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The rapid growth of the Internet and technological advances are forcing mobile operators to increasingly invest in network
infrastructures. C-RAN and SDN are regarded as enabling technologies that can overcome the limitations faced by operators, by
reducing costs, increasing scalability, and paving the way for the next generation of 5G cellular networks. In this paper, an
architectural solution based on SDN and computational intelligence is proposed for C-RAN, which can adjust BBU-RRH
mapping through network load balancing rules by predicting subjective and objective QoE metrics for UHD video streaming.
The simulation results achieved gains between 59% and 129%, in scenarios without activating a new BBU and scenarios that
involve activating a new BBU, respectively.

1. Introduction

The world is currently witnessing an exponential evolution in
wireless mobile communications. The inclusion of digital
modulation techniques, the advance of wideband code
division multiple access (WCDMA), orthogonal frequency-
division multiplexing (OFDMA), and multiple-input and
multiple-output (MIMO), have all made a significant contri-
bution to the improvement of cellular communications. How-
ever, with the emergence of the next generation of mobile
networks (5G), the rapid and constant proliferation of devices
and the increase in demand for multimedia applications, such
as ultrahigh definition (UHD) video and online games, are
driving the mobile network operators (MNOs) to invest nota-
bly more in the infrastructure. According to [1], the amount of
data traffic expected by 2022 will be up to seven times higher
than the traffic that was recorded in 2017, reaching 77.0 exa-
bytes per month. In the same study, it was found that the traffic
generated by video applications is the main source for this vol-
ume of traffic. In this context, MNOs have been instructed to

maximize their capital expenditure (CAPEX) and operating
expenses (OPEX), to provide network services efficiently, along
with a sufficiently high standard to meet the quality expecta-
tions of end-user experience (QoE), while the average incomes
of users will not be sufficient to cover the rise in expenses [2].

This evolution offers new business models in which the
key factor and the source of revenue are not the networks or
even the content itself, but the degree of satisfaction experi-
enced by the customers who are paying for the service [3].
Moreover, those who are driving MNOs are looking for new
mechanisms to assess the degree of user satisfaction through
QoEmetrics, which involves many subjective factors unrelated
to quality of service (QoS) evaluation metrics, which are
largely based on network performance. However, they also
involve assessing the mood of the user or discovering how to
represent system responsiveness, and this leads to a special
kind of service level agreements (SLA) which are designed to
establish a common standard for the level of quality that the
customer will experience from using the services and are also
called experience level agreements (ELA) [4].
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The emergence of software-defined networks (SDN) and
the cloud radio access network (C-RAN) offers promising
technological solutions to confront this challenge. These
technologies allow the implementation of efficient network
resources and flexible scheduling to be shared. The SDN also
separates the control plane from the data (or forwarding)
plane. The advantage of this separation is that it allows an
SDN controller to acquire an updated global view not only
of the whole network but also of all the flows competing for
traffic, which can increase the flexibility and scalability of
the system, by making networks programmable, adaptable,
and cost effective [5, 6]. These characteristics allow, for
example, the integration of innovative solutions based on
artificial intelligence (IA) techniques. C-RAN has emerged
as a cellular network architecture that is capable of (a) meet-
ing the demand for high end-user traffic data, (b) optimizing
the use of physical resources, and (c) reducing costs [7]. As
noted in Figure 1, C-RAN can be regarded as an evolution
of the distributed cellular network where the computational
resources of the base stations (BSs) are centralized in a pool
consisting of baseband units (BBUs) implemented with the
features of network function virtualization (NFV) and a
remote radio head (RRH) with radio frequency (RF) features,
both connected by low-latency high-bandwidth links, called
fronthaul [8].

According to [9], the adoption of this type of approach
implies that less rooms and equipment are needed to cover
the same areas, while it also reduces the energy consumption
of air conditioning and other support equipment. Besides,
the connections between BBUs and RRHs are changed
dynamically, allowing a BBU to connect to one or more
RRHs. This facilitates the balanced allocation of computa-
tional resources between different BBUs [8]. More details
on the C-RAN architecture can be seen at [5].

However, even with the implementation of C-RAN, there
will still be some recurring problems in managing network
resources. The number of active users in mobile networks
varies considerably, depending on the time of day. During
the daytime, for example, the BSs in the commercial areas
of big urban centers are the most widely used, while at night-
time the most frequently visited BSs are in residential areas or
leisure centers. Currently, the processing capabilities of each
BS are only used by active users on the coverage, which
causes the problem of idle BSs in some areas and BS over-
loading in others. This nonuniform and dynamic traffic load
is called the “tidal effect” flow [10]. Thus, when there is an
increase in the network requirements at a given location,
more RRHs are needed to improve coverage. If the BBU
cannot support the network requirements, it is necessary to
intensify the processing or add more BBUs to the BBU pool
[11]. The increase in baseband (BBU) processing, caused by
high-intensity applications of data, requires a high modula-
tion and coding scheme index (MCS). However, random
increases inMCS affect the BBUs’ computational load, result-
ing in overload and loss of data, factors that may have a direct
influence on the user’s experience [12].

Given this, in the future, the network architecture will
inevitably be faced with a situation in which the various
RRHs are connected to BBU pools. This will cause an

increasingly serious problem about how to allocate resources
and lead to a lowering of performance standards in the
services provided to users and underutilization and waste of
computing resources by MNOs. For this reason, a good deal
of attention should be paid for providing solutions for
proactive mapping techniques for load balancing between
BBU-RRHs that involve heterogeneous multimedia services
and user dynamics.

Although these concepts have been proposed and
approach through the application of the genetic algorithm
(GA) and particle swarm optimization (PSO) in [2, 13],
respectively, minor research has been carried out that
addresses the management of services that require a high vol-
ume of data. There has been also a failure to examine the
effect of this on the QoE that these services must satisfy and
highlight the need for innovative solutions that can aid the
MNOs to comply with the SLA and provide users with
appropriate QoE. In that regard, this paper proposes an intel-
ligent BBU-RRH mapping architecture for C-RAN, which is
capable of providing network load balancing in response to
user demand and transforming a network-centric resource
allocation for user-centric resource allocation. To this end,
we have designed an SDN controller based on AI capable of
predicting the QoE for video streaming services, to (a) adjust
the BBU-RRH ratio to user demand, (b) reduce of blocked
call events, and (c) reduce operational costs.

The remainder of this paper is structured as follows:
Section 2 examines the recent solutions with regard to load
balancing and mapping (BBU-RRH) issues involving the
C-RAN architecture. In Section 3, our framework is
established and there is a discussion of its relationship to
the traditional components of a C-RAN architecture. In
Section 4, we analyze and discuss the results obtained from
the simulations. Finally, in Section 5, there are some final
considerations and we make some recommendations for
future work in the field.

2. Related Work

The dynamic allocation problem of BBU resources for RRH
and C-RAN load balancing has been investigated extensively
in many works from combining techniques to employing
algorithms as AI-based optimization tools. In [9], the authors
propose semistatic and adaptive switching schemes to deter-
mine the best combinations between BBUs-RRHs and ensure
a continuous traffic load. The results confirmed that the
number of BBUs can be reduced by 26% and 47% for
semistatic and adaptive schemes, respectively, compared
with conventional cell deployment. In [13], a GA and discrete
particle swarm optimization (DPSO) are proposed as evolu-
tionary algorithms to solve the problem of BBU-RRH map-
ping in dynamic traffic scenarios. Computational results
based on three benchmark problems demonstrate that GA
and DPSO deliver optimum performance for small networks,
whereas close optimum is delivered for large networks. The
results of both GA and DPSO are compared to exhaustive
search (ES) and K-means clustering algorithms. The percent-
age of blocked users in a medium-sized network scenario is
reduced from 10.523% to 0.421% and 0.409% by GA and
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DPSO, respectively. In [14], an algorithm is proposed that
considers the signal interference-noise relationship (SINR)
of user equipment (UE) as a determining factor to improve
BBU-RRH mapping. The results show that the proposed
algorithm was able to determine the ideal number of RRHs
per BBUs in dynamic traffic loads. In [15], the authors pro-
pose a joint solution to the BBU-RRH mapping and user
association problem in C-RAN to minimize the system cost
incurred by the power consumption of all RRHs and rentals
of BBUs. Simulation results have demonstrated that the pro-
posed algorithm performs very close to the optimal solution
and accomplishes even better when the QoS requirement is
not strict. In [16], the authors propose an optimization prob-
lem that models the optimal allocation of computational
resources between BBUs and RRHs. Results show that the
computational resource requirements and the power con-
sumption of BBUs and the physical machines decrease as
the channel quality worsens. Moreover, the developed heu-
ristic solution can be close to the optimal performance while
having lower complexity. In [17], the authors proposed a
dynamic switching scheme through the resource renting
approach. The purpose of this is to improve load balancing
in scenarios where the problem of BBU resource scarcity is
imminent. Simulation results demonstrate that the proposed
mechanism in C-RAN significantly reduces the waste of
resource usage and improves the throughput. In [2], the
authors deploy genetic algorithms (GA) as a promising load
balancing and BBU-RRH mapping solution to obtain a min-
imum number of blocked calls and to maximize QoS. The
aim is to find the solution that is most likely to fit the adapta-
tion to the scenario. Simulation results show a reduction of
100% in the number of blocked calls. A similar strategy is
adopted in [18], although the authors address the problem
by employing the particle swarm optimization (PSO), where
the best solution is randomly determined on the basis of the
speed and position of the particles with the best values for
testing aptitude. The results obtained show improvements
of up to 100% on blocked calls when QoS factors are taken
into account. In [19, 20], the authors provide an enhanced
dual-load balancing mechanism for connectivity through
bandwidth adaptation. This system involves grouping

bearers that are transmitted by the RRHs to proportionally
divide network resources. Finally, in [11], the authors
proposed a new C-RAN network architecture that has low
transmission latency and low power consumption. The pur-
pose of this is to configure BBU-RRH resources in situations
of sudden change in traffic by combining the throughput
prediction with long short-term memory (LSTM) and the
optimization power of GA.

Although BBU-RRH resource allocation problems have
been addressed, none of the research studies mentioned
above have effectively dealt with the problem of mapping
and load balancing in factors related to QoE that influence
or have a bearing on the question of user/customer satisfac-
tion. Hence, it can be claimed that this paper makes two
key research contributions:

(i) We establish a C-RAN architectural framework
based on SDN that can be easily adapted to and
administered by MNOs

(ii) Within a dynamic network environment, a load
balancing and mapping algorithm (BBU-RRH) is
proposed, which is based on QoE predictions that
make use of Artificial Neural Networks (ANN)

3. SDN Framework for C-RAN Architecture

This section describes an architectural scheme for C-RAN
that is based on the integration of C-RAN and SDN compo-
nents. This feature allows the architecture in managing its
resources in accordance with user demand in different traffic
situations. The modular design enables MNOs to include,
alter, or exclude policies, technologies, and services.

The framework of the architecture consists of the follow-
ing components:

(i) An Intelligent SDN Framework that is capable of the
following:

(a) Predicting the mean opinion score (MOS) of
users concerning UHD videos that are transmit-
ted within a C-RAN architecture
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Figure 1: Traditional C-RAN architecture.

3Wireless Communications and Mobile Computing



InternetMME/SGW

OpenFlow switch (OFLS)
Intelligent SDN controller

BBU
M

BBU
M−1

BBU2BBU1

Fronthal links

RRH
RRH

RRH
RRH

RRH

RRH

RRH
RRH

UE

Figure 2: The C-RAN SDN architecture.

Intelligent
applications

A
pp

lic
at

io
n

pl
an

e
Co

nt
ro

l
pl

an
e

D
at

a p
la

ne

QoE estimator
app

Load balancer
app

Agreements
(SLAs, ELAs)

API (northbound)

M
N

O
s m

an
ag

em
en

t

API (southbound)

Infrastructure layer
(OFLS)

SDN controller
instruction
action
modify / update
flow table

OpenFlow channel

OpenFlow channelCo
lle

ct
 d

at
a p

ac
ke

ts Performance policy
configuration

(iii)

(ii)
(i)

Figure 3: The SDN framework architecture.

4 Wireless Communications and Mobile Computing



(b) Running load balancing rules to maximize QoE
in the delivery of streaming video

(ii) A BBU pool based on SDN components

3.1. General Architecture. As shown in Figure 2, the designed
architecture is based on a fully centralized C-RAN, where the
SDN controllers near the BBU pool make all the decisions
regarding the control plane. We propose to use these control-
lers with extended functionality to support the software-
defined BBU-RRH mapping mechanism. The controller
implements the best plane for load balancing to maximize
the QoE of the user and to ensure the efficient use of BBU pool
resources. The calculation of the appropriate BBU-RRH ratio
is based on the entire state of the network provided by the data
plane. PHY andMAC layer resources are executed in the BBU
pool and the RRH only runs the RF activities.

3.2. An Intelligent SDN Framework. The framework is imple-
mented in the SDN controller following the premises of the
self-organizing network (SON), which is able to simplify
operational tasks through reconfiguration, optimization,
and self-healing. When a video streaming service is triggered
or when the control plane detects a new mobile node linked
to the network, there is a need to determine whether the level
of QoE with regard to physical resources complies with the
defined service policies, between the MNOs and users. If
the result is unsatisfactory, a load balancing action is trig-
gered, and new features of the physical BBUs are allocated
or new BBUs are instantiated to the BBU pool. On the other
hand, when the available physical resources are sufficient to
maintain the QoE at a satisfactory level, a resource optimiza-
tion scheme is processed.

Considering the above conditions, we propose BBU-RRH
switching schemes based on the predicted QoE. These
schemes determine the proper combinations between BBUs
and RRHs to accommodate the traffic load of BBU pool for
a constant time interval in order to maximize QoE and min-
imize the number of allocated BBUs.

As depicted in Figure 3, our framework was established by
integrating three basic components that comprise the three
SDN planes: application plane, control plane, and data plane.
Each component has its attributes and related methods. The
particular features of each component are described below.

3.2.1. Application Plane.Consists of a QoE forecasting system
for video streaming called “QoE Estimator”, based on the
learning provided by ANNs, namely, the Nonlinear AutoRe-
gressive with eXogenous inputs (NARX) [21], which can
analyze the data plane and manipulate the control plane,
using the OpenFlow protocol.

NARX are recurring dynamic networks with feedback
connections that involve many layers of the network to pre-
dict a given time series based on past value feedback input
or another time series (external or exogenous) [22]. The use
of these networks is justified by their ability of providing sup-
port for the automated SDN framework on account of its
adaptability in different environments. However, to make
the prediction, the ANNs carry out a supervised learning

procedure, which allows them to progressively improve their
performance as they interact with the environment, which
results in a generalization of outputs.

In this sense, the following strategy was adopted for the
training phase of the NARX. First, one should assume that
the output of the NARX network is an estimate of the output
of some nonlinear dynamic systems. This output is fed back
to the input of the feedforward neural network as part of
the standard NARX architecture. As the true output is avail-
able during the training phase, a series-parallel or open-loop
architecture can be created, in which the true output is used
instead of feeding back the estimated output. The main
reasons for this strategy are as follows: (1) the input to the
feedforward network is more accurate and (2) the resulting
network has a pure feedforward architecture and static
backpropagation can be employed for training [21].

However, for prediction, it is important to achieve the sup-
port for multistep-ahead, but the series-parallel configuration
only provides one-step-ahead prediction. Thereby, the net-
work is rearranged into the original parallel or closed-loop
configuration, which can perform an iterated prediction over
many time steps. Therefore, the training is carried out in an
open-loop or series-parallel architecture, including the valida-
tion and testing phases. These characteristics allow the load
balancing actions performed by the control plane to be proac-
tive and accurate, based on recurring events.

In our proposal, the applied ANN works with multiple
external inputs, such as video objective parameters (the per-
centage of the lost frame) and the data network conditions
(traffic load, total packets received, and total packets lost),
and predict an output series of peak signal noise ratio
(PSNR), an objective video evaluation metric that compares
the quality of the video received by the user against the
original video, expressed in dB (decibels). Then, a MOS is
obtained by subjectively classifying the PSNR on a five-
point scale, as noted in Table 1. We chose this system because
it is based on traditional metrics for QoE evaluation. These
metrics provide a subjective/objective evaluation system
and a video quality indicator that corresponds to the closest
possible approximation of human perception. Moreover, it
is capable of estimating video quality in realistic network
conditions without any interaction with real-world viewers.

3.2.2. Control plane. To perform the mapping reset and load
balancing processes, the control plane interacts directly with
the BBU pool and the OpenFlow logic switches (OFLS). This
allows that the controller is aware of the changes that
occurred in physical resources in the network. Thus, the
control plane performs basic parsing functions on the package

Table 1: PSNR to MOS conversion.

PSNR (dB) MOS

>37 5 (excellent)

31–36.9 4 (good)

25–30.9 3 (fair)

20–24.9 2 (poor)

<19.9 1 (bad)
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headers that pass through the OFLS interfaces. OFLS inter-
faces are logical ports where packages in and out of the Open-
Flow pipeline, used to transmit packets between OpenFlow
processing and the rest of thenetwork. In thismanner, the con-
troller can add, update, and delete flow entries in flow tables,
both reactively (in response to packets) and proactively.

The controller monitors the load on each BBU and
chooses the proper BBU-RRH configuration. Each BBU can
handle multiple RRHs at a time and each RRH belongs to
only one BBU at a period. The traffic load on each BBU is
defined as the load sum generated by each RRH assigned
and the traffic load of each RRH is attributed exclusively to
the sum of loads generated by each associated UE. However,
there is a hardware or software limitation on the number
RRHs in each BBU, usually known as the hard capacity, as
defined in [2]; the bandwidth, delays, and lost packets are
used as parameters about the current state of physical
resources. This approach makes the whole policy of load
balancing and BBU-RRH mapping reset acts proactively.

Thus, two important aspects of C-RAN architecture are
taken into account. The first is to distribute the loads between
the BBUs, so that all the users are served equally, in accor-
dance with their preferences. The second is to allow traffic
loads generated in RRHs to be dynamically shared between

BBUs, so that the provisioned network resources from the
BBU pool are not underutilized. In all the processes, rules
for packet streaming are added, updated, or modified in the
OFLS tables.

To perform efficient BBU pooling functions, the frame-
work is able to take into account three possible cases as follows.

Case 1.When the predicted QoE is considered to be unsatis-
factory. In this case, we propose a BBU-RRH load balancing
scheme, which determines the new BBU-RRH configurations
to accommodate the traffic load of all RRHs without trigger-
ing new BBUs. As shown in Figure 4, firstly, when one con-
siders the output of the QoE estimator as unsatisfactory
(line 19), the algorithm selects RRHs with a low traffic load
and that are assigned to the originating BBU (line 22), then
it searches for target BBUs with minimum conditions to
assign new RRHs (line 24 and line 10). In this manner, the
originating BBU can cancel the RRH assignment (line 25)
and updates its traffic load (line 26). This process is done
for all RRHs until all traffic is accommodated and the pre-
dicted QoE is satisfactory.

Case 2. When the predicted QoE is deemed to be unsatisfac-
tory and the conditions to apply load balancing of case 1 not

Figure 4: The pseudocode of the load balancing algorithm (Case 1 and Case 2).

Figure 5: The pseudocode of the optimize feature algorithm of BBU (Case 3).
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being met. In this case, we propose a load balancing scheme
that triggers a new BBU to the BBU pool. As shown in
Figure 4, the execution steps for this case include triggering
a new BBU (line 29 and line 6), updating resources of the
BBU pool, resetting the new mapping BBU-RRH (line 11),
and updating OFLS flow tables (line 30). These steps end

when the traffic from all RRHs are accommodated and the
expected QoE is satisfactory.

Case 3.When the predicted QoE is considered to be satisfac-
tory and the traffic load of the BBU is below the limit capac-
ity. In this case, as shown in Figure 5, all RRHs in the BBU are

Start

Start

Input parameter
classification

Activation
function

Output
correlation

PSNR

MOS output

End

Data collected
from (OFLS) and
BBU pool at time

(t)

QoE estimator
(t+1)

QoE estimator

Is
the expected
Qoe on BBUs
satisfactory?

No

Yes

YES

No

Load balancing
(Case I)

Load balancing
(Case II)

Add new flow
tables in OFLS

Add new flow
tables in OFLS

Add new flow
tables in OFLS

Optimize BBU
pool features

(Case III)

End

Are the
available resources

in the BBU pool
sufficient?
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switched to other neighboring BBUs whose resource usages
are lower than the capacity limit (line 8 and 10), which results
in the deactivation the idle BBUs (line 17). This process ends
when the entire traffic load of the RRHs is reallocated with
the minimum possible BBUs.

3.2.3. Data Plane. It forwards packets through the OFLS
devices. Its main function is to add or remove rules in the
flow tables the ports of the OpenFlow appliances that connect
the entire infrastructure of C-RAN in accordance to the rules
established by the controller. Each flow table in the OFLS
contains a set of flow entries; each stream entry consists of
corresponding fields, counters, and a set of specific instruc-
tions to be applied to the packages if a corresponding entry
is found. These features allow the entire traffic load (uplink
and downlink) of the BBU pool, processed by the OpenFlow
pipeline, to be balanced between BBUs.

Basic data plane actions include the following:

(i) Sending packet streams to the control plane

(ii) Updating or making modifications to the OFLS flow
tables

Figure 6 presents a structured view of the functions for
each component that integrates the architecture of the pro-
posed framework.

4. Performance Evaluation

This section is devoted to the performance evaluation of the
solution proposed in this article. The main objective here is
to evaluate the gains in QoE performance that can be
obtained with the deploy of the framework in a traditional

C-RAN architecture. In Section 4.1, we define the underlying
assumptions of the simulation, while in Section 4.2, we show
and discuss the results of the experiments.

4.1. The Simulation Assumptions. The network simulator
version 3 (NS3) was used to implement the C-RAN architec-
ture and this involved adding and modifying some modules
already consolidated in the scientific community. NS3 is a
discrete-event network simulator based on open-source soft-
ware and registered under the GNU license GPLv2 that is
mainly employed for research and educational purposes; it
is available to the public at https://www.nsnam.org/. The
SDN controller was implemented with the aid of the OFS-
witch13 module, which implements the OpenFlow version
1.3 [23], and simulates all activities of the control framework.
The basic structure of a cellular network is obtained through
the adaptation of some features of the LTE module for NS3,
made available by the LTE-EPC network simulator (LENA)
[24], which is a simulator of a cellular modular architecture
widely used in the academic world. The scenario defined
for the simulation was designed in accordance with the
guidelines of the 3rd Generation Partnership Project
(3GPP) [25], which propose the design principles for the next
generation of mobile networks. The machine used for the
experiments consists of Intel (R) Xeon (R) Silver 4114 pro-
cessor; 2.20GHz frequency; 32GB of RAM; Ubuntu 16.04.4
Lts Operating System. Besides, most of the configurations
set for the simulations adopt the parameters already covered
in other works, for example in [26].

The BBU pool initially consists of a maximum of 3 BBUs
that are activated or deactivated according to the require-
ments of association and disassociation with regard to the
UEs. RRHs are allocated statically in an area of 1000m2 at
30m from the surface, making as total of 18 BSs. UEs are
inserted 1.5m from the surface and allocated randomly one
by one. Each UE consumes UHD video streaming applica-
tions and moves randomly, which allow handovers between
the BSs whenever conditions are favorable.

The videos used in this simulation were “crowd run,”
“ducks take off,” and “park joy,” all in y4m format and
MPEG-4 encoded UHD resolution in a publicly accessible
repository, which can be accessed at https://media.xiph.org/
video/derf/. In each simulation, the number of connected
UEs varies between 1 and 200 every round, which yields
200 examples per round. Each video was streaming simulta-
neously to all users for a period of five rounds, which yields
1000 examples per simulation. In all experiments, we use a
random number seed. This factor is important when

Table 2: Simulation parameters.

Elements Attributes

BBU

Number of BBUs: min = 1, max = 3.
Fronthaul: link 10Gbps full duplex

Fronthaul delay = 100μs

RRH

Number of RRHs: 18

Coverage area: 1000m × 1000m
Distance between RRHs: 200m

Power: 46 dBm

Bandwidth: 20MHz

System: FDD

Allocation: GridPositionAllocator

Pathloss: Coast-231

UE

Number of UEs: 200

Power: 18 dBm

Allocation: RandomBoxPositionAllocator

Mobility: RandomWalk2D

Velocity: 30% 30 km/h, 70% 3 km/h

Simulation time: 30000 s

Applications: RTP streaming (UHD video)

Table 3: ANN performance.

ANN stage Performance (MSE)

Training 0.0541

Validation 0.0490

Test 0.0649

Closed-loop prediction 0.0757

Step-ahead prediction 0.0549
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assessing the benefits of predict derived from the different
experimental scenarios.

When the performance of the framework is evaluated, we
define user’s QoE satisfaction policies, as being experience
level agreements in which the PSNR and MOS values are
equal to, or higher than, 25 dB and 3-Fair, respectively. These
values are explained by the intermediate levels between the

minimum and maximum of each metric, as noted in
Table 1. The configuration parameters of the simulated envi-
ronment were established according to [19, 20], and the com-
plete list of parameters is shown in Table 2.

The ANN that acts on the QoE estimator was trained by
division of random indices, together with the Levenberg
Marquardt optimized backpropagation algorithm [27].
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Figure 8: Total packets lost in each BBU (traditional C-RAN).
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There was a sample division of 70%, 15%, and 15%, for the
selection of groups for training, testing, and validation,
respectively, which were used with epochs of cycles that
obeyed the criteria of the premature stop to avoid overfitting.
Besides, the number of input delays, number of feedback
delays, number of neurons in the hidden layer, and the max-
imum number of epochs were 2, 2, 15, and 1000, respectively.

This configuration represents the best possible configuration
obtained by numerous trials and error methods.

To find the network simulation that best fits the data and
produces the most accurate forecasts, two types of ANN pre-
diction models were employed—closed-loop prediction and
sep-ahead predictions. The closed-loop prediction model
entails providing input data values obtained over time (t − 1),
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Figure 9: Load balancing (Case 1).
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Figure 10: Total of lost packets in each BBU after load balancing (Case 1).
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which also have output values in time (t). In contrast, the step-
ahead prediction model involves providing input time (t)
values and obtaining outputs at the time (t + 1). The perfor-
mance of each model is obtained utilizing the mean square
error (MSE) metric, a function that results from estimating
the difference between the actual output and the output calcu-
lated byANN, as observed in Equation (1) [28].We decided to

use this metric because it is a widely used function in the eval-
uation of ANNs.

MSE = 1
n
〠
n

j=0
yi − y∧ið Þ2, ð1Þ

where n is the data number of the points, yi represents the
observed values, and ŷi represents the predicted values.
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Figure 11: Comparison of MOS after load balancing (Case 1).
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The results obtained in the evaluation are shown in
Table 3, where the network performance can be observed at
each stage in the execution of ANN and in the two models
evaluated. Thus, the step-ahead prediction model achieved
the best performance in predicting all data, and for this rea-
son, it was used as a standard model for QoE prediction
within the established framework.

4.2. Numerical Results. First, users are randomly allocated
into a traditional C-RAN scenario with two BBUs (#1 and
#2), where each BBU is connected to a maximum of 9 RRHs.
The purpose of this is to assess the impact of data traffic gen-
erated in the BBUs in relation to the number of active users
and the satisfaction rating of these. All results obtained in
the simulations had a confidence interval of 95% and repre-
sent the average of several runs.

In light of this, the results shown in Figure 7 suggest that
as the number of associated UEs to the BBU pool increases,
the load curves generated by BBU #1 and the BBU #2 tend
to diverge, that is, it is observed that the traffic load generated
by the RRHs assigned to BBU #1 is higher than that from the
RRHs assigned to BBU #2. This can probably be attributed to
the initial random allocation of the UEs within the coverage
area of the RRHs every round and/or inter-BBU-pool hand-
over processes [29], as there are no restrictions in this area.
This characteristic can be observed in the load oscillations
(peaks) presented by each BBU. In Figure 8, for the same
experiment, we observed a significant growth in the number
of packages not processed by BBU #1 (around 70%) when
compared to BBU #2. This can probably be attributed to
the overload on BBU caused by capacity limitations in hard-
ware and/or software.

The same experiments were carried out in an identical
scenario, although in this case, we regarded the QoE predic-
tion mechanism as a key factor in the delivery of network ser-
vices. The aim was to observe the behavior of the network in
response to the predictive guidelines and load balancing
(Cases 1 and 2) requirements imposed by the framework.
Hence, for better understanding, we will discuss the results
of each case separately.

For Case 1, we evaluated the performance of the frame-
work in relation to the number of users served in accordance
with the preestablished SLA policies (MOS equal to or greater
than 3 points) and the capacity limitations in hardware and
software of the BBUs active in the BBU pool. The results,
shown in Figure 9, revealed that the framework was able to
balance the loads on BBUs #1 and #2 as it acted proactively,
updating flows and redefining the BBU-RRH mapping. It
achieved this through the traffic load balancing scheme pro-
posed in the algorithm depicted in Figure 4, that is, a balance
in the packet flow was found between the BBUs, which
resulted in the mapping of 7 and 11 RRHs assigned BBUs
#1 and #2, respectively. As shown in Figure 10, this led to
the reduction in the number of lost packets that had previ-
ously been generated by BBU #1.

In Figure 11, we compared the results related to the MOS
observed in the previous experiments. Thus, it was possible
to conclude that in a traditional C-RAN architecture the
results of MOS, in compliance with SLA policies, served
approximately 36% of all users observed. However, with the
inclusion of the framework, we observed that 55% of users
rated streaming video as (fair, good, or excellent), demon-
strating a gain of approximately 59% compared to the tradi-
tional architecture model.
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Figure 13: Comparison of MOS after load balancing (Case 2).
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For Case 2, we evaluated the performance of the frame-
work in situations where the limiting factor in meeting SLA
policies is justified exclusively by hardware or software limi-
tations presented by BBU. This can be seen in Figure 10,
where the number of lost packets increases from the 120th
UEs association in the BBU pool. In this case, the framework
triggers new BBU whenever the capacity limit of hardware or
software is not sufficient to serve new UEs. In Figure 12, the
results reveal that when triggering BBU #3, the total traffic
load of the RRHs in the BBU pool is reallocated among the
BBUs (respecting the capacity limit of each BBU). In the
end, a new BBU-RRH mapping is obtained, with 7, 7, and 4
RRHs assigned BBUs #1, #2, and #3, respectively. This is pos-
sible because, to redefine a new BBU-RRH mapping, the
framework analyzes separately the traffic load of each RRH,
which is also highlighted in the algorithm seen in Figure 4.

In Figure 13, we compared the MOS results observed
in the three experiments presented (traditional C-RAN
and C-RAN with the SDN framework in Cases 1 and 2).
The results revealed that, with the SDN framework (Case 2),
approximately 82.5% of users rated video streaming as
excellent, good or fair, which means a gain of around 129%

compared to traditional C-RAN architecture and 43% in rela-
tion the load balancing proposed in Case 1.

Figure 14 shows the visual gains achieved with the appli-
cation of the framework. The effects of the load balancing
scheme and BBU-RRH mapping reset can be observed by
analyzing the comparative sequence of frames (selected at
random) of the three videos used in the experiments.
Figures 14(a)–14(c) represent the frames transmitted in a tra-
ditional C-RAN architecture and Figures 14(d)–14(f) repre-
sent the frames obtained from applying the framework
(Case 2).

5. Conclusions

In this paper, we investigated the opportunities that software-
defined networks can provide to C-RAN architectures. By
leveraging the advantages of SDN-based logical centraliza-
tion and ANN predictability, we were able to establish a
high-level framework for the user that can ensure better
QoE for the service agreements (SLA) of video streaming
than that offered by traditional C-RAN architectures. A
new load balancing algorithm of three stages based in QoE

(a) Crowd run frame 201 (b) Ducks take off frame 303

(c) Park joy frame 351 (d) Crowd run frame 201

(e) Ducks take off frame 303 (f) Park joy frame 351

Figure 14: Frame comparison in video sequences.
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predictions was proposed to solve the BBU-RRH mapping
problem. The analytical results revealed that the frame-
work is able to guarantee gains in QoE between 59% and
129% compared to the traditional C-RAN architecture
model. It is recommended that future projects include
investigations of on/off BBU methods to optimize grid
energy consumption while taking into account the guaran-
tees in the SLA agreements.
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