
prediction, and abilities of edge servers. Simulation results demonstrate that the quality of video streaming service can be
significantly improved by using the designed deep reinforcement learning-based algorithm with less backhaul consumption and
processing costs.

1. Introduction

Beyond fifth-generation (B5G) networks is the next-
generation wireless communications systems. They are
desired to provide rather reliable services with super high
transmission rate, ultralow latency, very little energy loss,
excellent quality of experience (QoE), and much enhanced
security [1]. Due to providing mobile edge computing and
edge caching capabilities together with machine learning,
edge intelligence is emerging as a new concept and has
extremely high potential in addressing the new challenges
in B5G networks [2, 3]. In wireless communication net-
works, video streaming services have hold a surprising pro-
portion of the whole network traffic. In particular, because
of the impact of the epidemic at 2019-nCoV in this year,
it has greater dependence and demand on online video
streaming services, such as online meeting, online teaching,
and online shopping.

In recent years, the number of smart devices has been
explosively grown, which led to unprecedented increase in
the demand on video streaming service. In video streaming
service, it generally requires higher data rates and bigger sys-
tem capacity. The overall mobile data traffic has experienced
17-fold growth from 2012-2017 as summarized in Cisco
Visual Networking Index [4]. Mobile videos account for
more than half of this data traffic and are predicted to further
grow by 2022, accounting for 79% of the total data traffic.
Due to the immense demands of mobile videos, mobile net-
work operators can not be enough to satisfy the users’
demands on high-quality video streaming services.

To address this issue, firstly, edge video caching has been
recognized as a promising solution to reduce the data traffic,
because edge video caching can bring videos closer to the
users, which will reduce data traffic going through the back-
haul links and the time required for video delivery [5]. Moti-
vated by serving the users better, different edge caching
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strategies have been studied recently. Secondly, a good
video QoE is very important to users. In a full range of user
mobile devices, the source video streams are needed to be
transcoded into multiple representations. But the video
transcoding is also an extremely computation intensive
and time-consuming work [6].

Recently, mobile edge computing (MEC) has been intro-
duced as an emerging paradigm in the edge of the cellular
Radio Access Network (C-RAN) [7–12]. The MEC servers
are implemented particularly at the BSs in the mobile edge
computing platforms, enabling video streaming services in
close-proximity to the mobile users. Due to this position,
MEC presents a unique opportunity to not only perform
edge caching but also implement edge processing.

Due to the heterogeneity of users’ processing capabilities
and the variation of network condition, the user preference
and demand towards a specific video might be different.
For example, users with better network condition usually
prefer high-resolution videos while users with poor network
condition may desire for appropriate quality videos accord-
ing to their actual network condition. Based on this phenom-
enon, adaptive bitrate (ABR) streaming [13, 16] has been
widely used to improve the quality of delivered video. In
ABR streaming, the bitrate of the streaming video will be
chosen according to the users’ specific request and actual net-
work condition. A video content is encoded into multiple
layers with different bitrates, satisfying different users’
requirement. Then, each video layer will be further seg-
mented into many small video chunks, which contains
several seconds of the video content. Thus, users can dynam-
ically adjust video layer for different video chunks, depending
on their actual network conditions. So, it is a complicated
decision problem with high-dimensional state spaces to
choose appropriate quality videos according to users’ actual
network condition. There are obvious advantages in deploy-
ing ABR streaming locally at multi-MEC servers in RAN,
such as avoiding the long latency and reducing the prestorage
pressure at RAN [14–18]. Then, the required video layer of
mobile users can be transcoded in an on-demand fashion,
which can improve ABR streaming performance over mobile
edge computing networks when it is directly served from a
local MEC server.

Deep learning has a strong perception ability. It is mainly
used to solve classification and regression problems by cap-
turing and analyzing data features [19–22], but it does not
have the ability to make decisions. Reinforcement learning
[23] has the ability to make decisions, but it is helpless to per-
ceive problems and cannot handle high-dimensional data.
Reinforcement learning is actually an agent that learns the
best decision sequence during the interaction with the envi-
ronment. In order to deal with the complicated control and
decision problems with high-dimensional state spaces, a
promising solution has been given in recent development of
deep reinforcement learning (DRL) [24]. DRL consists of
two modules: deep learning and reinforcement learning. It
uses deep learning to extract features from complex high-
dimensional data and transform it into a low-dimensional
feature space. Then the low-dimensional feature state space
inputs into reinforcement learning to make decisions for

seeking more rewards. The goal of DRL is to enable an agent
to take the best action in the current state to maximize long-
term gains in the environment [25, 26]. And the interaction
between the agent’s action and state is learned by leveraging
the deep neural network (DNN). Due to these characteristics,
DRL becomes a powerful tool in robotics, wireless communi-
cation, etc. [27–29]. Since the advent of deep Q network
(DQN) [30–32] in 2013, a large number of algorithms and
papers to solve practical application problems have appeared
in the field of deep reinforcement learning. The basic idea
behind many reinforcement learning algorithms is to esti-
mate the Q value function by using the Bellman equation as
an iterative update. Such value iteration algorithms converge
to the optimal Q value function.

This paper intends to propose a video transmission
model combining MEC and Content Distribution Network
(CDN) technology, which interconnects the CDN network
with the MEC network through the CDN tips. Also, we focus
on exploiting MEC storage and processing capabilities to
improve the performance of high-quality streaming services.
We aim to solve the collaborative caching and transcoding
for multi-MEC servers by using the DRL algorithm in mobile
edge computing system. Specifically, the main contributions
of this paper are as follows:

(i) A CDN and Cluster-based Mobile Edge Computing
(2C-MEC) system model has been proposed, which
promotes cooperation among MEC servers and
reduces unnecessary backhaul consumption and
processing costs. We design aMEC-enabled collabo-
rative caching and transcoding for multi-MEC
servers in the 2C-MEC system by leveraging video
caching and transcoding in the vicinity of RAN at
multi-MEC servers

(ii) The optimization problem of collaborative caching
and transcoding for multi-MEC servers can be for-
mulated as a stochastic Markov decision process to
maximize the time-averaged Deep Q-Network
(DQN) reward. The reward is defined as the
weighted sum of the cache hit rate, user perceived
QoE, the cost of performing transcoding, and trans-
mission at multi-MEC servers. Then, we develop a
DRL-based algorithm to automatically obtain the
intracluster collaborative caching and transcoding
decisions, which are executed based on video popu-
larity, user requirement prediction, and abilities of
MEC servers

(iii) Simulation results demonstrate that video streaming
service can be significantly improved by using the
proposed DRL-based algorithm compared with the
scheme that video transcoding is not implemented
at the MEC servers, with less backhaul consumption
and processing costs

The remainder of this paper is organized as follows.
Section 2 presents a related work. Section 3 describes the
framework design of system and Section 4 formulates the opti-
mization problem. The DRL-based algorithm is presented in
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Section 5. Section 6 presents the simulation results and analy-
sis, followed by conclusions in Section 7.

2. Related Work

The research on the application of DRL to wireless network
transmission optimization in the MEC environment is exten-
sive studied recently. It can be seen that the research in this
area mainly began in 2018, increasing quickly year by year
after 2018. Furthermore, the application of DRL in video
transmission optimization under MEC environment is less.
The current research in this area includes the following cate-
gories: DRL-based caching strategy, DRL-based real-time
transcoding scheduling decision, DRL-based wireless net-
work communication resource allocation [33–37], and
DRL-based offloading and service migration of computing
tasks [38–43]. In this paper, we mainly focus on the first
two topics, trying to satisfy the requests of quality for user’s
streaming service.

2.1. DRL-Based Caching Strategy. For edge video caching at
MEC servers, video caching policy is driven by video popu-
larity. Therefore, knowing the video popularity is key to solve
the video caching problem. To avoid such drawbacks, com-
bining DRL methods are introduced to implement video
cache strategies, which is an important research direction
[44–47]. In order to reduce the traffic load of backhaul and
transmission latency, Wei et al. [48] proposed the Q-
Learning-based collaborative cache algorithm to solve the
intelligent baseband unit pool cache problem. Yang et al.
[49] considered the task offloading decision, cache allocation,
and computation allocation problems in single MEC sever; a
DRL algorithm was proposed to solve this optimization
problem with low complexity. Zhong et al. [50, 51] presented
a DRL-based framework with Wolpertinger architecture for
content caching at the single MEC. They proposed deep
actor-critic reinforcement learning-based policies for both
centralized and decentralized content caching, aiming at
maximizing the cache hit rate in centralized edge caching
and the cache hit rate and transmission delay as performance
metrics in decentralized edge caching. Gursoy et al. [52]
designed a deep actor-critic RL-based multiagent framework
for the edge caching problem in both a multicell network and
a single-cell network with D2D communication.

Applying DRL to cache technology mainly solves the
problem of cache content location decision, cache update
strategy, and cache content delivery. It implements resource
allocation and cache scheduling by using deep learning to
analyze and learn network information. Then corresponding
video content and bitrate versions are cached to improve
cache hit radio and utilization of cache resources. However,
the lack of transcoding on the network edge will reduce the
video cache hit rate.

2.2. DRL-Based Transcoding Scheduling Strategy. The user’s
demand towards a specific video might be different because
of the heterogeneity of their actual network condition. To
address this issue, transcoding in network edge has been
widely used to improve the quality of delivered video on

the wireless networks. To achieve accurate QoE, Liu et al.
[53] and Zhang et al. [54] presented deep learning-based
QoE prediction called DeepQoE. Then in [53], the authors
designed a content-aware bitrate adaptation policy with the
objective to prefetch a higher resolution version for video
clips that is in line with viewers’ interests. Zhang et al. [54]
also developed a DeepQoE-based ABR system to verify that
their framework can be easily applied to multimedia commu-
nication service. To address the challenge of how to allocate
bitrate budgets for different parts of the video with different
users’ interest, Gao et al. [55] proposed a content-of-inter-
est-based rate adaptation scheme for ABR. They designed a
deep learning approach for recognizing the interestingness
of the video content and a DQN approach for rate adaptation
according to incorporating video interestingness informa-
tion. Considering joint computation and communication
for ABR streaming, Guo et al. [56] presented a joint video
transcoding and quality adaptation framework for ABR
streaming. Inspired by recent advances of blockchain tech-
nology, Liu et al. [57] proposed a novel DRL-based transco-
der selection framework for blockchain-enabled D2D
transcoding systems where video transcoding has been
widely adopted in live streaming services, to bridge the reso-
lution and format gap between content producers and
consumers. To accommodate personalized QoE with mini-
mized system cost, Wang et al. [58] proposed DeepCast,
which is an edge-assisted crowdcast framework. It makes
intelligent decisions at edges based on the massive amount
of real-time information from the network and viewers. In
[59], using DRL to train a neural network model for resource
provisioning, Pang et al. designed a joint resource provision-
ing and task scheduling approach for transcoding live
streams in the cloud.

The application of DRL in transcoding scheduling deci-
sions mainly focuses on making intelligent real-time trans-
coding decisions at the network edge based on a large
amount of real-time information from the network and cus-
tomers. In order to meet the high-quality video service expe-
rience of requirements of different users, DRL-based
transcoding scheduling strategy will aim at achieving person-
alized QoE with minimized system cost.

2.3. Our Vision and Motivation. Inspired by the success of
DRL in solving complicated control problems, DRL-based
methods are commonly used in caching and transcoding
strategy for MEC system. But there are still some issues
which are needed to be resolved. (i) At present, there are
many systems mainly studying single-MEC server. However,
single-MEC server does not have enough storage and com-
puting ability to satisfy the needs of different users. (ii) There
are few researches on the cooperation mode and efficiency of
multi-MEC servers. The completion of intensive tasks
requires efficient collaboration among multi-MEC servers.
(iii) In multi-MEC servers’ system, the load balance among
MEC servers and the resource utilization of the MEC
server are basically not considered. (iv) According to users’
network conditions, adaptively collaborative caching and
transcoding methods in ABR streaming are needed further
explored.
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To address these issues, in this paper, a CDN and Cluster-
based Mobile Edge Computing (2C-MEC) system model has
been presented, which promotes cooperation among MEC
servers and reduces unnecessary backhaul consumption
and processing costs. Then, aiming to exploit MEC storage
and processing capabilities to improve performance of
high-quality streaming services, we focus on solving the col-
laborative caching and transcoding for multi-MEC servers by
using the DRL algorithm in the 2C-MEC system model.

3. Framework Design of System

3.1. 2C-MEC System Model. In order to meet the transmis-
sion requirements of real video services in the internet, the
video transmission strategy based on mobile edge computing
must consider a heterogeneous wireless access network envi-
ronment and popular video transmission technology. As
shown in Figure 1, this paper intends to propose a video
transmission model combining Cluster-based MEC and
CDN technology, which is called as a CDN and Cluster-
based Mobile Edge Computing system.

The video transmission model-based mobile edge com-
puting is seamlessly connected with the current popular
video transmission CDN technology. In this model, the edge

area consists of the CDN tips (that is, the “edge node” in the
CDN, in order to distinguish it from the edge computing
node, called “CDN tip” in this paper) and many edge com-
puting nodes in the local area (may be deployed at small base
stations, macro base stations, and locations higher than the
macro base stations). Thereby, the computing, storage, and
communication capabilities of edge computing nodes are
used to assist in the deployment of sparse CDN tips to opti-
mize wireless video transmission across the entire network.

Due to the large number of edge nodes and the large
difference in capabilities among them, a hierarchical man-
agement model is proposed to cluster edge nodes. The com-
munication protocols within and among clusters can draw
on the related research of sensor networks and P2P networks.
The influencing factors of edge node clustering strategy
include edge node capabilities, geographic location distribu-
tion, number and activity of users. The 2C-MEC system
can promote mutual cooperation among MEC servers and
reduces unnecessary backhaul consumption and processing
costs.

Based on the proposed Cluster-based Mobile Edge Com-
puting framework, on the one hand, the storage and comput-
ing capabilities of the MEC servers have been improved. The
2C-MEC system enables the MEC servers’ collaboration

Edge area

Edge area

Edge area

Cluster
Internet CDN

Backhaul link
RAN link
D2D link

CDN tip

Cluster head/element

Mobile terminal

Backbone link

Figure 1: A CDN and Cluster-based Mobile Edge Computing (2C-MEC) system.
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within the cluster to have sufficient storage and computing
power to meet users’ needs. On the other hand, the collab-
oration among MEC servers is promoted. Under this
framework, it is possible to pursue the multi-MEC collab-
oration method within the cluster, which focuses on
exploring the effective ways of multi-MEC servers’ collabo-
ration of caching and transcoding. On the contrary, existed
studies focused on “cloud-edge” collaboration or “edge-
edge” collaboration.

In this paper, we plan to design the edge node clustering
algorithm based on the following ideas: (i) firstly, the cluster
division is based on the principle of proximity to geographic
location. (ii) Secondly, the overall service capabilities of the
nodes in the cluster should match their users’ needs, and
the edge service capabilities among different clusters should
be balanced to a certain extent. (iii) Thirdly, if the edge node
is located in the intersection area of two clusters, the appro-
priate cluster is selected based on the similarity of the video
access preferences of the users managed by this node and
the video access preferences of the users managed by other
nodes in one cluster. (iv) Finally, after the clustering is com-
pleted, we can comprehensively consider the computing,
storage, communication capabilities of the edge node, and
its communication delay with other nodes in the cluster to
elect this cluster’s head.

In a word, the 2C-MEC system model proposed in this
paper is compatible with popular CDN technology, resulting
in conveniently utilization of its research results in cache
replacement, content prefetching and load balancing. Fur-
thermore, the ability of MEC to utilize heterogeneous edge
nodes with different capabilities and deployments further
improves the quality of video transmission.

3.2. Rebuffer Model. In order to keep continuous playback in
video streaming service, a playback buffer is usually deployed
at the user device, in which the video chunks are downloaded
into. The rebuffer model used in this paper comes from the
reference [60]. Let BðtÞ denote the bitrate of the chunk at
time stage t for the user. And WðtÞ denotes the wireless
transmission rate (bits/second) of user experienced during
time stage t. Then, the buffer occupancy rate LðtÞ is defined
as follows:

L tð Þ = Buffer occupancy
Buffer size : ð1Þ

When BðtÞ/WðtÞ < 1, the new video chunk is put into the
buffer at rate of less than 1; then, the buffer decreases. In
another way, if more than one chunk is played before the
next chunk arrives, then, the buffer is depleted and the rebuf-
fering is happened. So, in the rebuffer model, the term of
rebuffering time and buffered video time are usually intro-
duced, which are used in Reference [56]. A video has some
chunks; each chunk also contains a fixed duration of video,
such as D seconds of video. Let TðtÞ denote the buffered
video time at playback buffer at the beginning of time stage
t. In the rebuffer model, we assume that one chunk will be
downloaded into the buffer at one time. The total download-

ing time of one chunk during time stage t, denoted by dðtÞ,
can be expressed as

d tð Þ = B tð Þ ∗D
W tð Þ : ð2Þ

Furthermore, the video rebuffering time of playback
buffer during time stage t is denoted as RðtÞ. Then, we can get

R tð Þ =max d tð Þ − T tð Þ, 0ð Þ,
T t + 1ð Þ =D +max T tð Þ − d tð Þ, 0ð Þ:

ð3Þ

3.3. Video Quality Rate Model. In video processing, Peak Sig-
nal to Noise Ratio metric (PSNR) is the de facto standard cri-
terion to provide objective quality evaluation between the
original frame and the compressed one. In the video quality
evaluation, the video quality rate qðtÞ of a video coded at rate
BðtÞ can be approximated by a logarithmic function [61] as
follows:

q tð Þ = β log B tð Þð Þ, ð4Þ

where the β value can be obtained from the video encoder
during the encoding in video source. Generally, the men-
tioned quality rate qðtÞ is a nondecreasing function, which
means a higher bitrate may be a high definition video while
a lower bitrate may be a standard definition video.

Then, let Buði, tÞ ∈ fB1, B2,⋯, Bmaxg and Bmax be the set
of all video layers after video transcoding and the highest
video level at the MEC servers, respectively. And Buði, tÞ
denotes the bitrate assigned to user i at timeslot t.

3.4. Cache Hit Rate Model. In our setting, requests by all users
are served by the MEC severs; all video have the same size,
and there are no priorities for different users, while there
are popularities for different videos. Videos popularity distri-
bution is always the key to solve the video caching problem.
Considering the changing popularities, the probability that
the requests of video v is defined as Zv, which follows the Zipf
distribution [16] as follows:

Zv =
v−α

∑V
v=1v

−α
, ð5Þ

where α > 0 is the parameter of Zipf distribution which indi-
cates the skewness degree. According to our setting, the video
streaming service quality of content caching can be evaluated
in terms of the cache hit rate. The cache hit rate CRHðtÞ in T
requests during time stage t is defined [40] as

CRH tð Þ = ∑T
i=1l Hið Þ
T

, ð6Þ

where indicator function lðHiÞ is defined as

l Hið Þ =
1, Hi ∈ CT ,
0, Hi ∉ CT ,

(
ð7Þ
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where CT represents the cache state during this period; if
there is the cache of video, the requestHi can hit in the cache.

3.5. System Cost Model. In the system cost model, most of the
operational cost consists of bandwidth cost and transcoding
cost in video streaming service. The fraction of other service
cost is negligible comparing with the above two kinds of cost.

Then, the bandwidth cost CbðtÞ [62] of all MEC servers in
the cluster can be obtained by the following formula:

Cb tð Þ = 〠
M

n=1
P n, tð Þ ⋅W n, tð Þ,

W n, tð Þ = 〠
i∈Ut

Bu i, tð Þ ⋅ It i, nð Þ, n ∈ 0,⋯,M‐1f g,
ð8Þ

where Ut and M are the user group and the numbers of
severs in the cluster at time stage t. And Itði, nÞ is an indicator
that represents whether user i is connected to MEC server n
at the time stage t. Respectively, Pðn, tÞ and Wðn, tÞ be the
unit bandwidth price and the amount of bandwidth usage
in the MEC server n.

Beside the bandwidth cost, the video streaming service
also needs to consider the transcoding cost. Based on the def-
inition and description of video transcoding in [56, 62], the
transcoding cost is closely related to the input bit-rate, target
bit-rate, the video length, and the number of CPU cores
needed for transcoding according to the video pricing model.
Then, we define the transcoding cost incurred at time stage
t as

O tð Þ = σ ∗ Lmax − lð Þ ∗ Tv ∗Ncpu, l ∈ L1, L2,⋯, Lmaxf g, ð9Þ

where σ is an adjustable parameter and symbols of l, Tv,
and Ncpu represent the level of input video, the video
length, and the number of CPU cores required for trans-
coding, respectively.

In order to simplify the problem formulation, in our sys-
tem cost model, the operational cost mainly consisted of
bandwidth cost and transcoding cost. Since bandwidth cost
and transcoding cost have different measurement units,
bandwidth cost reflects the network transmission capacity,
while transcoding cost reflects the computing power of the
MEC node; it is not easy to unify the corresponding dimen-
sional units. However, in the comparison of simulation
experiments, only the cost of comparing different environ-
ments is required. Therefore, like the design in Reference
[62], the bandwidth cost and transcoding cost can be
regarded as values without a unit of measurement, and there
is no need to consider the details of the unit of measurement.
The operational cost can be expressed as

C tð Þ = Cb tð Þ +O tð Þ: ð10Þ

4. Optimization Problem Formulation

Based on using the DRL algorithm for resource optimization
in the 2C-MEC system, we describe the three basic elements
of reinforcement learning. They are the state, action, and

reward of the collaborative video caching and transcoding
optimization problem.

4.1. State Space. The state at time stage t is jointly determined
by the four tuples, the current bandwidth cost CbðtÞ, the cur-
rent buffer occupancy rate LðtÞ, the current rebuffer time R
ðtÞ, and the current video quality qðtÞ. Then, the state space
SðtÞ at time stage t can be defined as follows:

S tð Þ = Cb tð Þ, L tð Þ, R tð Þ, q tð Þf g, ð11Þ

where the state space is denoted as S.

4.2. Action Space. The control action for the agent is to select
the video caching strategy and video transcoding strategy for
the next requested video chunk according to the current sys-
tem state. In this network, the action at each time stage t is
the joint video cache updating, cacheðMðtÞ,UðtÞÞ, and video
transcoding layer adaption decision, Buði, tÞ.

So, the action is selected from the action set AðtÞ, in
which MðtÞ, UðtÞ, and Buði, tÞ represent the number of
MEC severs selected in the cluster, the decision of video
cache updating, and the target video layer, respectively. Then,
the action space can be described as

A tð Þ = M tð Þ,U tð Þ, Bu i, tð Þf g, ð12Þ

where the action space is denoted as A.
In practice, since the numbers of MEC severs in a cluster

and the set of all video layers are not large; also, the decision
of video cache updating is only yes or no; the number of pos-
sible actions in the state space set for the collaborative video
caching and transcoding problem can be not very large.

4.3. Reward. The reward should reflect the objective of the
framework, which, in our case, is to reduce the operational
cost and desire best QoE for users by solving the collaborative
caching and transcoding for multi-MEC servers. In our
paper, we define the reward function during time stage t,
denoted by rðtÞ, as follows:

r tð Þ = ω1CRHsl tð Þ + λq tð Þ − ω2 q tð Þ − q t − 1ð Þk k − ω3R tð Þ
− ω4Cb tð Þ − ω5O tð Þ:

ð13Þ

The first term on the right-hand side of (13) is the
weighted sum of the short and long-term cache hit rate. Con-
sidering the number of requests for local video in the next
epoch, the short-term cache hit rate CRHsðtÞ can be either
0 or 1. Thus, let the total normalized number of requests
for local video within the last 20 requests as the long-term
cache hit rate CRHlðtÞ ∈ ½0, 1�. The total cache hit rate
CRHslðtÞ for each step is defined as the weighted sum of
the short and long-term cache hit rate, which is defined as

CRHsl tð Þ = CRHs tð Þ + μ ∗ CRHl tð Þ, ð14Þ

where μ is the weight to balance the short and long-term
cache hit rate.
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The second, third, and fourth terms on the right-hand
side of (13) are video quality, video quality variation, and
video rebuffering time, respectively. The fifth and sixth terms
on the right-hand side of (13) are two penalty terms for the
bandwidth cost and transcoding cost in each step. The total
cache hit rate, video quality, video quality variation, and
video playback rebuffering time are directly associated with
user perceived QoE in the video streaming service. And the
weights ω1, λ, ω2, ω3, ω4, ω5 are the weighting parameters.

4.4. Problem Formulation. In this paper, our objective is to
derive the jointly optimal video caching policy and video
transcoding policy for maximizing the rewards in video
streaming service. Future rewards and present rewards have
different importance and weights because of the uncertainly
of system dynamics. The objective of the joint video caching
policy and video transcoding policy is to maximize the
expected average reward. Then, we can formulate the
dynamic optimization problem as a Markov decision process
(MDP) as follows:

max
M tð Þ,U tð Þ,Bu i,tð Þ

 J tð Þ = E 〠
T−1

t=0
γtr tð Þ

" #

s:t:  C1 : M tð Þ ∈ 0, 1,⋯,Mf g, ∀t

C2 : U tð Þ ∈ 0, 1f g, ∀t

C3 : Bu i, tð Þ ∈ B1, B2,⋯, Bmaxf g, ∀t,
ð15Þ

where γ ∈ ð0, 1� is the discount factor.
It is impractical for the optimization problem with a large

number of states in state space. But the DRL algorithm has
been proved a useful mathematical tool for large-scale opti-
mization problem which does not need any prior knowledge
of state transition probability. Based on this, we propose a
DRL-based algorithm to solve the optimization problem in
formulation (15). Thus, the design of DRL-based intra-

cluster collaborative caching and transcoding framework is
shown in Figure 2.

5. DRL-Based Intracluster Collaborative
Caching and Transcoding Algorithm

5.1. Deep Reinforcement Learning-Based Collaborative Video
Caching and Transcoding for Multi-MEC Servers. Based on
DQN’s excellent performance when dealing with discrete
state space and action space, we adopt DQN for learning
the intracluster collaborative caching and transcoding policy.
Specifically, as illustrated in Figure 2, the inputs of the deep
neural network are the video service system states listed in
Equation (11), and the outputs of the network are theQ value
function, Qðs, a ; θÞ, for each action listed in Equation (12).

We illustrate the details of the DRL-based learning algo-
rithm for collaborative caching and transcoding for multi-
MEC servers in Algorithm 1.

6. Simulation Results and Analysis

In this section, firstly, we illustrate the experiment settings.
Then, the computer simulations are carried out to demon-
strate the performance of the proposed DRL algorithm of
collaborative caching and transcoding for multi-MEC servers
in mobile edge computing wireless networks.

6.1. Experimental Settings

6.1.1. Data Generation. In our experiments, the user data of
requests is generated randomly, while the video data of users’
requests is generated according to the Zipf distribution. We
have collected different numbers of requests in one episode
as the testing data, such as 30, 40, and 50. In order to make
the experiment more comprehensive, we generate two types
of data sets. Firstly, the video data set in users’ different-
number requests was generated with unchanged popularity
distribution with Zipf parameter set as 1.3. Then, the video
data set in users’ same-number requests was generated with
a varying Zipf parameter.

Agent

Evaluate network
Update

Target network State

Environment

MEC servers in cluster

Reward
QoE

Action
Mobile terminal

Reply memory

Caching update

Transcoding decision

MEC server selected

Action

Figure 2: The design of DRL-based intracluster collaborative caching and transcoding framework.
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6.1.2. Parameter Setting. In our experiments, we set 7 MEC
severs in one cluster, which serve 30 users in this region
and provide about 50 videos for users’ requests. Then, we
setD = 10s, β = 6:5, α = 1:3, μ = 0:6, σ = 1:2, the weights asso-
ciated with cache hit rate and QoE in the reward function are
set as ω1 = 1, λ = 0:9, ω2 = 0:9, ω3 = 0:1, and the weights asso-
ciated with cost penalty in the reward function are set as ω4
= 0:1, ω5 = 0:1.

In the experiment, there are four video layers of the video,
with Bmax = 10Mbps as the highest layer at the MEC server.
The bitrates of the three transcoded layers are B1 = 1Mbps,
B2 = 2Mbps, and B3 = 4Mbps, and the set of available CPU
cores at MEC is f2, 4, 6, 8g. Video transcoding from Bmax to
B1, B2, and B3 needs 2, 4, and 6 CPU cycles, respectively.
With the number of caching strategy being 2 (yes or no),
the number of videos’ bitrates being 4, and the number of
MEC severs in one cluster being 7, the number of actions in
action set A is 2 × 4 × 7 = 56.

6.1.3. Deep Neural Network for DQN. We use a fully con-
nected neural network with 2 hidden layers, 256 and 512 in
size. The loss function is the mean square error. The naive ε
-greedy strategy is used for exploration, and the probability
of randomly choosing an action during training is ε. As the
learning progresses, the degree of exploration continues to
shrink. The learning rate is 0.01, the size of experience replay
in DQN is 2000, the attenuation parameter used to update
the target Q network is 0.9, and the batch size in stochastic

batch gradient descent is 32. The experiments are imple-
mented using Python and TensorFlow.

6.2. Simulation Results. In this section, we compare the pro-
posed DRL algorithm (called DRL-CCT) with the latest base-
line methods, such as the method (called caching only at
network edge) in Reference [51] and the method (called
transcoding only at network edge) in Reference [56]. In our
experimental framework, we simulated the above methods
according to the setting form of the reward function in the
above literature. Also, we compare the proposed DRL
algorithm with the algorithm of DRL-CCT without trans-
coding policy. Especially due to the characteristics of deep
reinforcement learning, for our proposed algorithm, all
reported results were obtained from average of 20 algo-
rithm executions.

Figure 3 shows the convergence performance of the DRL-
CCT algorithm under the set of full weight in the different
learning rates. With continuous learning, the average reward
gradually stabilizes. Compared with the balanced method of
the algorithm in Reference [56], the average reward of the
algorithm we proposed converges faster, and the subsequent
fluctuations are slightly larger. But in contrast, the deep net-
work used in our DRL-CCT algorithm is more concise and
efficient. The convergence performance is influenced by
learning rate. The performance of the learning rate 0.01 is
better than the performance of the learning rates 0.1, 0.001,
and 0.0001. The convergence performance becomes worse

1: Initialization:
2: Initialize replay memory D to capacity N
3: Initialize Q network and target Q network with random weights
4: Initialize MEC service matrix V of requests
5: for episode =1, M do
6: Generate the user requests data
7: Observe the initial state s1 as illustrated in Eq. (11)
8: for t =1, T do
9: Give a random probability ς ∈ ½0, 1�

10: Choose action A(t) which listed in Eq. (12) as AðtÞ =
a∗ðtÞ = arg max

a
Qðs, a ; θÞ, ς > ε

aðtÞ ≠ a∗ðtÞ, randomly select aðtÞ, others

(

11: Based the action A(t), execute the transcoding policy and the caching updated
12: Observe the reward r(t), state s(t+1)
13: Store the transition (s(t), A(t), r(t), s(t+1)) in D
14: Update MEC service matrix V of requests
15: Sample random minibatch of transitions

(s(t), A(t), r(t), s(t+1)) from D

16: Set y j =
r j for terminal s′

r j + γ maxa′Qðs′, a′ ; θi−1Þjs, aÞ for non‐terminal s′

8<
:

17: Perform a gradient descent step according to equation:
LiðθiÞ = Es,a∼ρð⋅Þ½ðyi −Qðs, a ; θiÞÞ2�
yi = r + γ maxa′Qðs′, a′ ; θi−1Þjs, aÞ

.

18: Update the parameters in the Q network
19: Reset the parameters in the target Q network every G time stages
20: end for
21: end for

Algorithm 1: Deep reinforcement learning algorithm for collaborative video caching and transcoding (DRL-CCT).

8 Wireless Communications and Mobile Computing



in the learning rate 0.1, owing to a large update step such that
the average reward converges to a local optimal solution. In
fact, an appropriate learning rate depends on the state of
the environment in the current optimization process.

Figure 4 gives the comparison of cache hit rates in differ-
ent algorithms at the same cache ratios. Compared with the
other algorithms, the DRL-CCT algorithm has a higher cache
hit rate. Since the 2C-MEC system model has been proposed,

Average reward
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Figure 3: The convergence performance of DRL-CCT algorithm in the different learning rate.
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Figure 4: Cache hit rate vs. cache ratio.
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the cluster-based video cache hit rate is definitely better than
the video cache hit rate based on a single MEC server, espe-
cially when the cache ratio is relatively small. In addition,
the performance in the cache hit rate of DRL-CCT without
transcoding policy algorithm is the worst one because only
the highest version of the video is cached in the MEC. Owing
to the absence of transcoding function at network edge, the
MEC server has to return to the source server for extraction
when the user requests for other version of the video, which
results in low cache hit rate.

In Figure 5, we study the cache hit rate as a function of
the Zipf exponent. As Zipf exponent increases, cache hit rates
achieved by the caching policy increase first and then
decrease. This is due to the fact that with larger Zipf expo-
nent, the video popularity distribution is more concentrated,
and therefore, the popularity of the files is skewed. Conse-
quently, caching these more popular videos leads to an
increase first in the cache hit rates. Then, the cache hit rates
have a fall. It is because that the DRL-CCT algorithm stores
the most popular files initially when the number of popular
files gets small. However, it eventually experiences diminish-
ing returns as Zipf exponent is further increased, and the
larger the Zipf exponent, the smaller the influence of less
popular files is.

As for average QoE performance in Figure 6, DRL-CCT
is much better than “transcoding only” and the other two
algorithms. Due to the long rebuffering time, the average
QoE value of the DRL-CCT without transcoding algorithm
and “caching only” algorithm are below zero all the time.
Compared with these methods which has no joint caching
and transcoding at the edge, DRL-CCT has the highest
QoE, which means users can get much better experience in

video streaming services. It can be seen from Figure 7 that
when there is no transcoding function at the network edge,
the bandwidth cost is greater than the DRL-CCT algorithm,
because the uncached video has to be extracted from the
source server which leads to consume a lot of bandwidth cost.
The difference of bandwidth cost performance between
“transcoding only” algorithm and DRL-CCT algorithm is
slight in the latter stage.

The average bandwidth cost and QoE performance in
DRL-CCT algorithm with different experimental settings
are shown in Figures 8–11. Figures 8 and 9 are the perfor-
mance for different request numbers in an episode. It can
be seen from Figure 8 that as the number of user requests
in a time slot increases, the average bandwidth cost of each
MEC will continue to increase. This is because the number
of MEC servers is fixed. When the number of user requests
has increased, the number of user requests served by each
MEC must increase, which directly leads to an increase in
the average bandwidth cost of each MEC. The following con-
clusions can be directly obtained in Figure 9 that the change
in the number of requests from different users in a time slot
does not have a great impact on the average QoE of the users,
and the QoE value of the video streaming service is stable in a
good range.

Then, Figures 10 and 11 are the performance for different
MEC numbers within a cluster at network edge. According to
Figure 10, on the premise that the number of user requests in
a time slot is determined, when the number of MEC nodes in
the edge cluster decreases, the average bandwidth cost of each
MEC will increase at the beginning. However, as the deep
reinforcement learning process progresses, the average band-
width cost of each MEC will tend to stabilize. This is due to
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Figure 5: Cache hit rate vs. Zipf exponent.
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the adaptive decision-making function of deep reinforcement
learning, which continuously optimizes the MEC load distri-
bution in one edge cluster. In Figure 11, the same as in

Figure 9, the average QoE performance of the system has
always been relatively stable, indicating that the proposed
method has excellent robustness to environmental changes.
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Figure 7: The bandwidth cost performance in different algorithms.
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7. Conclusions

In this paper, we first propose a CDN and Cluster-based
Mobile Edge Computing system that can enhance the ability
of caching and computing and promote the collaboration
among MEC severs in one cluster. In addition, we formulate
a novel deep reinforcement learning based framework to
automatically obtain the intracluster collaborative caching
and transcoding decisions, which are executed based on
video popularity, user requirement prediction, and abilities
of MEC servers. Then, numerical results are presented to val-
idate the effectiveness of the proposed method.

Under the framework of the 2C-MEC system, this paper
mainly researches on promoting the collaboration among
MEC servers in the cluster. In the future work, intercluster
collaboration needs to be considered when intracluster com-
puting and storage capabilities are insufficient. If it is assumed
that the terminal has caching and computing capabilities, it is
also possible to consider “edge-end” collaboration, “end-end”
collaboration, and other collaboration modes to implement a
multidimensional collaboration model of “cloud-edge-end”
among different agents. At the same time, load balancing
among MEC servers in the mobile edge cluster still needs
further research to explore efficient ways to solve the con-
tradiction between the balance of MEC servers and the
improvement of user QoE.
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