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Predicting urban traffic is of great importance to smart city systems and public security; however, it is a very challenging task
because of several dynamic and complex factors, such as patterns of urban geographical location, weather, seasons, and holidays.
To tackle these challenges, we are stimulated by the deep-learning method proposed to unlock the power of knowledge from
urban computing and proposed a deep-learning model based on neural network, entitled Capsules TCN Network, to predict the
traffic flow in local areas of the city at once. Capsules TCN Network employs a Capsules Network and Temporal Convolutional
Network as the basic unit to learn the spatial dependence, time dependence, and external factors of traffic flow prediction. In
specific, we consider some particular scenarios that require accurate traffic flow prediction (e.g., smart transportation, business
circle analysis, and traffic flow assessment) and propose a GAN-based superresolution reconstruction model. Extensive
experiments were conducted based on real-world datasets to demonstrate the superiority of Capsules TCN Network beyond
several state-of-the-art methods. Compared with HA, ARIMA, RNN, and LSTM classic methods, respectively, the method
proposed in the paper achieved better results in the experimental verification.

1. Introduction

Empowered by Internet of Things (IoTs) technologies and
advanced algorithms that can collect and handle massive
traffic datasets, urban computing and intelligence can make
more informed decisions and create feedback loops between
actual traffic situation and management department in the
urban environment [1]. It can bridge the gaps between ubiq-
uitous sensing, intelligent computing, cooperative communi-
cation, and big data management technologies to create novel
solutions which can improve urban traffic environments,
quality of life, and smart city systems [2]. In these urban
computing methods, the huge datasets used by the scientists
are all from various sources, such as geographic information,
taxi GPS, and online weather web sites [3].

Urban traffic prediction has become a challenging urgent
task for the development of a smart urban city, as it can
afford visions for urban planning and traffic administration
to improve the performance of urban transportation, as
well as provide warnings for public security emergency
message as timely [4]. Moreover, urban traffic prediction
has been an important research issue with highly social
shock [5]. When some emergences happen such as traffic
accidents, an earthquake, tornado, and national holiday,
urban traffic prediction becomes the top priority for author-
ity (e.g., law enforcement) and traffic management opera-
tors (e.g., bus/ferry/subway) to protect people’s safety and
keep the work of social infrastructures [6]. Particularly for
an enormous population city such as New York and London,
the urban traffic is very heavy, which commonly leads to
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more probability for different traffic collisions and accident
situations [6].

To meet this challenge, we are with the purpose of deriv-
ing the urban traffic prediction from period, trend, geospatial,
and external influences and generate an accurate prediction
for the urban traffic in the next time window, which is consid-
ered to be an available way to dispose the urban computing.
We propose a neural network-based method called Capsules
TCNNetwork based on collected big traffic mobility data and
two deep-learning architecture TCN and Capsules Network.
For real time, we also proposed a further improvement
method for spatial-temporal data processing to achieve
supervision of urban area vehicle density.

2. Related Work

Traffic flow prediction has been considered as a key func-
tional component of intelligent transportation systems.
Meanwhile, artificial intelligence technology is rapidly grow-
ing and the fifth-generation communication technology is
approaching [7–15]. Massive traffic data are being continu-
ously collected through all kinds of sources, some of which
can be treated and utilized as streaming data for understand-
ing and predicting urban traffic [6]. All these stimulate us to
take new efforts and achieve new success on this social issue
by using such streaming mobility data and advanced artificial
intelligence technologies [6].

The evolution of traffic flow can be considered to be a
spatiotemporal process. As early as the 1970s, the autoregres-
sive integrated moving average (ARIMA) model was used to
predict the short-term traffic flow of expressways [16]. Traffic
flow prediction based on a time series method is a widely
used traffic flow prediction technology. Levin and Tsao
applied Box-Jenkins time series analysis to predict highway
traffic flow and found that the ARIMA (0, 1, 1) model was
useful in the prediction of the most statistically significant
[17]. Hamed et al. used the ARIMA model to predict the
traffic volume of urban arterial roads [18]. In order to
improve the prediction accuracy, many variants of ARIMA
were proposed, such as Kohonen-ARIMA [19], subset
ARIMA [20], ARIMAX [21], space-time ARIMA [22], and
seasonal ARIMA [23]. In addition to ARIMA-type time
series models, other types of time series models are also used
for traffic flow prediction [24].

On account of the random and nonlinear nature of traffic
flow, nonparametric methods have received widespread
attention in the field of traffic flow prediction. Davis and
Nihan used the KNN method for short-term traffic predic-
tion on expressways [25]. Chang et al. proposed a dynamic
multi-interval traffic forecasting model based on KNN non-
parametric regression [26]. Faouzi developed an autoregres-
sive function with a smooth kernel function for short-term
traffic flow prediction, in which a function estimation tech-
nique was applied [27]. Sun et al. used a local linear regres-
sion model for short-term traffic prediction [28]. A traffic
flow prediction method based on Bayesian network was also
proposed [29]. It proposed an online learning weighted
support vector regression (SVR) for short-term traffic flow
prediction. Various artificial neural network models for pre-

dicting traffic flow have been established [30–32]. The MA,
ES, and ARIMA models are used to obtain three related time
series, which are the basis of the nature in the aggregation
phase [33]. Zargari et al. developed different linear program-
ming, multilayer perceptron, and fuzzy logic models to esti-
mate 5- and 30-minute traffic flows [34]. Cetin and Comert
combined the ARIMA model with the expectation maximi-
zation and cumulative sum algorithm [35].

Yao et al. proposed to combine the principal component
analysis method with SVR and select urban multisection data
to establish a road network short-term prediction model that
took into account the relationship between time and space of
multiple sections [36]. Li et al. used the wavelet decomposi-
tion and wavelet reconstruction of the traffic flow sequence
data and then the use of Kalman filtering for dynamic data
prediction [37]; Sun et al. proposed the application of the
gray system theory to intersection traffic volume prediction
[38]. Xiong et al. combined traditional linear models with
artificial intelligence prediction models and proposed a
short-term traffic flow prediction method based on artificial
neural networks and Kalman filtering [39].

This article is divided into 6 sections: The first section
describes the research background, significance, and purpose
of the traffic forecast of urban vehicle traffic. The second sec-
tion introduces the current situation and the structure of this
article. The third section models the traffic forecast in urban
areas and introduces the structure of Capsules TCN Net-
work, which has two main technologies: Capsules Network
and Temporal Convolutional Network. At the same time,
the Capsules TCN Network model results are superresolu-
tion reconstructed to obtain a regional traffic flow forecast
map with higher accuracy. The fourth section introduces
the dataset used in the experiments and the data prepro-
cesses, the experimental criteria, and the comparative base-
lines. Moreover, in the experimental environment, platform
construction is introduced and the experimental results are
demonstrated and analyzed. The fifth section summarizes
the whole research.

3. Analytical Model of Regional Traffic

3.1. Regional Flow Prediction Problem. In urban areas, the
indicator of vehicle flow can be used to indicate the vehicle
flow in an area. This indicator can well reflect the traffic, pop-
ulation density, and public safety of a region. This article
predicts two types of vehicle group traffic: inflow and out-
flow, as shown in Figure 1(a). Inflow refers to the total
volume of vehicles entering a certain area from other areas
within a given time interval. Outflow represents the total flow
of vehicles leaving the area in a given time interval. Both
types of traffic are used to indicate the movement patterns
of vehicle traffic in urban areas. Understanding them can
be of great help in risk assessment and traffic manage-
ment. Inflow and outflow can be measured by the number
of cars driving near the road, the number of cars driving
on public transportation systems (e.g., subway and buses),
the number of taxis, or all available data. Figure 1(b) shows
an example of using the GPS trajectory of a rental car to mea-
sure the amount of traffic. The results show that the inflow
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in area B2 is 4 and the outflow in B5 is also 4. Obviously,
predicting traffic flow can be regarded as a spatial-temporal
prediction problem.

There are three complex factors in the spatial-temporal
prediction problem:

3.1.1. Space dependence. As shown in Figure 1(a), the inflow
in the B2 area is affected by the outflow in its vicinity (such
as B5). Similarly, the outflow of B5 will affect the inflow of
other regions (such as B2). The inflow of the B2 region will
affect its own outflow. Urban traffic flowmay be even affected
by distant areas. For example, people who live far away from
the office always take the car or taxi to work, which means
that the outflow of long-distance residential areas directly
affects the inflow of office areas.

3.1.2. Time dependence. The change of the traffic flow in any
area is generally continuous from the perspective of time. It
means the traffic flow at the next moment and the traffic flow
at the previous moment have the strongest correlation. With
the increase of the time interval, the correlation of traffic flow
will gradually decrease. Figure 2 shows the time-varying
curves of the traffic flow in a typical residential area and a
typical working area from our dataset. It can be seen that
both curves are relatively smooth, reflecting the continuous
change characteristics described above. At the same time, it
can be seen from Figure 2 that the change curve of the traffic
flow in the living area is different from the change curve of
the traffic flow in the working area, which reflects the
regional differences.

Different regions have different numbers of population
densities. Residential areas are suitable for living and resting.
In a residential area, each person has a larger unit space that
is more suitable for living and resting. Therefore, the lower
the population density of a residential area, the better the
residential area. In the work area, the closer the workers
are, the more convenient the communication is and the
work is more efficient. Therefore, the population density in
the work area is much larger than that in residential areas.
Different population densities determine different needs for
public transportation. It can be seen from Figure 2 that
although the trend of the number of taxis in the residential

area and the working area is basically the same over time,
there are obvious differences in the magnitude of the two.

As shown in Figure 3, whether it is a change in the traffic
flow in the work area or a change in the traffic flow in the res-
idential area, there are obvious characteristics of periodic
changes. To further complicate matters, this periodicity will
also be different under different time scales. When you
observe in days, you can see the daily fluctuations of vehicles
from morning to night. When you observe in weeks, you can
see fluctuations of vehicles from work. If you look at the unit
of year, you can see the impact of the climate and holidays on
the traffic flow in the four seasons.

This paper divides time dependence into period and ten-
dency. Period: traffic during the morning rush hour is similar
on consecutive working days. The morning rush hour usually
occurs from 8AM to 10AM, and the evening rush hour is
usually from 17 to 21PM, repeated every 24 hours. Ten-
dency: there is a cyclical difference between traffic between
a working day and a nonworking day, with a time interval
of one week.

3.1.3. External factors. Some external factors, such as weather
conditions and holidays, can drastically change traffic flow
in different areas of the city. As shown in Figure 4, a rain-
storm affects the speed of traffic on the road and further
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Figure 1: (a) Inflow and outflow. (b) Using the GPS trajectory of a rental car to measure the amount of traffic.
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Figure 2: Time continuity and difference of the number of taxis in
the residential area and the working area.
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changes the area’s traffic volume. Figure 5 shows the impact
of holidays on a regional traffic.

There are many ways to divide the city area. According to
the function, it can be divided into working area, residential
area, mixed area, etc. It can also be divided according to the
structure of the urban road network, and the city can be
divided into main roads by using the map division method.
The division method is introduced in the paper. We use grids
to divide cities according to latitude and longitude. As shown
in Figure 6(a), j and k represent the number of rows and col-
umns in the area, respectively. In actual life, the values of j
and k can be adjusted according to different city sizes and dif-
ferent application scenarios. In this paper, the scenario is
divided into 16 × 16 grids.

Let R be the trajectory set of the ith time interval. For the
grid ðj, kÞ located in the jth row and the kth column, the
inflow and outflow at the time interval i are defined as

αj,k
i =〠

R

Count Li−1 ∉ j, kð Þ and Li ∈ j, kð Þð Þ, ð1Þ

βj,k
i =〠

R

Count Li ∈ j, kð Þ and Li+1 ∉ j, kð Þð Þ: ð2Þ

Among them, Li is the trajectory of all the vehicles in R at
ith time interval. Here, the trajectory is determined according
to the GPS coordinates in the dataset and the grids divided by
the map. In the ith time interval, inflow of 16 × 16 grids in the
entire area can be represented by a matrix composed of αj,k

i as
shown Figure 6(b). The traffic prediction problem is trans-

formed into known historical data αj,k
i and βj,k

i to predict

αj,k
i+1 and βj,k

i+1 in the next moment.

3.2. Algorithm Model of Capsules TCN. Both recurrent neural
networks (RNN) and long-term short-term memory (LSTM)
are capable of learning remote time dependence. However, if
RNN or LSTM is used to simulate time periods and trends, it
requires very long input sequences, which make the entire
training process very complicated. According to the knowl-
edge of space-time domain, only a few previous key frames
will affect the next key frame. Therefore, we use time period,
tendency, and geographic space to select key frames for
modeling. Figure 7 shows the architecture of Capsules TCN
Network proposed in the paper. It consists of four primary
parts, which model time period, tendency, geospatial, and
external influences.

As shown Figure 7, first, the methods introduced in for-
mulas (1) and (2) are used to convert the inflow and outflow
of the entire city at each time interval into a 2-channel
matrix. The spaced 2-channel stream matrix in each time
segment is sent to the first two parts, respectively, and the
same network structure of proposed Capsules TCN Network
is used for modeling. This structure also captures the spatial
dependence between nearby and distant areas. They are pro-
vided to the same neural network structure in the external
factors. The output of the four parts is fused in the way of
fully convolutional networks. Finally, the result is mapped
to the range [-1, 1] by the Sigmoid function, which produces
faster convergence than the standard logic function during
the backpropagation learning process. The entire neural net-
work structure consists of two important methods: Capsules
Network [40] (CapsulesNet) and Temporal Convolutional
Network [41] (TCN).

3.2.1. CapsulesNet in Capsules TCN Network. Sabour et al.
published a paper on Google Brain entitled “Dynamic
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Figure 3: Time periodicity of the number of taxis in the residential
area and the working area.
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Figure 4: Impact of extreme weather on the number of taxis in the
working area.
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Figure 5: Impact of social event on the number of taxis in the
working area.
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routing between capsules” [40]. We use the ideas from the
reference when designing our Capsules TCN Network.
Figure 8 shows the architecture of Capsules network (Capsu-
lesNet). CapsulesNet, like ordinary neural networks, consists
of many layers. The lowest capsule layer is called the primary
capsule layer: each capsule unit in them receives a region of a
matrix as input and detects the presence and posture of a spe-
cific object, and higher layers can detect larger and more
complex objects.

Capsules are a group of neurons whose input and output
vectors represent instantiation parameters of a specific entity

type (that is, the probability of certain objects, conceptual enti-
ties, etc. appearing and certain attributes). The capsules at the
same level use the transformation matrix to predict the instan-
tiation parameters of higher-level capsules. When multiple
predictions are consistent (this paper uses dynamic routing
to make predictions consistent), higher-level capsules become
active. The activation of the neurons in the capsule represents
the various properties of the specific entities present in the
matrix. These properties can include many different parame-
ters, such as pose (position, size, and orientation), deforma-
tion, speed, reflectivity, color, texture, and more.
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Figure 6: (a) Grid division of urban areas. (b) Inflow matrix in the ith time slice of the urban areas in the (a).
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Figure 7: Capsules TCN architecture.
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The length of the input-output vector represents the
probability of an entity appearing, so its value must be
between 0 and 1. To achieve this compression and complete
capsule level activation, Sabour et al. used a nonlinear func-
tion called “squashing.” This nonlinear function ensures that
the length of the short vector can be shortened to almost zero,
and the length of the long vector is compressed to close to but
not more than 1 [40]. Here is the expression for this nonlin-
ear function [40]:

V j =
Sj

�� ��2
1 + Sj

�� ��2 Sj
Sj

�� �� , ð3Þ

where V j is the output vector of capsule j, which Sj is the
weighted sum of the vector output by all capsules in the pre-
vious layer to capsule j in the current layer, which Sj is simply
the input vector of capsule j. The nonlinear function can be
divided into two parts [40], namely,

Sj
�� ��2

1 + Sj
�� ��2 ,
Sj
Sj

�� �� ,
ð4Þ

the first part is the scaling of the input vector Sj, and the sec-
ond part is the unit vector of the input vector Sj. This nonlin-
ear function not only retains the direction of the input vector
but also compresses the length of the input vector to the
interval [0,1). When Sj is zero, V j can take 0, and when Sj
is infinity,V j approaches 1 infinitely. This nonlinear function
can be seen as a kind of compression and reallocation of the
vector length, so it can also be seen as a way to “activate” the
output vector after the input vector.

Then, as mentioned above, the input vector of capsule is
equivalent to the scalar input of a classic neural network, and
the calculation of this vector is equivalent to the way of prop-
agation and connection between two layers of capsules. The
calculation of the input vector is divided into two phases,

namely, linear combination and routing. This process can
be expressed by the following formula [40]:

Sj =〠
i

cijûj ij , ûj ij =Wijui, ð5Þ

where ûjji is a linear combination of ui, which can be seen as a
general neuron in the previous layer outputs with different
strengths to a neuron in the next layer [40]. Just that capsule
has a set of neurons (to generate a vector) at each node com-
pared to a general neural network, which ûjji means that the
output vector of the ith capsule in the previous layer is mul-
tiplied by the corresponding weight vector (Wij representing
a vector). The resulting prediction vector ûjji can also be
understood as the strength of connecting to the jth capsule
in the latter layer if the previous layer is the ith capsule.

After ûjji decision is made, routing needs to be used for
the second stage of allocation to calculate Sj in the output
nodes. This process involves iterative updates cij using
dynamic routing. We can get the Sj of the next layer of cap-
sule through routing and then put Sj into the “squashing”
nonlinear function to get the output of the next layer. The
entire capsule layer and the process of propagation between
them have been completed.

Coupling coefficient cij is updated and determined itera-
tively by a dynamic routing process. The sum of the coupling
coefficients between capsule i and all capsules in the next
level is 1. In addition, cij is determined by “routing softmax,”
and bij in the softmax function is initialized to 0. The softmax
of cij is calculated as [40]

cij =
exp bij

� �
∑kexp bikð Þ : ð6Þ

bij depends on the position and type of the two capsules but
does not depend on the current input matrix. The consis-
tency between the current output V j of each capsule j in
the subsequent hierarchy can be measured. The prediction
vector of the previous capsule i iteratively update the
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Figure 8: Capsule network architecture.
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coupling coefficient with the consistency of the measure-
ment. This paper simply measures this consistency by the
inner product as

aij =V j ⋅ ûj ij : ð7Þ

This part also involves using routing to update the cou-
pling coefficient [40]. The routing process is the update pro-
cess. It calculates the product of V j, and ûjji updates bij by
adding it to the original bij and then uses softmax (bij, j) to
update cij. When the output V j is new, it can be updated cij
iteratively, so that the parameters are updated directly by
calculating the consistency of the input and output without
back propagation.

For all capsule i and capsule j, initialize bij to equal to
zero. The routing algorithm is very easy to converge; basi-
cally, it can have a good effect in 3 iterations. cij is updated
through consistent routing. It does not need to be updated
according to the loss function, but other convolution param-
eters and Wij in the entire network need to be updated
according to the loss function. In general, these parameters
can be updated directly for the loss function using standard
back propagation. The expression of this loss function is [40]

Lc = Tc max 0,m+ − vck kð Þ2 + λ 1 − Tcð Þ max 0, vck k −m−ð Þ2,
ð8Þ

where c is the classification category, Tc is the indication
function of classification (c exists as 1, and c does not exist
as 0), m+ is the upper boundary, and m− is the lower
boundary. In addition, vc modulus is the L2 distance of
the vector.

3.2.2. TCN in Capsules TCN Network. TCN has better perfor-
mance than a baseline recursive architecture in a wide range
of sequence modeling tasks. Because these tasks include var-
ious benchmarks that are often used to evaluate recurrent
network designs, it shows that the recent success of convolu-
tional architectures in applications such as sequence process-
ing is not limited to these areas [41].

TCN is based on two principles: the network produces an
output of the same length as the input, and it cannot leak
from the future to the past. To complete the first point,
TCN uses a one-dimensional full convolutional network
architecture, where each hidden layer is the same length as
the input layer, and a zero-padding length (kernel size-1) is
added to keep the subsequent layers from the previous layers.
To achieve the second point, TCN uses causal convolution,
and the output at time t is only transformed with elements
from current time and earlier layers from the previous layer.
It can be found by careful observation that TCN=1D FCN
causal convolution.

The major difference between TCN convolution and
ordinary 1D convolution is the use of dilated convolutions.
The higher the level, the larger the convolution window,
and the more “holes” in the convolution window. More
formally, for a 1D sequence input X ∈ Rn and a filter f

: f0,⋯, k − 1g→ R, the dilated convolution operation F on
element s of the sequence is defined as

F sð Þ = x ∗ dfð Þ sð Þ〠
k−1

i=0
f ið Þ ∗ xs − d ∗ i, ð9Þ

where d is the expansion factor, k is the size of the filter, and
xs − d ∗ i represents the past direction [28]. Therefore, expan-
sion is equivalent to introducing a fixed step between every
two adjacent filter faucets.

A primitive timing sequence convolution is just able to
run back over at a point in time with size linear in the depth
of timing sequence of the network. It makes a challenge to
put in the mentioned causal convolution for time series, in
which a longer history is critical. To acquire an exponentially
large receptive field, a good part of the solution is dilated con-
volution. As illustrated in formula (9), d is the expansion fac-
tor. When d = 1, the expansion convolution is reduced to
regular convolution. In order to figure a broad range of
inputs, a larger dilation can be applied at the top level of
the output. This ensures that there is a wider scale that
expand the receptive field of a convolution within the effec-
tive history, meanwhile also extending for a long effective his-
tory using deep networks.

Every two such convolutional layers and identity map-
ping are encapsulated into a residual module (the residual
module here is different from ResNet). The residual module
contains RelU function, and a fully convolutional layer is
used instead of a fully connected layer in the last few layers,
as shown in Figure 9(a).

Generally, when using expanded convolution, we will
increase d exponentially as the depth of the network
increases. When the expansion factor is 1, as shown in
Figure 9(b), the expansion convolution degenerates into
causal convolution with a receptive field of 2. When the
expansion factor is 2, the convolution kernel of the expanded
convolution becomes 4. The final output contains all input
information. By controlling the expansion factor, the size of
the convolution kernel is increased to achieve the purpose
of increasing the receptive field.

There are two disadvantages in large-scale neural net-
works: (1) it is too time-consuming; (2) it is easy to be over-
fitting. The dropout layer prevents overfitting of the network.
Dropout is the process of training the network during deep
learning. First, a part of the neural network units is temporar-
ily dropped from the network with a certain probability,
which is equivalent to finding a more streamlined network
from the original network.

3.3. Superresolution Matrix of Inflow and Outflow Based on
GAN. Unlike traditional time series prediction, the result of
urban traffic flow prediction is a matrix rather than a simple
value. When a high-resolution prediction result is needed, for
example, the city is divided into 32 × 32. Through the two
neural network models of the Capsules Network and Tempo-
ral Convolutional Network within a minute time level to
obtain the final predicted 32 × 32 time results, it cannot be
achieved by the hardware conditions at this stage. Therefore,
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by reducing the resolution (matrix dimension) of the input
data, it can achieve an exponential time-saving effect. Using
a GAN-based superresolution reconstruction model is rea-
sonable to reconstruct the high-resolution prediction results.
Although the accuracy of the prediction result is sacrificed, it
can obtain a minute-level high-resolution prediction result
under the available hardware conditions. Under the urban
traffic command and public safety guarantee scenarios, it
is vital to obtain near-accurate results faster, which can pro-
vide better support for decision makers to make timely and
effective judgments.

Because the amount of data is huge and the calculation
is complicated, only the vehicle scene prediction of the
experimental scene city in the 16 × 16 grid is calculated.
However, in actual life applications, the experimental scene
city is divided into 16 × 16 grids which is not inadequate.
Dividing the city into a finer-grained grid is undoubtedly
the solution to this problem. However, the traffic flow at
the next interval cannot be predicted in time for more data
to be computed.

The superresolution reconstruction reconstructs the city
traffic flow a 16 × 16 experimental scene and obtains a 32 ×
32 traffic flow prediction result. When we want to get better
32 × 32 fine results, the input data that needs to be processed
increases by 4 times, and the overall calculation volume will
also increase exponentially. We directly predict 32 × 32
results based on the predicted 16 × 16 results based on Gen-
erative Adversarial Network (GAN). The overall structure
and workflow of traffic superresolution reconstruction of
GAN are shown in Figure 10.

Figure 10 shows the structure of the superresolution
reconstruction process based on GAN. The 16 × 16 experi-
mental scene of urban vehicle traffic is used as a low-

resolution matrix sequence after convolution layers to form
a set of arranged matrixes. This set of matrixes output a 32
× 32 high-resolution matrix after passing through the GAN.

The process of inputting a convolution layer of a low-
resolution matrix is based on the input of a low-resolution
matrix of a frame and then convolving the matrix. The train-
ing process of the convolutional layer network is the optimi-
zation process of the parameters. The spatial transformation
can be expressed as

It+k′ = Tθi
It+kð Þ: ð10Þ

The matrix It+k′ represents the high-resolution matrix
obtained by transforming Tθi

ðIt+kÞ, and the transformation
is Tð:Þ [42]. Regarding the loss function of the convolutional
layer network, we utilize a regularization method to express
it. The optimal parameter estimation process can be
expressed as [42]

θ∗i = argθi min It − It+k′
�� ��2

2 + λ QIt+k′
�� ��2

2, ð11Þ

among them, θ∗i represents the parameters of the optimi-
zation estimation, λ is a regularization parameter, and Q
is a Laplacian. Differentiate the parameters θ∗i on the right
side of formula (11), and make the differentiated result
equal to 0. Use the fastest gradient descent method to iter-
atively solve the equation until the error is less than a pre-
set threshold. The output parameter θ∗i is the estimated
optimal parameter.

The weight representation of the reconstruction network
refers to defining a weight for each input low-resolution
matrix, then performing weight representation on the input
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Dropout
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.........................x
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(1)
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Figure 9: (a) TCN residual block in proposed architectural. (b) TCN residual connection in proposed architectural.
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low-resolution matrix to obtain a frame of high-frequency
detail information. We add a convolution layer before the
generative adversarial reconstruction network to complete
the weight representation of the low-resolution matrix after
the convolution layer. The mathematical expression of the
weight representation can be expressed as [42]

X m, nð Þ = 〠
K−1

k=0
ωk m, nð ÞIt+k m, nð Þ, ð12Þ

where ωkðm, nÞ represents the weight value corresponding to
the matrix block of the low-resolution matrix sequence. Gen-
erally, the same weight is defined for the matrix block. K rep-
resents the number of input low-resolution matrixes, ðm, nÞ
represents the serial number corresponding to the matrix
block, and ðm ∈ 0,→ ,M − 1 ; n ∈ 0,→ ,N − 1Þ.

4. Numerical Evaluation and Discussion

4.1. Experimental Data and Preprocessing. In the experimen-
tal verification part, the urban taxi dataset (taxi GPS) of
the experimental scenario is used, and the data is shown
in Table 1.

This article uses the reserve method: (1) the dataset is
divided into two disjoint parts, one is the training set and
the other is test set; (2) keep the data distribution roughly
consistent, similar to stratified sampling; (3) in this paper,
the amount of data for one year is used as the training
set, and the amount of data for 4 months is used as the val-
idation set. The amount of training set data should account
for 75%.

We mainly use historical taxi traffic data prediction to
refer to the forecast of rental vehicle traffic data at the future
moment. The experiment selects the urban taxi GPS track
data from the experimental scenes from June 10, 2018, to
June 10, 2019, as the training set, and the remaining data as
the test set. In order to facilitate the display and calculation
of the results, we select the period from 8:00 to 10:00AM
for analysis.

The grid is divided into 16 × 16 grids, as shown in
Figure 6(a). The GPS trajectory of the taxi is then mapped
to the grid area, and a grid area map is developed, as shown
in Figure 6(b). The grids represent regions, and the line

segments connect the two regions (connected by taxi in this
article). The area map actually combines data from the road
network and taxi trajectory.

In Keras, learnable parameters are initialized with a
uniform distribution with default parameters. The convo-
lution of CapsulesNet 1st and all TCNs uses 32 filters of
size 3 × 3, and CapsulesNet 2ed uses the convolution of
2 filters of size 3 × 3. Each Capsules TCN Network unit
consists of 4 TCNs and 2 CapsulesNets. Table 2 for details,
there are five additional hyperparameters in Capsules TCN
Network.

In our superresolution reconstruction experiment, the
16 × 16 grid map is also an input as a low-frame image,
and a 32 × 32 grid map is obtained through calculation by
a GAN-based traffic prediction network. The magnification
of the reconstruction experimental resolution is 2 × 2. The
initial learning rate is set to 10-4, and with each 10,000 iter-
ations, the learning rate drops by 5%. In order to balance the
convergence and training time of the network, the maxi-
mum number of iterations for superresolution reconstruc-
tion is set to 106.

4.2. Experimental Environment and Evaluation Criteria. The
experimental verification in our research mainly runs on
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Figure 10: The architecture of superresolution matrix of inflow and outflow based on GAN.

Table 1: Table of dataset.

Dataset Taxi GPS

Type of data Taxi GPS track data

Time span 2018/6/10-2019/10/4

Time interval 30 minutes

Map grid size (16, 16)

Track data

Number of taxis 5000+

Available time interval 31,724

External factor data

Holiday 26

The weather 12 types

Temperature [-14.2, 38.6]

Wind speed [0, 31.7]
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the GPU server, and its detailed information is shown in
Table 3.

We use Root Mean Square Error (RMSE) to evaluate the
model [43].

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Z
〠
i

xi − x∧ið Þ2
s

, ð13Þ

where x is the real value and x̂ is the corresponding predicted
value; Z is the number of all available true values. The RMSE
is used to measure the deviation between the observed value
and the true value, which is more suitable in this experiment.

Furthermore, in order to measure the quality of the
superresolution reconstruction algorithm, evaluation indica-
tors need to be used. The requirements for reconstruction
results are different in different application scenarios, so the
evaluation standards used are also different. Evaluation
methods are generally divided into two categories, one is sub-
jective evaluation and the other is objective evaluation. In
objective evaluation, the two most commonly used evalua-
tion indicators are Peak Signal-to-Noise Ratio (PSNR) [44]
and Structural Similarity (SSIM) [45].

The specific calculation formula of PSNR [44] is
described as follows:

PSNR = 10 log10
2l − 1
� �2
MSE ,

MSE = 1
mn

〠
m

x=1
〠
n

y=1
f∧ x, yð Þ − f x, yð Þ½ �2:

ð14Þ

MSE is the mean square error, f ðx, yÞ represents the ref-
erence matrix. In the experiment, 32 × 32 grids represent the
matrix. It can be known from the formula that when the
PSNR of the matrix to be evaluated is larger, the reconstruc-
tion result is better.

The specific calculation formula of SSIM [45] is given as
follows:

SSIM =
2μfμ f̂ + C1

� �
2σf , f̂ + C2

� �
μ2f + μ2

f̂
+ C1

� �
σ2f + σ2

f̂
+ C2

� � , ð15Þ

where μf is the average value of the reference matrix, μ f̂ rep-
resents the average value of the matrix to be evaluated, σf is
the variance of the reference matrix, and σ f̂ is the variance
of the matrix to be evaluated.

4.3. Effect of Hyperparameters on Experimental Results. The
number of CapsulesNet has an effect on the taxi GPS dataset
experiments, as shown in Figure 11(a). The network depth
also greatly affects the experimental results. As shown in
Figure 11(b), the number of TCN increases; the RMSE of
the model fluctuates. It indicates that the network is not the
deeper the better, because it captures not only close-space
dependencies but also far-space dependencies. When the net-
work is very deep (such as when the number is 15), training
becomes very difficult. Based on the above comparison, the
number of CapsulesNet is two, and the number of TCNs is
set to four.

Table 2: Table of detail in Capsules TCN architecture.

Network layer Size Social/weather feature Time tendency feature Time period feature Geographic space feature

CapsulesNet 1st 16 × 16 3 × 3, 32 3 × 3, 32 3 × 3, 32 3 × 3, 32

TCN 1st 16 × 16
3 × 3, 32
3 × 3, 32

" #
× 2

3 × 3, 32
3 × 3, 32

" #
× 2

3 × 3, 32
3 × 3, 32

" #
× 2

3 × 3, 32
3 × 3, 32

" #
× 2

TCN 2ed 16 × 16
3 × 3, 32
3 × 3, 32

" #
× 2

3 × 3, 32
3 × 3, 32

" #
× 2

3 × 3, 32
3 × 3, 32

" #
× 2

3 × 3, 32
3 × 3, 32

" #
× 2

TCN 3rd 16 × 16
3 × 3, 32
3 × 3, 32

" #
× 2

3 × 3, 32
3 × 3, 32

" #
× 2

3 × 3, 32
3 × 3, 32

" #
× 2

3 × 3, 32
3 × 3, 32

" #
× 2

TCN 4th 16 × 16
3 × 3, 32
3 × 3, 32

" #
× 2

3 × 3, 32
3 × 3, 32

" #
× 2

3 × 3, 32
3 × 3, 32

" #
× 2

3 × 3, 32
3 × 3, 32

" #
× 2

CapsulesNet 2ed 16 × 16 3 × 3, 32 3 × 3, 32 3 × 3, 32 3 × 3, 32

Table 3: Table of detail in experimental environment.

OS Windows7

Memory 32GB

CPU Intel Core i5-6500 3.20GHz4 cores

GPU Nvdia 1080Ti∗2
Software

CUDA ver. 8.0

CUDNN ver. 8.0

Keras ver. 1.1.1

TensorFlow ver. 1.1.0
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4.4. Experimental Results and Analysis. By comparing with
historical average (HA), autoregressive integrated moving
average (ARIMA), recurrent neural network (RNN), and
long-term short-term memory (LSTM) network, the validity
of the Capsules TCN Network model for urban area traffic
flow prediction is verified.

HA predict the inflow and outflow of people based on the
historical average of inflow and outflow at the same time and
area in the past. For example, to predict the inflow of a region
from 10:00 to 10:30AM this Thursday morning, calculate the
average of the inflow from 10:00 to 10:30AM every Thursday
morning in this region.

ARIMA is a well-known model for understanding and
predicting future values in a time series. In the traditional lin-
ear model, the autoregressive integrated moving average
model has been widely used in passenger flow prediction. It
is a general formula for autoregressive (AR) models, integral
(I) models, or moving average (MA) models.
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Figure 11: (a) Effect of the number of CapsulesNets on experimental results. (b) Effect of the number of TCNs on experimental results.
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Figure 13: The prediction results of the algorithm in 4 different times (a) PM 8:00. (b) PM 8:30. (c) PM 9:00. (d) PM 10:00.
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Figure 14: (a) Results of 32 × 32 matrix based on superresolution GAN reconstruction according to 16 × 16 matrix of Figure 6(b). (b) Real
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RNN is a deep-learning model that captures time
sequence dependencies. Formally, RNNs can train sequences
of any length [46].

LSTM is a special RNN that can learn long-term time
dependencies [47].

We compare the RMSE between the Capsules TCN Net-
work and the true value and then compare it with other pre-
diction models to verify the validity of Capsules TCN
Network. The results are shown in Figure 12. According to
the comparison results, it can be seen that the proposed
Capsules TCN Network has smaller RMSE. It has higher
prediction accuracy than other models, indicating the effec-
tiveness of the proposed Capsules TCN Network for traffic
prediction tasks.

Figure 13 shows the spatial-temporal distribution of
taxi traffic during the morning rush hour at 8:30-
10:00AM on September 30, 2018. From the results in
Figure 13, it can be seen that the proposed Capsules TCN
Network better grasps the spatiotemporal characteristics of
the changes in taxi traffic and makes predictions with
sufficient accuracy.

The experimental results of superresolution matrix of
inflow and outflow based on GAN are also demonstrated.
Figure 14(a) is the result of superresolution reconstruction
based on GAN, and Figure 14(b) is the real value, when the
input low-resolution matrix is used from Figure 6(b).
According to experiments, it can be seen subjectively that
GAN-based superresolution reconstruction has achieved
good reconstruction results and is close to the real value visu-
ally. The objective assessment is as follows: PSNR is 33.844
and SSIM is 0.93. We also obtain the PSNR and SSIM of
superresolution matrix of inflow and outflow based on
GAN in 64 × 64 and 128 × 128, respectively. In 64 × 64 scene,
PSNR is 28.94 and SSIM is 0.88. In 128 × 128 scene, PSNR is
22.75 and SSIM is 0.79.

5. Conclusions

Traffic forecasting has been a core issue in transportation
planning and management, and it has also been a major issue
in urban computing. The prediction of traffic volume can
help the development of urban traffic safety, and traffic flow
will be more order. We propose a method based on the Cap-
sules Network and Temporal Convolutional Network to pre-
dict traffic flow in local areas of the city. This method is called
Capsules TCN Network. The Capsules TCN Network model
can learn the spatial dependence, time dependence, and
external factors of traffic flow prediction. We evaluated the
GPS track data of urban taxis in the experimental scenarios
and verified that the model has a good applicability in vehicle
traffic prediction. Because the accuracy of regional traffic flow
is different in different scenarios, we propose a GAN-based
superresolution reconstruction model of traffic flow to
improve the accuracy of Capsules TCN Network model
results. The experimental results show that the GAN-based
traffic superresolution reconstruction model not only has a
better subjective visual effect but also has more prominent
objective evaluation indicators.
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