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The urban data provides a wealth of information that can support the life and work for people. In this work, we research the object
saliency detection in optical remote sensing images, which is conducive to the interpretation of urban scenes. Saliency detection
selects the regions with important information in the remote sensing images, which severely imitates the human visual system.
It plays a powerful role in other image processing. It has successfully made great achievements in change detection, object
tracking, temperature reversal, and other tasks. The traditional method has some disadvantages such as poor robustness and
high computational complexity. Therefore, this paper proposes a deep multiscale fusion method via low-rank sparse
decomposition for object saliency detection in optical remote sensing images. First, we execute multiscale segmentation for
remote sensing images. Then, we calculate the saliency value, and the proposal region is generated. The superpixel blocks of the
remaining proposal regions of the segmentation map are input into the convolutional neural network. By extracting the depth
feature, the saliency value is calculated and the proposal regions are updated. The feature transformation matrix is obtained
based on the gradient descent method, and the high-level semantic prior knowledge is obtained by using the convolutional
neural network. The process is iterated continuously to obtain the saliency map at each scale. The low-rank sparse
decomposition of the transformed matrix is carried out by robust principal component analysis. Finally, the weight cellular
automata method is utilized to fuse the multiscale saliency graphs and the saliency map calculated according to the sparse noise
obtained by decomposition. Meanwhile, the object priors knowledge can filter most of the background information, reduce
unnecessary depth feature extraction, and meaningfully improve the saliency detection rate. The experiment results show that
the proposed method can effectively improve the detection effect compared to other deep learning methods.

1. Introduction

With the rapid promotion of information technology, urban
data has become one of the important information sources
for human beings. And the amount of information received
by people has increased exponentially [1, 2]. How to select
the object regions of human interest from the mass of
image information in urban becomes a significant research.
Studies have found that under a complex scene, the human
visual processing system will focus on several objects,
named region of interest (ROI) [3]. ROI is relatively close

to human visual perception. Saliency, as the image pretreat-
ment process, can be widely applied in remote sensing areas
such as visual tracking, image classification, image segmen-
tation, and target relocation.

The saliency detection method mainly contains two
aspects: top-down and bottom-up. The top-down-based
saliency detection method [4–6] is a task-driven process.
The ground-truth images are labeled manually for supervised
training. It integrates more perceptions of humans to obtain
the salient map. However, the bottom-up method is a data-
driven process and pays more attention to the images’
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features such as contrast, position, and texture to compute
the saliency map (SM). Itti et al. [7] proposed a spatial visual
model taking full advantage of local contrast and obtained
the saliency map via the image differences from the center
to the surrounding. Hou and Zhang [8] put forward a
saliency detection algorithm based on Spectral Residual
(SR). Achanta et al. [9] proposed a frequency-tuned (FT)
method based on the image frequency domain to calculate
saliency. A detection method combining histogram was
presented to calculate global contrast [10]. Furthermore,
other relevant methods were raised and showed better
effect [11–15]. But they do not analyze the image from
the dimensions.

Yan et al. [16] treated the saliency region of the image as
sparse noise and the background as a low-rank matrix. It
calculated the saliency of the image by using the sparse
representation and robust principal component analysis
algorithm. Firstly, the image was decomposed into 8 × 8
blocks. Every image block was sparsely encoded and merged
into a coding matrix. Then, the coding matrix was decom-
posed by robust principal component analysis. Finally, the
sparse matrix obtained by decomposition was devoted to
establish the saliency factor of the corresponding image
block. However, because the large-size saliency object con-
tained many image blocks, the saliency object in each image
block no longer satisfied the sparse feature; thus, it greatly
affected the detection effect. Lang et al. [17] utilized a multi-
task low-rank recovery approach for saliency detection. The
multitask low-rank representation algorithm was used to
decompose the feature matrix and constrained the consis-
tency of all feature sparse components in the same image
blocks. The algorithm used the consistency information of
multifeature description, and its effect was improved. How-
ever, since the large-size target contained a large number of
feature descriptions, the feature was no longer sparse. The
reconstruction error could not solve this problem, so this
method could not completely detect the saliency object with
a large size. To perfect the result of the above method, Shen
and Wu [18] proposed a low-rank matrix recovery (LRMR)
algorithm combining bottom-up and top-down algorithm
(providing high-level and low-level information, respec-
tively). First, it performed the superpixel segment in the
image and several features were extracted. Then, the feature
transformation matrix and a priori knowledge, including
size, texture, and color, were obtained by network learning
to transform the feature matrix. Finally, the low-rank and
sparse decomposition of the transformed matrix were carried

out by using the robust principal component analysis algo-
rithm. This method improved the deficiency to some extent.
However, due to the limitation of center prior and the failure
of color prior to complex scenes, this algorithm was not ideal
for detecting images with complex backgrounds.

The saliency detection method using different low-level
features is usually only effective for a specific type of image,
which is not suitable for multiobject images in complex
scenes [19–21]. Figure 1 is the instance of saliency detection.
The low-level features of visual stimuli lack an understanding
of the nature of saliency objects and cannot represent the fea-
tures at a deeper level. For noisy objects in the image, if they
are similar to the low-level features but do not belong to the
same category, they are often wrongly detected as saliency
objects. Yang et al. [22] showed a bag of word model to detect
saliency. Firstly, the prior probability saliency map could be
obtained through the object feature, and a word bag model
representing the middle semantic features was established
to calculate the conditional probability saliency graph.
Finally, two saliency images were synthesized by Bayesian
inference. The middle semantic features could represent the
image content more accurately than the bottom features.
Therefore, the detection effect was more accurate. Jiang
et al. [23] took saliency detection as a regression problem
and integrated regional attributes, contrast, and feature vec-
tors of regional background knowledge at multiscale segmen-
tation conditions. The saliency map was obtained by
supervised learning. Due to the introduction of background
knowledge features, the algorithm had a better ability to iden-
tify background objects, and thus obtained more accurate
foreground detection results.

Deep learning (DL) combines low-level features to form
more abstract high-level features, a typical representative is
a convolutional neural network (CNN). Many saliency detec-
tion methods have adopted CNN to optimize the result. Li
et al. [24] proposed deep CNN to detect saliency. Firstly,
region and edge information were obtained by using the
hyper-pixel algorithm and bilateral filtering. DCNN was uti-
lized to extract the regions and edge features in raw images.
Finally, the region confidence graph and edge confidence
graph generated by CNN were integrated into the condi-
tional random field to judge the saliency. Wang et al. [25]
proposed recurrent fully CNN (i.e., RFCNN) for saliency
detection, which mainly included two steps: pretraining and
fine-tuning. RFCN was used to train the original image to cor-
rect the saliency prior image. Then, the traditional algorithm
was used to further optimize the modified saliency graph.

Figure 1: Saliency detection instance.
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Lee et al. [26] proposed a deep saliency (DS) algorithm for
saliency detection using low and high-level information in a
unified CNN framework. VGG-Net was used to extract the
advanced features. It mainly extracted the low-level features.
Then, the CNNwas used to encode the distance graph. Finally,
the coded low-level distance graph was connected with higher
features. A full-connected CNN classifier was adopted to eval-
uate the features’ information and obtain the saliency graph
[27]. The above DL methods show the excellent performance
in terms of saliency detection rate. But there are still some dis-
advantages such as slow speed and highly complex calculations.

In this paper, we propose a deep multiscale fusion
method via low-rank sparse decomposition for object saliency
detection in optical remote sensing images. The main contri-
butions are as follows.

(a) First, multiscale segmentation is executed for remote
sensing images. For the first segmentation graph, the
depth features of all the superpixel blocks are
extracted by CNN

(b) Then, we calculate the saliency value, and the pro-
posal region is generated. The superpixel blocks of
the remaining proposal regions of the segmenta-
tion graph are input into the CNN network. By
extracting the depth feature, the saliency value is
calculated and the proposal regions are updated.
Meanwhile, the color, texture, and edge feature
mean values of all the pixels in each superpixel
are calculated to construct the feature matrix. In
order to make the image background facilitate
low-rank sparse decomposition, the above feature
matrices need to be transformed so that the back-
ground can be represented as a low-rank matrix in
the new feature space

(c) To make use of the high-level information and
improve the detection effect of the ROI, the fully con-
volutional neural network is used for learning fea-

tures, and the high-level semantic prior knowledge
matrix is obtained. The feature matrix is transformed
by using the feature transformation matrix and the
high-level semantic prior knowledge. The robust
principal component analysis algorithm is used to
decompose the transformed matrix into a low-rank
sparse decomposition to obtain a saliency map. The
process is iterated continuously to obtain the saliency
map on each scale

(d) Finally, the weight cellular automata method fuses
the multiscale saliency graphs. It is shown that the
proposed method can effectively improve the detec-
tion effect compared to other DL methods

The remainder of the paper is organized as follows. The
proposed deep multiscale fusion method for saliency detec-
tion is analyzed in section II. Section III introduces the
saliency region extraction based on multiscale segmentation.
Saliency is calculated based on the deep features in section
IV. The performance and robustness are evaluated in section
V. Conclusion is drawn in section VI.

2. DeepMultiscale Fusion for Saliency Detection

The proposed deep multiscale fusion method for saliency
detection in optical remote sensing images is shown in
Figure 2.

Firstly, the image l is segmented into a small number of
superpixel blocks by using the superpixel segmentation algo-
rithm. The deep feature is extracted from all the superpixel
blocks. The color, texture, and edge feature mean value of
all the pixels in each superpixel are calculated to construct
the feature matrix. In order to make the image background
facilitate low-rank sparse decomposition, the above feature
matrix needs to be transformed so that the background can
be represented as a low-rank matrix in the new feature space.
And the multidimensional feature containing the key
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Figure 2: The framework of proposed saliency detection.
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information of the image is extracted by PCA (principal
component analysis). The rough segmentation saliency
graph is obtained based on the calculation of key features,
where we can extract the initial saliency region to obtain
the superpixel set Suppix. Then, we adopt Suppix to central-
ize the similarity degree between superpixel and the nonob-
ject region. The input image is segmented at different
scales. The region containing the superpixel block in the Su
ppix set is selected for depth feature extraction. Saliency maps
and Suppix sets at the next scale are obtained based on the
same method. The robust PCA is used to decompose the
transformed matrix into a low-rank sparse decomposition
to obtain a saliency map. Weight cellular automata fusion is
used to obtain the final SM Mf inal.

3. Saliency Region Extraction Based on
Multiscale Segmentation

Superpixel segmentation is to gather adjacent similar
pixel points into image regions with different sizes
according to the low-level features such as brightness,
thus reducing the complexity of significance calculation.
The superpixel segmentation algorithm mainly includes
watershed [28] and simple linear iterative clustering
(SLIC) [25] method. We combine their respective charac-
teristics, SLIC method is used to obtain the segmentation
results with regular shape and uniform size during rough
segmentation, and the watershed algorithm is used to
obtain better object contour during fine segmentation in
this study.

For N segmentation scales ðs1,⋯,snÞ. Supj = fSpjig
N j

i=1
denotes the obtained superpixel set at a certain segmentation
scale. Nj denotes the superpixel number at scale sj. Sp

j
iðvÞ =

fR,G, B, L, a, bg is pixel’s color feature vector in the
superpixel.

For the input image, we extract color, texture, and edge
features to construct the feature matrix.

(i) Color feature. The gray value of R, G, B, hue, and sat-
uration are extracted to describe the color feature of
the image

(ii) Edge feature. Steerable pyramid filter is used to
decompose the image in multiple scales and direc-
tions. Filters with 3 scales and 4 directions are
selected to obtain 12 responses as the edge features
of the image

(iii) Texture feature. Gabor filter is used to extract tex-
ture features at different scales and directions. Here,
3 scales and 12 directions are selected to obtain 36
responses as the texture features

It calculates the mean value of all pixel features in
each superpixel to represent the eigenvalue f i. All the
eigenvalues constitute the eigenmatrix F = ½ f1, f2,⋯,f N �,
F ∈ Rd×N .

The saliency region of the image is regarded as sparse
noise and the background as a low-rank matrix. In the

complex background, the image background similarity
degree after clustering is still not high. Therefore, the fea-
tures in the original image are not conducive to low-rank
sparse decomposition. In order to find a suitable feature
space, most image backgrounds can be represented as
low-rank matrices; in this paper, the eigentransformation
matrix is obtained based on the gradient descent method.
The process of obtaining the eigentransformation matrix
is as follows:

(a) Construct marker matrix Q = diag fq1, q2,⋯,qNg. If
the superpixel pi is within the marked saliency region
manually, qi = 0. Otherwise, qi = 1

(b) According to the following formula, the optimal
model of transformation matrix T is utilized to learn
the features of raw image

Toptimal = arg min
T

O Tð Þ = 1
K
〠
K

k=1
TFkQkk k∘ − γ Tk k∘ ð1Þ

Where Fk ∈ Rd×Nk is the feature matrix of kth image.
Nk represents the superpixel number of kth image. Qk ∈
RNk×Nk is the labeled matrix of the kth image. k⋅k∘ repre-
sents the kernel norm of the matrix, that is, the sum of
all singular values of the matrix. γ is the weight coefficient.
kTk2 denotes the ℓ2 norm of the matrix T . c is a constant
to prevent T from arbitrarily increasing or decreasing. If
the eigentransformation matrix T is appropriate, then
TFQ is low rank. −γkTk∘ is to avoid obtaining the general
solution when the rank of T is arbitrarily small.

(c) Find the Toptimal gradient descent direction, that is

∂O Tð Þ
∂T

= 1
K
〠
k

∂ TFkQkk k∘
∂T

− γ
∂ Tk k∘
∂T

ð2Þ

(d) Adopt the following formula to update the eigen-
transformation matrix T until the algorithm con-
verges to the local optimal. α is the step size

Tt+1 = Tt − α
∂O Tð Þ
∂T

ð3Þ

3.1. Extracting Proposal Region. The segmentation graph of
a rough segmentation scale sj is taken as input. The
saliency map Mapj is obtained by depth feature extraction
and saliency value calculation. The Mapj, as the object
prior knowledge in the next segmentation, is used to guide
the proposal region extraction. The saliency Mapj is binar-
ized. The value of Mapj is divided into K channels by the
adaptive threshold strategy. pðiÞ is used to represent the
number of pixels in the channel i. The channel k with
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the largest number of pixels in all channels is determined.
The threshold value T is calculated by the formula (4).

T = k + 1ð Þ/K ð4Þ

In order to prevent T from getting larger, the sig-
nificant pixel will not be binarized to 0 when the
saliency object occupies the most space in the image.
The pixel number in each channel must satisfy pðiÞ/ar
eaðIÞ < ε. Where areaðIÞ is the pixel number of image
l. ε ∈ ½0:6, 0:9� is an experience value. The binarization
object a priori map is denoted as MapBj. We adopt
MapBj as the prior knowledge. The corresponding super-

pixel area of superpixel set Supj+1 = fSpj+1i gN j+1
i=1 in the next

scale sj+1 constitutes the proposal saliency superpixel set

Suppixj+1 = fSpj+1i gMj+1
i=1 . Mj+1 is the number of proposal

saliency superpixel at the scale sj+1, Mj+1 <Nj+1. Assume that

Numi is the total number of the superpixel Spj+1i . num is the
pixel number with a value of 1 at the corresponding posi-
tion of the binary map MapBj. If num/Numj > 0:5, the
superpixel at the corresponding position is considered to
belong to Suppixj+1.

3.2. Region Optimization. The proposal object superpixel set
may contain some background areas or missing saliency
areas. It needs to optimize the proposal object area. It
removes the possible background area in Suppixj+1 and adds
the possible saliency area in the background area. According
to the Euclidean distance between the two color spaces, the
difference matrix is Difmat. It is a symmetric matrix with
Nj+1 order.

Difmat i, jð Þ =Difmat Spi, Spj
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
6

k=1
Fi,k − Fj,k
� �2

vuut ð5Þ

Where Fi,k is the kth feature of superpixel region Spi.
k = ½1,⋯,6� corresponds to R, G, B, L, a, and b, respec-

tively. For Spk ∈ Suppixj+1, it calculates the local average
dissimilarity degree through equation (6),

MavDif Spkð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

Mj+!
l=1,l≠kDifmat Spk, Splð Þ2

q
Mj+1

ð6Þ

Where Spk, Spl ∈ Suppixj+1, Mj+1 is superpixel number
in the proposal saliency region set Suppixj+1. We calculate
the average dissimilarity degree of each superpixel Spk in
Suppixj+1 and its adjacent background region:

MavDif Spkð Þ′ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

Mj+!′
l=1,l≠kDifmat Spk, Splð Þ2

r
Mj+1′

ð7Þ

Where Spk ∈ Suppixj+1, Spl ∉ Suppixj+1 and Spk is adja-

cent to Spl. Mj+1′ represents the number of superpixels

adjacent to Spk in the background area. If MavDif ðSpkÞ′
>MavDif ðSpkÞ, it indicates that Spk is more similar to
the adjacent background area, then Spk will be removed
from Suppixj+1.

Similarly, for any Sph ∉ Suppixj+1, the average dissimilar-

ity MavDif ðSphÞ′ between Sph and adjacent background
region, and average dissimilarity MavDif ðSphÞ between Sph
and adjacent proposal saliency region can be calculated. If
the condition MavDif ðSphÞ′ >MavDif ðSphÞ is satisfied,
then the similarity between Sph and the adjacent saliency
region is higher than that of other background regions.
Therefore, Sph is added to Suppixj+1. Suppixj+1 is constantly
updated by comparing the superpixel in Suppixj+1 with other
saliency regions and background regions. Until the super-
pixel in Suppixj+1 is no longer changed.

3.3. Deep Feature Extraction of Proposal Region. This deep
feature extraction method based on CNN is as shown in
Figure 3. In the first superpixel segmentation, the deep

Input raw image

Rectself

Rectlocal

Rectglobal

C1 C2 C5 F5 F7ęę

C1 C2 C5 F5 F7ęę

C1 C2 C5 F5 F7ęę

Output

Fself

F
local

FglobalGoogleNet Model

Figure 3: Deep features extraction based on CNN.
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features of all superpixels are extracted. In the subsequent
deep feature extraction process, only the superpixel in Su
ppix set is extracted. Under a certain segmentation strat-
egy, the computation is greatly reduced and the computa-
tion speed is increased.

Assuming it is not the first time to segment the super-
pixel, the local and global features are extracted for super-
pixel Spi. The local features of the superpixel include two
parts: (1) the deep feature Fsel f containing its own region;
(2) deep feature Flocal containing itself and the adjacent
superpixel region.

First, according to Suppix set, it extracts the minimum
rectangular region Re ctsel f of each superpixel Spi. Since most
superpixels are not regular rectangles, the extracted rectan-
gles must contain other pixels. These pixels are represented
by the average value of the superpixel. The depth feature
Fsel f only containing its own region can be obtained through
the deep CNN.

If we only adopt the saliency calculation of Fsel f to
acquire saliency detection value is meaningless. It is impossi-
ble to determine whether it is saliency without comparing it
with the saliency of other adjacent superpixels. Therefore, it
still needs to extract Re ctlocal to further obtain Flocal of the
deep local feature. The location of the region in the image
is an important factor to judge whether it is saliency or not.
It is generally believed that the area in the center of the image
is more likely to be saliency than the region at the edge.
Therefore, the whole image is taken as the input, and the
deep feature Fglobal of the global region is extracted.

If it only uses the bottom feature to extract the saliency
map, due to many interference objects, the final saliency
map is not ideal. Therefore, the high-level information needs
to be added to improve the detection effect. The adopted
high-level semantic prior knowledge is mainly to predict
the most likely ROI based on previous experience (i.e., train-
ing samples). The FCNN is used to train the high-level
semantic prior knowledge, which is integrated into the fea-
ture transformation process to optimize the final saliency
map. Higher-order features can be learned from the primitive
data without preprocessing in the multi-stage global training
process of CNN.

FCNN can accept input images with any size. The dif-
ference between FCNN and CNN is that the deconvolution
layer replaces the full connection layer. Finally, pixel classi-
fication is carried out on the feature map of the upsam-
pling. A binary prediction is produced for each pixel, and
a classification result at the pixel level is output. Thus, the
problem of image segmentation at the semantic level is
solved. Semantic a priori is an important high-level infor-
mation in the detection of the ROI, which can assist the
detection of the ROI. Therefore, this paper adopts FCNN
to obtain high-level semantic prior knowledge and applies
it to the detection of the ROI.

The network structure of FCNN is shown in Figure 4.
Based on the original classifier, this paper utilizes the back
propagation algorithm to fine-tune the parameters in all
FCNN layers. In the network structure, the first row gets
the feature map after alternately seven convolutional layers
and five pooling layers. The last step of the deconvolution
layer is to conduct the upsampling of the feature map with
a step size 32 pixels. The network structure in this paper is
denoted as FCNN-32s. It is found that the precision
decreases because of the maximum pool operation. It directly
executes upsampling for the feature map of downsampling,
which will result in very rough output and details loss. There-
fore, in this paper, the features with step size 32 pixels
obtained from the upsampling are extended by 2 times,
which is summed with the feature with step size 16 pixels.
Then, the obtained feature is recovered to the original image
for training, and the FCNN-16s model is obtained. So more
accurate detailed information is obtained than that of
FCNN-32s. We adopt the same method to train the network
to obtain the FCNN-8s model, the prediction of detailed
information is more accurate. Experiments show that
although lower-level feature fusion for training networks
can make detailed information prediction more accurate,
the effect of low-rank sparse decomposition on the result is
not significantly improved. Since the training time will
increase sharply, this paper adopts FCNN-8s model to
acquire the high-level priori knowledge of images.

The deep CNN model comprises an input layer, multiple
convolution layers, downsampling layer, full connection
layer, and output layer. The downsampling layer and

Raw image Conv1 Pool1 Conv2 Pool2 Conv3 Pool3 Conv4 Pool4 Conv5 Pool5 Conv6-7 32⨯upsampled prediction
(FCNN 32s)

Raw image Conv1 Pool1 Conv2 Pool2 Conv3 Pool3 Conv4
2⨯con7
Pool4 Conv5 Pool5 Conv6-7 16⨯upsampled prediction

(FCNN 16s)

Raw image Conv1 Pool1 Conv2 Pool2 Conv3 4⨯con7
2⨯Poll4
Pool3

Conv4 Pool4 Conv5 Pool5 Conv6-7 32⨯upsampled prediction
(FCNN 32s)

Figure 4: FCNN model.
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convolution layer form the intermediate structure of the neu-
ral network. The former is used for feature extraction, and
the latter is for feature calculation. The fully connected layer
is connected with the downsampling layer, which can output
the feature. The output of the convolution layer is:

dln = f 〠
∀m

di−1m ⋅ klm,n

� �
+ blm

 !
ð8Þ

Where dln and di−1m are the feature maps of the current
layer and the previous layer. klm,n is the convolution kernel
of the model. f ðxÞ = 1/½1 + e−x� is the neuron activation func-
tion. bln is neuron bias. The feature extraction result of the
downsampling layer is:

dln = f kln ×
1
s2
〠
s×s
dl−1n + bln

 !
ð9Þ

Where s × s is the downsampling template scale. kln is the
template weight. In this paper, the trained GoogleNet model
is used to extract the depth features of the proposal object
region. On the strength of this model, the labeled output layer
is removed to obtain a depth feature. The convolution layer
C1 uses 96 filters with 11 × 11 × 3 size to filter the input
image with size 224 × 224 × 3. The convolution layers C2,
C3, C4, and C5 take the output of the downsampling layer
as their input, respectively. The convolution processing is
carried out by using the self-filter, and several output feature
graphs are obtained and transmitted to the next layer. The
full connection layers F6 and F7 have 4096 features. The out-
put of each full connection layer can be denoted as:

doutn = f 〠 dout−1n × koutm,n
� �

+ boutn

� �
ð10Þ

3.4. Saliency Calculation Based on Deep Feature. PCA [28] is
the common method for dimension reduction of high-
dimensional data, which can replace p high-dimensional
features with a smaller number of m features. For n super-
pixels, the output features can constitute a sample matrix
W with n × p dimension. The correlation coefficient matrix
R = ðrijÞp×p of the sample is calculated by the formula (11):

rij =
∑n

k=1 xki − �xið Þ xkj − �xj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

k=1 xkj − �xj
� �2∑n

k=1 xki − �xið Þ2
q , i, j = 1, 2,⋯, p: ð11Þ

Where �xi = 1/n∑n
i=1xij. By solving the equation ∣λI − R∣

= 0, we find the eigenvalues and order them. Then, we calcu-
late the contribution rate and cumulative contribution rate of
each eigenvalue λi:

conrate = λi/〠
p

k=1
λk, cumrate = 〠

i

k=1
λk/〠

p

k=1
λk, i, j = 1, 2,⋯, p:

ð12Þ

We calculate the corresponding orthogonal unit vector
zi = ½zi1, zi2,⋯,zip�T of each eigenvalue λi. The unit vector
corresponding to the firstm features with a cumulative contri-
bution rate 95% is selected to form the transformation matrix
Z = ½z1, z2,⋯,zm�p×m. The high-dimensional matrix m is
reduced by formula (13). Spiðdf Þ = ð f i,1, f i,2,⋯,f i,mÞ
denotes the m-dimension principal component feature.
The principal component features are extracted by the same
transformation matrix in the segmentation maps with differ-
ent scales.

Spi dfð Þ =Wn×pZp×m ð13Þ

3.5. Contrast Feature. The contrast feature reflects the differ-
ence degree between the region and its adjacent region. The
contrast feature wcðSpiÞ of the superpixel Spi is defined by
its distance from other superpixels features, as given in
equation (14):

wc Spið Þ = 1
n − 1 〠

n

i=1,i≠k
Sp dfð Þi − Sp dfð Þk
�� ��

2 ð14Þ

Where n denotes the number of superpixel. k⋅k2 is 2-
norm.

3.6. Spatial Feature. In the human visual system, we pay dif-
ferent attentions in different spatial positions. The distance
between the pixel at different positions and the image center
satisfies the Gaussian distribution. For any superpixel Spi, its
spatial feature wsðSpiÞ is calculated as:

ws Spið Þ = e
−d Spi,xcð Þ

σ2 ð15Þ

Where Spi,x is the central coordinate of superpixel Spi. c is
the central region. If the average distance from the image
center is smaller, the spatial feature is larger. The saliency
value of the superpixel Spi is denoted as:

Map Spið Þ =wc Spið Þ ×ws Spið Þ ð16Þ

We obtain the SM of the first segmented image and use it
as the object prior knowledge to guide the proposal region
extraction and optimization.

3.7. Saliency Detection Based on Low-Rank Sparse
Decomposition. The background in the image can be
expressed as a low-rank matrix. The saliency region can
be regarded as sparse noise. For an original image, the
eigenmatrix F = ½ f1, f2,⋯,f N � ∈ Rd×N and the eigentransfor-
mation matrix T are obtained. Then, we use the FCN to
obtain the high-level prior knowledge P. The low-rank
sparse decomposition of the transformed matrix is carried
out by robust PCA.

L∗, S∗ð Þ = arg min
L,S

Lk k∘ + λ Sk k1ð Þ s:t:TFP = L + S ð17Þ
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Where F is the eigenmatrix. T is the learned eigen-
transformation matrix. P is a high-level prior knowledge
matrix. L is a low-rank matrix. S represents the sparse
matrix. k⋅k∘ represents the kernel norm of the matrix, that
is, the sum of all singular values of the matrix. k⋅k1 repre-
sents the ℓ1-norm of the matrix, the sum of the absolute
values of all the elements in the matrix. Supposing that S
∗ is the optimal solution for the sparse matrix. The
saliency map can be calculated by the following equation.

Sal pið Þ = S∗ : ,ið Þk k1 ð18Þ

Where SalðpiÞ represents the saliency value of super-
pixel pi. kS∗ð: ,iÞk1 represents the ℓ1-norm of the ith col-
umn vector of S ∗, that is, the sum of the absolute
values of all the elements in the vector.

3.8. Saliency Map Fusion Based on Weight Cellular
Automata.Wang and Wang [29] adopted the multilayer cel-
lular automata (MCA) for object fusion. Each pixel repre-
sents a cell. In the m-layer cellular automata, the cellular of
the saliency map has m-1 neighbors. They are at the same
positions in other saliency maps.

If cellular i is labeled as foreground, the foreground proba-
bility of its neighbor j at the same position in other SMs is λ
= Pðηi = +1 ∣ i ∈ FÞ. Saliency maps obtained by different
methods are considered to be independent. When updating
synchronously, all saliency maps are considered to have the
same weight. There are guiding and refining relationships
between the saliency maps at different segmentation scales.
The weights cannot be considered as equally during the fusion

process. In different segmentation scales, it is assumed that
the weight of the SM obtained by the first segmentation scale
is λ1, represented bywi = λ1. The SMweight with different scale
is expressed as:

wi = λi−1 + 1 − oi/Oið Þ, i = 1, 2,⋯, 6 ð19Þ

Where Oi denotes the total pixel number in the proposal
object set. oi is the superpixel number in the ith saliency map.
Set λ1 = 1. Synchronous updating mechanism f : MapM−1

⟶Map is defined as:

l Mapt+1m

� �
=wm 〠

M

k=1,k≠m
sign Maptk − γk ⋅ I

� �
⋅ ln λ

1 − λ

� 	

+ l Maptm
� �

ð20Þ

Where Maptm = ½Maptm,1,⋯,Maptm,H �T represents the
saliency value of all the cellular of themth SM at time t. Matrix
I is amatrixwithH elements. If the neighbor of cellular is judged
as foreground, then the saliency value should be increased. We
obtain thefinal saliencymapby formula (21).T2 is thenext time.

Mapf inal =
1
N

〠
M

m=1
MapT2

m + Sal pið Þ� � ð21Þ

The proposed deep multiscale fusion method for object
saliency detection is summarized as depicted in Algorithm 1.

Input: Raw image I, multiscale segment number N and segment parameter in each scale.
Output: Saliency map.

for i = 1 : N
{

if i=1 then
(1) According to the determined parameters, we use SLIC to segment image l;
(2) Determine the input region Re ctsel f , Re ctlocal , Re ctglobal of each superpixel;
(3) The above is input GoogleNet to extract deep feature Fsel f , Flocal , Fglobal ;
(4) The deep features of all superpixels constitute a matrixW, and the transformationmatrix A ofW is calculated by using PCA

to obtain the principal component features;
(5) According to the principal component features, saliency values without object priors are calculated to obtain the first seg-

mentation saliency map Map1;
else

(6) According to the determined parameters, we use Watershed algorithm to segment image;
(7) The saliency map Mapi−1 is taken as object priori map. Then it extracts and optimizes proposal object set Suppix;
(8) Determine the input region Re ctsel f , Re ctlocal , Re ctglobal in Suppix;
(9) The above is input GoogleNet to extract deep feature Fsel f , Flocal , Fglobal ;
(10) The deep features of all superpixels constitute a matrix W, and the transformation matrix A of W is calculated by using

PCA to obtain the principal component features;
(11) According to the principal component features, saliency values with object priors are calculated. And we obtain the

saliency map Mapi;
end if
}

(12) Calculate the saliency map weight wi at each scale;
(13) Adopt weight cellular automata to fuse the obtained N saliency maps and get final SM.

Algorithm 1: Proposed saliency detection method.
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4. Experiments and Analysis

In this section, we obtain the experiment data from Google
Earth. The remote sensing image size is from 512 × 512
pixel to 2048 × 2048 pixel. The spatial resolution is 1m. The
experiment environment is Intel(R), Core(TM), i7-8750,
CPU2.2Hz, Geforce GTX1060 with MATLAB 2017a
platform.

4.1. Evaluation Index and Parameter Setting. In the
experiment, the PR curve, F-measure, and mean absolute
error (MAE) of the saliency map are compared to evalu-
ate the effect of saliency detection to select a better seg-
mentation scale.

Precision and Recall are the two most commonly used
evaluation criteria in image saliency detection. If the PR
curve is higher, the effect of saliency detection is better. Oth-
erwise, it is poor. For the given manual labeled Ground Truth
G and the saliency map S, the definition of Precision and
Recall is given in equation (22):

Pr ecision = sum S,Gð Þ
sum Sð Þ , Re call = sum S,Gð Þ

sum Gð Þ ð22Þ

Where sumðS,GÞ represents the sum of the value after
the pixels of visual feature graph S multiplying that of G.
sumðSÞ is the sum of all pixels in the visual feature graph
S. sumðGÞ represents the sum of all pixels in G.

When calculating F-measure, the adaptive threshold T of
each image is used to segment the image.

T = 2
W ⋅H

〠
W

x=1
〠
H

y=1
S x, yð Þ ð23Þ

Where the W and H denote the width and height of the
image, respectively. It calculates the average precision and
recall of the SM. The average F-measure value is calculated
according to equation (24). The effect of saliency is better if
the F-measure value is excellent. F-measure value is used
for the comprehensive evaluation of accuracy and recall. β2

is often set to 1.

F = 2Pecision ⋅ Re call
Pecision + Re call ð24Þ

MAE is used to evaluate the saliency model by comparing
the difference between the SM and the GT. We use formula
(25) to compute the MAE value of each input image. The cal-
culated MAE value can be used to draw a histogram. If the
MAE value is lower, the proposed algorithm is better.

MAE = 1
W ⋅H

〠
W

x=1
〠
H

y=1
∣S x, yð Þ − G x, yð Þ∣ ð25Þ

4.2. Segment Scale Determination. The main parameter of
this algorithm is the segmentation scale. Many segmentation
scales can increase the computational complexity. Few scales
will affect the accuracy of saliency detection. Therefore, 15

segmentation scales are set according to experience. We con-
duct experiments on randomly selected remote sensing
image data. Then, we extract the depth features of all super-
pixels in the segmentation graphs and calculate the saliency
map. The histogram of the PR curve with different segmenta-
tion scales is shown in Figure 5. Three segmentation scales
with better effects are selected from them. Through compar-
ative analysis, it is found that the three segmentation scales
10, 11, 12 have a relatively better saliency detection effect.
The three segmentation scales are selected as the final seg-
mentation scales of the proposed method.

4.3. PCA Parameter Determination. To verify the effective-
ness of PCA on selecting principal components from
depth features, this section adopts the depth features
extracted from each superpixel block as the data set. The
percentage of explained variance (PEV) is used to measure
the importance of the principal component in the overall
data as formula (26). PEV is a main index to describe
the distortion rate of data.

PEV = 〠
m

i=1
R2
ii/tr 〠
� �

ð26Þ

Where R2
ii is the right matrix of the main component

matrix M ′ after singular value decomposition. ∑ denotes
the covariance matrix. Figure 6 shows the relation between
PEV and the top 50 principal components. It reveals that
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Figure 5: Histogram of PR curve with different segmentation scales.
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Figure 6: Relation between PEV and the principal components.
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with the increase of principal component number, PEV
shows an upward trend. But the trend grows slowly. When
the number of principal components exceeds 20, the PEV

reaches to 90%, which is considered to represent the over-
all information of the data. In this paper, the top 20 prin-
cipal components are selected for saliency calculation.

(a)

(b)

Figure 7: Test images: airplane1, cloud, vehicle, playground, airplane2, boat. (a) Raw remote sensing images; (b) Ground Truth.

(a) (b) (c) (d) (e) (f)

Figure 8: Comparison of saliency images. (a) RA. (b) RB. (c) SC. (d) RAD. (e) SCLR. (f) Proposed.
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4.4. Saliency Detection Comparison with Other State-of-the-
Art Methods. In this section, five state-of-the-art methods
including RA [30], RB [31], SC [32], RAD [33], and SCLR
[34] are conducted comparison with the proposed deep mul-
tiscale fusion method. And we conduct experiments on some
optical remote sensing images based on urban data, namely
airplane (512 × 512 pixel), playground (1024 × 1024 pixel),
boat (1024 × 1024 pixel), vehicle (512 × 512 pixel), and cloud
(2048 × 2048 pixel). Due to the limited space, we only display
the results of several remote sensing objects. The test images

along with their relevant GT maps are shown in Figure 7.
Figure 8 displays the saliency results with different methods.

Figure 8 shows the comparison of saliency detection
results with different methods. It can be seen that the detec-
tion effect of this algorithm is obviously better than other
algorithms.

Table 1 is the F-measure result. With the change of
Recall, the Precision of the method in this paper has better
value and keeps a high level. However, in terms of F-mea-
sure value, our method is 7.18% higher than the second better
method. Under the condition of complex background infor-
mation, both the PR curve value and F-measure value of the
proposed method are significantly higher than other algo-
rithms. It fully demonstrates the advantages of the proposed
algorithm in relatively complex image information. Similarly,
the MAE of this proposed algorithm is lower than that of
other algorithms. Figures 9–14 are the subjective evaluation
results for the six objects.

We also adopt IoU (Intersection-Over-Union) to illus-
trate the effectiveness of the proposed method [35, 36]. The
IoU is calculated as follows:

IoU = Area of Overlap
Area of Union

ð27Þ

The greater IoU shows a better effect. The results are
shown in Table 2.

Table 1: Different indexes with different methods on different
objects.

Object Method Precision Recall F-measure MAE

Airplane1

RA 79.9% 73.5% 72.8% 19.3%

RB 81.1% 75.8% 76.4% 17.2%

SC 81.8% 74.6% 77.2% 15.7%

RAD 87.4% 77.4% 79.5% 14.6%

SCLR 91.7% 75.4% 81.8% 12.5%

Proposed 95.6% 65.3% 82.5% 9.8%

Cloud

RA 84.6% 68.9% 73.8% 21.2%

RB 89.1% 71.8% 75.4% 17.8%

SC 90.7% 74.1% 76.2% 14.1%

RAD 91.6% 73.7% 78.4% 12.6%

SCLR 93.6% 72.8% 80.9% 11.3%

Proposed 97.4% 71.5% 83.6% 7.6%

Vehicle

RA 89.2% 77.4% 78.7% 19.5%

RB 91.5% 79.9% 80.8% 17.6%

SC 93.1% 79.3% 82.1% 13.8%

RAD 93.6% 79.5% 82.5% 13.1%

SCLR 94.3% 78.6% 83.7% 11.7%

Proposed 98.2% 72.4% 89.1% 8.7%

Playground

RA 85.7% 77.8% 81.9% 16.5%

RB 87.8% 74.2% 83.7% 14.8%

SC 89.9% 74.6% 84.1% 13.1%

RAD 91.8% 73.3% 84.5% 12.5%

SCLR 92.4% 71.8% 86.7% 10.2%

Proposed 97.2% 59.6% 89.7% 9.4%

Airplane2

RA 86.4% 78.9% 77.1% 15.8%

RB 87.6% 78.3% 78.6% 14.6%

SC 88.2% 77.1% 79.4% 13.5%

RAD 88.3% 76.6% 80.8% 12.9%

SCLR 91.3% 75.8% 81.6% 11.9%

Proposed 96.3% 62.4% 83.9% 8.1%

Boat

RA 85.4% 84.1% 72.4 24.5%

RB 88.6% 78.2% 74.1% 21.2%

SC 89.7% 76.1% 76.4% 19.4%

RAD 91.6% 74.8% 79.2% 15.7%

SCLR 92.7% 73.4% 82.5% 11.4%

Proposed 95.2% 68.3% 89.7% 7.4%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

RA RB SC RAD SCLR Proposed

Airplane1

Precision
Recall

F-measure
MAE

Figure 9: Airplane1 comparison with different methods.
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Figure 10: Cloud comparison with different methods.
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From Table 2, we can see that our proposed method has a
better saliency detection effect than other methods.

There are also apparent differences in the detection
time among different algorithms. In terms of the speed
of saliency detection, the proposed method is faster than
other methods as given in Figure 15. Though deep
learning-based algorithms need to train many samples,
compared with other deep learning methods, the process-
ing efficiency is improved by about 4%. Overall, the deep
multiscale fusion method has a better effect on saliency
detection for remote sensing images.

5. Conclusions

The saliency detection algorithm based on DL can overcome
the shortcomings of the traditional saliency detection algo-
rithms. However, the detection efficiency is obviously insuffi-
cient. Therefore, we present a deep multiscale fusion method
for object saliency detection in optical remote sensing images
based on urban data. Through the deep feature extraction, we
calculate the saliency value and use the weight cellular
automata to integrate and optimize the scale saliency map.
Results reveal that the proposed method can efficiently
acquire the saliency detection results than other methods.
In the future, some new models based on deep learning will
be researched. And the new methods will be applied to prac-
tical engineerings.
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Figure 11: Vehicle comparison with different methods.
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Figure 12: Playground comparison with different methods.
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Figure 14: Boat comparison with different methods.

Table 2: IoU comparison.

Method RA RB SC RAD SCLR Proposed

Airplane1 69.3% 72.5% 76.7% 77.5% 79.8% 82.4%

Cloud 68.4% 72.7% 77.1% 79.2% 81.6% 83.5%

Vehicle 69.7% 73.8% 76.5% 78.5% 79.4% 81.6%

Playground 66.4% 72.9% 80.1% 81.4% 83.7% 86.4%

Airplane2 63.9% 71.3% 74.9% 76.4% 78.2% 81.9%

Boat 65.4% 70.8% 73.2% 75.9% 77.2% 79.5%
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Figure 15: Time comparison with different methods.
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Figure 13: Airplane2 comparison with different methods.
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