
Retraction
Retracted: Adaptive Blind Channel Estimation for MIMO-OFDM
Systems Based on PARAFAC

Wireless Communications and Mobile Computing

Received 29 April 2021; Accepted 29 April 2021; Published 24 May 2021

Copyright © 2021 Wireless Communications and Mobile Computing. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Wireless Communications and Mobile Computing has
retracted the article titled “Adaptive Blind Channel Estima-
tion for MIMO-OFDM Systems Based on PARAFAC” [1],
due to a high level of similarity identified with a previously
published article, as confirmed by the editorial board [2]:

Ruo-Nan Yang, Wei-Tao Zhang, Shun-Tian Lou, "Joint
Adaptive Blind Channel Estimation and Data Detection for
MIMO-OFDM Systems", Wireless Communications and
Mobile Computing, vol. 2020, Article ID 2508130, 9 pages,
2020. doi:10.1155/2020/2508130.

The authors do not agree to the retraction.

References

[1] R.-N. Yang,W.-T. Zhang, and S.-T. Lou, “Adaptive Blind Chan-
nel Estimation for MIMO-OFDM Systems Based on PAR-
AFAC,” Wireless Communications and Mobile Computing,
vol. 2020, Article ID 8396930, 17 pages, 2020.

[2] R.-N. Yang, W.-T. Zhang, and S.-T. Lou, “Joint Adaptive Blind
Channel Estimation and Data Detection for MIMO-OFDM
Systems,” Wireless Communications and Mobile Computing,
vol. 2020, Article ID 2508130, 9 pages, 2020.

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 9892683, 1 page
https://doi.org/10.1155/2021/9892683

https://doi.org/10.1155/2020/2508130
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9892683


RE
TR
AC
TE
DResearch Article

Adaptive Blind Channel Estimation for MIMO-OFDM Systems
Based on PARAFAC

Ruo-Nan Yang , Wei-Tao Zhang , and Shun-Tian Lou

School of Electronic Engineering, Xidian University, Xi’an 710071, China

Correspondence should be addressed to Wei-Tao Zhang; zhwt-work@foxmail.com

Received 11 January 2020; Revised 18 August 2020; Accepted 25 September 2020; Published 24 October 2020

Academic Editor: Jun Cai

Copyright © 2020 Ruo-Nan Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to track the changing channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM)
systems, it is prior to estimate channel impulse response adaptively. In this paper, we proposed an adaptive blind channel estimation
method based on parallel factor analysis (PARAFAC). We used an exponential window to weight the past observations; thus, the
cost function can be constructed via a weighted least squares criterion. The minimization of the cost function is equivalent to the
decomposition of third-order tensor which consists of the weighted OFDM data symbols. To reduce the computational load, we
adopt a recursive singular value decomposition method for tensor decomposition; then, the channel parameters can be estimated
adaptively. Simulation results validate the effectiveness of the proposed algorithm under diverse signalling conditions.

1. Introduction

The combination of MIMO with OFDM technique has
become the most promising broadband wireless access
scheme due to large system capacity and high data rates with-
out any extra consumption of bandwidth and power [1]. In a
MIMOOFDM system, the channel needs to be estimated
accurately, and then, the transmitted signal can be obtained
by channel equalization. Thus, an exact estimation of the
changing channel impulse response is necessary [2–5].

In the past decades, many methods have been proposed
for MIMO-OFDM systems to solve channel estimation prob-
lems. They were grouped into two categories. In one of the
categories, the channel parameters can be estimated by send-
ing training sequence or inserting pilot structure which is
known to the receiver. Especially, one can realize adaptive
channel estimation (ACE) by repeating this process periodi-
cally [6–13]. Linear channel estimation methods in [14, 15]
use an adaptive filter to estimate channel information. Due
to less computational complexity, linear channel estimation
methods such as least squares (LS) algorithms are relatively
easy to implement. The Least Mean Square (LMS) algorithm

is one of the ACE methods with relatively low computational
complexity, but the mean squared error (MSE) performance
is poor [14]. Furthermore, simplified LMS algorithms like the
Sign Data NLMS (SDNLMS) algorithm [15] can be used to
decrease the complexity of the LMS algorithm. Sparse chan-
nel estimation methods [16–20] commonly use the technique
of compressive sensing. However, these methods have great
dependence on the number of nonzeros taps. The remaining
category is semiblind or blind channel estimation [21]. Here,
training sequences and knowledge of noise statistics are not
necessary; channel impulse response can be estimated only
by the received signals. Therefore, blind channel estimation
methods have attracted wide attention due to its improved
spectral efficiency. Blind channel estimation methods usually
use the statistical properties of received signals; channel is
considered static during the receiving time. When ACE pro-
cess is concerned, existing blind OFDM channel estimation
methods are not suitable for online applications.

Parallel factor (PARAFAC) analysis has become a useful
tool for dealing with linear algebra of multiplexed arrays [22].
In the field of signal processing, PARAFAC has been widely
used for blind signal detection and parameter estimation. In
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many recent works, tensor decompositions are used for blind
channel estimation in OFDM systems [23–27]. [24] pro-
posed a trilinear alternating least squares (TALS) algorithm
to estimate channel parameters for SIMO-OFDM systems
with Carrier Frequency Offset (CFO). However, the exten-
sion on MIMO-OFDM systems is missed. The TALS method
can obtain good MSE, but it has high computational com-
plexity and poor convergence rate. The DEterministic Blind
REceiver (DEBRE) algorithm uses the received signal to form
a 4-way tensor for MIMO-OFDM system in frequency
domain; then, the parameters of the model are identified
via an ALS algorithm [25]. Similar with the TALS algorithm,
the computational complexity of the DEBRE method is very
high. The least squares Khatri-Rao factorization (LS-KRF)
algorithm and simplified closed-form PARAFAC (S-CFP)
algorithm are established based on the tensor model for
Tucker decomposition [26], and they achieve very similar
performance with extra pilot overhead at high signal-to-
noise ratio (SNR) conditions. The mentioned algorithms on
PARAFAC are suitable for stationary channel environment;
when the tensor model needed to be decomposed at each
sampling instant, the computation complexity is too high.

There are some existing fast adaptive PARAFAC decom-
position algorithms in mathematics [28, 29]. The two recur-
sive update algorithms in [28] use a sliding or an exponential
window to weight the observations, the computation com-
plexities are very low. The 3DOPAST algorithm generalizes
the orthonormal projection approximation subspace track-
ing (OPAST) method to track the loading matrix of third-
order tensor [29]. However, none of them are used for adap-
tive channel estimation of MIMO-OFDM systems. In this
paper, we proposed an online adaptive blind channel estima-
tion method using simultaneous diagonalization tracking.
We use an exponential window to weight past observations;
thus, the cost function can be constructed via a least squares
criterion. We construct a third-order tensor which is com-
posed by all the observations; the third loading matrix of
the tensor can span the same column space with the right sin-
gular matrix of the weighted matrix. Therefore, we can obtain
a nonsingular matrix to link them. By updating the nonsin-
gular matrix, the channel parameters can be estimated adap-
tively. Different from many existing methods that only use
the last receiving symbols to estimate current channel, the
proposed cost function involves the past information of the
exponential windowed receiving signals; thus, we can obtain
better performance than the existing methods.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduced the PARAFAC-based MIMO-OFDM
system model. In Section 3, an adaptive channel estimation
algorithm is developed for tracking changing channels in
MIMO-OFDM systems. Simulation results are presented in
Section 4. Finally, our conclusions are given in Section 5. The
main contribution of this paper is briefly summarized as fol-
lows: (1) we propose a PARAFAC model for time-varying
MIMO-OFDM systems in time domain, where time is mea-
sured inOFDM symbols. For oneOFDM symbol, by reshaping
the received signal vector of all antennas, and letting the
reshapedmatrix be the lateral slicematrix one by one, we estab-
lish a third-order tensor model for time-varying MIMO-

OFDM systems. (2) We develop an adaptive channel estima-
tion algorithm using simultaneous diagonalization tracking
(ABCE-SDT). Here, training sequences and knowledge of noise
statistics are not necessary; channel impulse response can be
estimated adaptively only by the received signals. In addition,
our algorithm is a recursive update solution; the computation
complexity is very low compared to other PARAFAC decom-
position counterpart. (3) We compare the performance of the
proposed algorithm with other existing channel estimation
methods. Simulation results show that compared with the
SDNLMS algorithm and adaptive sparse channel estimation
(ASCE-NLMS) algorithm, the proposed algorithms can signif-
icantly improve the channel estimation performance of time-
varying systems under different conditions.

Notation: scalars are denoted by lower case italic letters
ða, b,⋯Þ, vectors by lower case boldface letters ða, b,⋯Þ,
and matrices by boldface capitals ðA, B,⋯Þ. Italic capitals
are used to denote index upper bound ðk = 1,⋯, KÞ. The
entry with row index i and column index j in a matrix A,
i.e., ½A�ij, is symbolized by aij. The columns of a matrix, say

A, are denoted by a1, a2,⋯ generically. The superscripts ⋅ T ,
⋅ H , ⋅ −1, and ⋅ † denote the transpose, conjugate transpose,
inverse operators, and pseudo inverse, respectively. IN denotes
the N ×N identity matrix; k⋅k2 denotes the Euclid norm. ⊙
denotes the Khatri-Rao product. E½⋅� denotes the expectation
operator. The operator diag ð⋅Þ may either forms a diagonal
matrix by a vector or forms a vector by collecting the diagonal
entries of a matrix.

2. System Model

In this section, we describe the MIMO-OFDM system
model with Mt transmit antennas and Mr receive
antennas. N symbols are transmitted in each OFDM
block, so the kth modulated information of ith trans-
mitter is siðkÞ = ½siðk, 0Þ,⋯, siðk,N − 1Þ�T . Suppose all the
Mt ×Mr channel paths have the memory upper bounded by

L, and let ~hTij = ½~hijð1Þ, ~hijð2Þ,⋯, ~hijðL − 1Þ� denote the equiv-
alent discrete channel response from the ith transmit antenna
to the jth receive antenna. So the N points DFT of the channel
vector is hTij = ½hijð1Þ, hijð2Þ,⋯, hijðNÞ�. The received signal
vector from the jth receive antenna by the ith transmit
antenna is then represented as

xij kð Þ = FH diag hij
� �

si kð Þ, ð1Þ

where F denotes the N ×N normalized discrete Fourier
transform matrix with its ðm, qÞ-th entry given by ð1/ ffiffiffiffi

N
p Þ

e−j2πðm−1Þðq−1Þ.
Let

H =

hT11 hT21 ⋯ hTMt1

hT12 hT22 ⋯ hTMt2

⋮ ⋮ ⋱ ⋮

hT1Mr
hT2Mr

⋯ hTMtMr

2
6666664

3
7777775
∈ℂMr×MtN ð2Þ
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denote the overall frequency-domain channel matrix. There-
fore, the received symbol vector x jðkÞ =∑Mt

i=1xijðkÞ from the j
th receive antenna is

x j kð Þ = 〠
Mt

i=1
FH diag hij

� �
si kð Þ: ð3Þ

Constructing the matrix Γ = ½IN IN ⋯  IN � ∈ℂN×NMt ,
x jðkÞ can be represented as

x j kð Þ = FHΓDj Hð Þs kð Þ, ð4Þ

where sðkÞ = ½s1ðkÞT , s2ðkÞT ,⋯,sMt
ðkÞT �T ∈ℂNMt×1, DjðHÞ

denote the diagonal matrix with its entries from the jth row
of the frequency-domain channel matrix H. Now, we con-
sider a time-varying MIMO-OFDM system. Suppose that
the channel parameters stay unchanged during one OFDM
symbol and vary for different OFDM symbols. Therefore,
we define the channel matrix at the kth symbols as HðkÞ.
Considering all the Mr receive antennas, the received signal

vector of all antennas xðkÞ = ½x1ðkÞT , x2ðkÞT ,⋯,xMr
ðkÞT �T ∈

ℂNMr×1 is then represented as

x kð Þ = H kð Þ ⊙ FHΓ
� �� �

s kð Þ: ð5Þ

If we reshape xðkÞ to be a N ×Mr matrix, then we stack
up corresponding matrices of JðkÞ OFDM symbols, a third-
order tensor XðkÞ ∈ℂN×JðkÞ×Mr can be obtained, which is
composed by all the receive symbols.

As we know, the PARAFAC decomposition of a third-
order tensor Y ∈ℂI×J×K is a decomposition of Y as a sum
of minimal number of rank-1 tensors

Y = 〠
R

r=1
ar ∘ br ∘ cr , ð6Þ

where ar , br , and cr are the rth columns ofA ∈ℂI×R, B ∈ℂJ×R

, and C ∈ℂK×R, respectively [28]. A, B, and C are named
“loading matrices.” The matrix representations of the tensor
decomposition are as follows:

Y JK×Ið Þ = C ⊙ Bð ÞAT

Y KI×Jð Þ = A ⊙Cð ÞBT

Y I J×Kð Þ = B ⊙Að ÞCT

8>><
>>: : ð7Þ

Therefore, matrix representation of tensor decomposi-
tion of XðkÞ can be written as

X kð Þ = H kð Þ ⊙ FHΓ
� �� �

S kð Þ, ð8Þ

where XðkÞ = ½xð1Þ,⋯, xðJðkÞÞ� ∈ℂNMr×JðkÞ, SðkÞ = ½sð1Þ,⋯
, sðJðkÞÞ� denote the continuous JðkÞ transmit symbols. Since
the matrix F and Γ are both constant, we define A = FHΓ for
derivation clarity, then (8) can be rewritten as XðkÞ = ½HðkÞ
⊙A�SðkÞ. Thus, the loading matrices are HðkÞ ∈ℂMr×NMt , S
ðkÞ ∈ℂNMt×JðkÞ, and A ∈ℂN×NMt , respectively. Therefore, we
can obtain the channel information by solving the loading
matrices of the tensor.

N

M
t

J(k) + 1

Figure 1: Appending a new slice in the tensor of observation.

3Wireless Communications and Mobile Computing



RE
TR
AC
TE
D

3. Blind Adaptive Channel
Estimation Algorithm

3.1. Uniqueness Analysis. The CP decomposition of a tensor is
unique up to scaling and permutation ambiguities under amild
condition [28, 30]. The PARAFAC decomposition of X ∈
ℂI×J×K is said to be essentially unique if any other matrix triplet
ð~A, ~B, ~CÞ that also satisfy the model is related to ðA, B, CÞ via

A = ~AΠΛ1, B = ~BΠΛ2, C = ~CΠΛ3, ð9Þ

with Λ1, Λ2, and Λ3 arbitrary diagonal matrices satisfying Λ1
Λ2Λ3 = IR, andΠ is an arbitrary permutationmatrix. A specific
case is where two loading matrices are full column rank, and
the third one does not contain collinear columns. In this case,
PARAFAC is unique up to its trivial indeterminacies. This
result is summarized in the following Theorem [28].

Theorem 1. AssumeA ∈ℂI×R and C ∈ℂI×R are drawn from a
jointly continuous distribution with respect to the Lebesgue
measure in ℂI×R+K×R, and B ∈ℂJ×R is full column rank. The
PARAFAC decomposition of X is essentially unique if

R ≤ K and R R − 1ð Þ ≤ I I − 1ð ÞJ J − 1ð Þ/2: ð10Þ

According to the Theorem 1, we can obtain a similar
Lemma 2 about the CP decomposition of the tensor for
MIMO-OFDM systems.

Lemma 2. Assume that A and HðkÞ are full rank, and SðkÞ is
full column rank. The CP decomposition in (8) is essentially
unique if

NMt NMt − 1ð Þ ≤N N − 1ð ÞJ kð Þ J kð Þ − 1ð Þ/2: ð11Þ

The above assumptions are generically satisfied in our
signal model. On one hand, the normalized discrete Fou-
rier transform matrix is full rank, and then, the channel
matrix is completely full rank surely. On the other hand,
all the transmit signals are assumed to have independent
continuous distribution; thus, the symbols matrix SðkÞ is
full column rank, which practically satisfies Lemma 2.

3.2. The Algorithm Derivation.We use the first JðkÞ receiv-
ing symbols to build the initial observed tensor XðkÞ. As
illustrated in Figure 1, let Xðk + 1Þ ∈ℂN×Jðk+1Þ×Mr be the
new observation after attaching a new received signal ten-
sor as the side slice of XðkÞ, which means that Jðk + 1Þ
= JðkÞ + 1. Similar to (8), the PARAFAC decomposition
of Xðk + 1Þ is

X k + 1ð Þ =G k + 1ð ÞS k + 1ð Þ, ð12Þ

where Gðk + 1Þ =Hðk + 1Þ ⊙A.
In fact, the alternating least squares (ALS) algorithm can

be used to do PARAFAC decomposition of Xðk + 1Þ [24].

Input: Old estimations: SðkÞ, WwðkÞ, QwðkÞ and VðkÞ
Observations: XðkÞ and Xðk + 1Þ = ½XðkÞ, xðk + 1Þ�

1: SVD
First option: Do SVD of Xðk + 1Þ
Outputs: Uwðk + 1Þ, ∑wðk + 1Þ and Vwðk + 1Þ

2: Updates Ww and Pw
Build matrices:
~VðkÞ =VwðkÞ, �VðkÞ = ½Vwðk + 1Þ�1:JðkÞ,:
~vðk + 1Þ = ½Vwðk + 1Þ�Jðk+1Þ,:
z = λ−1/2 �VHðk + 1Þ~VðkÞ
Update Ww:
Wwðk + 1Þ = ZWwðkÞ
Update Pw:
Pwðk + 1Þ = PwðkÞZHðINMt

ð~vHðk + 1Þ~vðk + 1Þ/1 − k~vðk + 1Þk2ÞÞ
3: Update H

Gðk + 1Þ =Qwðk + 1ÞWwðk + 1Þ
A = FHΓ , R =NMt
For r = 1⋯ R Do

Grðk + 1Þ = UnvecN×Mr
ð½Gðk+1Þ�:,rÞ

ĥrðk + 1Þ =GT
r ðk + 1Þa∗r

End
Ĥðk + 1Þ = ½ĥ1ðk + 1Þ, ĥ2ðk + 1Þ,⋯, ĥRðk + 1Þ�

4: Update Sðk + 1Þ
ŝðk + 1Þ = Pwðk + 1Þ~vHðk + 1Þ
Ŝðk + 1Þ = ½SðkÞŝðk + 1Þ�

Output: Matrices Ĥðk + 1Þ and Ŝðk + 1Þ now stand for estimations of the channel and signals respectively.

Algorithm 1:Proposed ABCE-SDT Algorithm.

4 Wireless Communications and Mobile Computing
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However, the ALS algorithm needs to do pseudoinverse
operation three times in each iteration, and the convergence
speed is very slow even with a proper initialization.When it is
necessary to decompose the tensor model at each sampling
time, the computation complexity is too high. Here, we pro-
posed a closed form solution to avoid the drawbacks of the
iterative ALS algorithm. An exponential window least
squares criterion is adopted, and the resulting algorithm does
not require iterations for channel estimation in one OFDM
symbol period. In addition, we avoid directly performing
the optimization of the cost function; the minimization of
the cost function is transformed to the decomposition of
third-order tensor which consists of the weighted OFDM
data symbols; thus, the computational complexity can be
reduced.

Let xðk + 1Þ ∈ℂNMr×1 be the new lateral slice appended to
XðkÞ, such that Xðk + 1Þ = XðkÞ xðk + 1Þ½ �. Suppose that
there is a mild variation of channel parameters between k
to k + 1, which meansHðkÞ ≃Hðk + 1Þ. So the initial estimate
of sðk + 1Þ can be given in the least squares sense by sðk + 1Þ
=G†ðkÞxðk + 1Þ; then, the estimation of symbols Sðk + 1Þ

can be built as the structure Sðk + 1Þ = SðkÞ sðk + 1Þ½ �. So
that the least squares update of Gðk + 1Þ is then given by

G k + 1ð Þ =X k + 1ð Þ S k + 1ð Þð Þ†: ð13Þ

GivenGðk + 1Þ, then we can reupdate sðk + 1Þ by substitut-
ing GðkÞ by Gðk + 1Þ. Finally, since Gðk + 1Þ is an estimate for
Hðk + 1Þ ⊙A, the estimation of Hðk + 1Þ can be obtained. To
track the channel in a time-varying MIMO-OFDM system,
the sufficient statistic data in (5) should be gradually forgotten.
To this end, we use the following exponential window least
squares criterion to equal the decomposition of third-order ten-
sor Xðk + 1Þ.

min
G k+1ð Þ,S k+1ð Þf g

〠
k+1

τ=1
λk+1−τ x τð Þ −G k + 1ð Þs τð Þk k2

 !
, ð14Þ

Iterations

M
SE

0 100 200 300 400 500 600 700 800 900 1000
10–2

10–1

100

101

0.6

0.8

SDNLMS
ASCE–NLMS
ABCE–SDT

Figure 2: Channel estimation performances of three algorithms.
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where 0 < λ < 1 is the forgetting factor. Thus, we define the win-
dowed observed matrix as

Xw k + 1ð Þ =X k + 1ð ÞΛ k + 1ð Þ, ð15Þ

where Λðk + 1Þ = diag ð½λk/2, λk−1/2,⋯, λ1/2, 1�Þ is the weight-
ing matrix. Thus, we can obtainXwðkÞ = ðHðkÞ ⊙AÞSðkÞΛðkÞ
based on the PARAFAC decomposition. The exponential win-
dow implies the following update rule

Xw k + 1ð Þ = λ1/2Xw kð Þ, x k + 1ð Þ
h i

, ð16Þ

then we consider the SVD of the weighted matrix XwðkÞ =
UwðkÞΣwðkÞVH

wðkÞ, where UwðkÞ ∈ℂNMr×NMt , ΣwðkÞ ∈
ℂNMt×NMt , and VwðkÞ ∈ℂJðkÞ×NMt . Since the PARAFAC
decomposition of XðkÞ satisfies the Lemma 2, the weighted
matrix XwðkÞ has the same rank with XðkÞ, which means
rank ðXwðkÞÞ =NMt . To satisfy the condition, we restrict to
JðkÞ ≥NMt andMr ≥Mt . Therefore, there exists a nonsingu-
lar matrix WwðkÞ ∈ℂNMt×NMt such that

H kð Þ ⊙A =Qw kð ÞWw kð Þ, ð17Þ

S kð ÞΛ kð Þ =W−1
w kð ÞVH

w kð Þ, ð18Þ

where QwðkÞ =UwðkÞΣwðkÞ. It is easy to see that the matrix
WwðkÞ links equations (17) and (18). When the ðk + 1Þth
symbols transmit to the receiver, the equations become

H k + 1ð Þ ⊙A =Qw k + 1ð ÞWw k + 1ð Þ, ð19Þ

S k + 1ð ÞΛ k + 1ð Þ =W−1
w k + 1ð ÞVH

w k + 1ð Þ: ð20Þ
Hence, we can use the common block between SðkÞ and

Sðk + 1Þ to update the matrix Ww. To avoid SVD at every k
th time, we can perform the classical Bi-Iteration technique
to do adaptive SVD of XwðkÞ [31]. By this means, the compu-
tational complexity can be decreased. In addition, to avoid
explicit computation of the pseudoinverse of Ww, derivation
of recursive updates of W−1

w should be taken into consider-
ation; thus, we define Pw =W−1

w .
For derivation clarity, we define ~VðkÞ =VwðkÞ and

rewrite Vwðk + 1Þ as

Vw k + 1ð Þ =
�V k + 1ð Þ
~v k + 1ð Þ

" #
, ð21Þ

where ~vðk + 1Þ is the last row of Vwðk + 1Þ. Based on the
structure of Sðk + 1Þ = SðkÞ sðk + 1Þ½ �, we can obtain the
following equation from equations (17) and (19)

λ1/2Pw kð Þ~VH
kð Þ = Pw k + 1ð Þ�VH k + 1ð Þ, ð22Þ

SNR(dB)

M
SE

10−1

10−2

10−3

SDNLMS
ASCE-NLMS

ABCE-SDT
CRB

0 2 4 6 8 10 12 14 16 18 20

Figure 3: Channel estimation performances with abruptly changing environment.
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it follows that

Pw k + 1ð Þ = λ1/2Pw kð Þ~VH
kð Þ �VH k + 1ð Þ
� �†

, ð23Þ

thus, the computation of Wwðk + 1Þ is

Ww k + 1ð Þ = λ−1/2 �VH k + 1ð Þ ~VH
kð Þ

� �†
Ww kð Þ: ð24Þ

Obviously, computation of the pseudoinverse of ~VHðkÞ
and �VHðk + 1Þ is not expected in our algorithm. Since

~VðkÞ =VwðkÞ is a unitary matrix, we have ð~VHðkÞÞ† =
VwðkÞ; thus, the computation of Wwðk + 1Þ can be rewrit-
ten as

Ww k + 1ð Þ = λ−1/2 �VH k + 1ð ÞVw kð ÞWw kð Þ: ð25Þ

To avoid explicit computation of the pseudoinverse of �V
ðk + 1Þ, derivation of recursive updates of �Vðk + 1Þ† should
be taken into consideration. As the definition of �Vðk + 1Þ
before, we can obtain the following equation from the matrix
inversion Lemma for rank-1 updates [28],

�VH k + 1ð Þ
� �†

= �V k + 1ð Þ INMt
+ ~vH k + 1ð Þ~v k + 1ð Þ

1 − ~v k + 1ð Þk k2
 !

:

ð26Þ

Substitute (26) into (23), the computation of Pwðk + 1Þ is

Pw k + 1ð Þ = λ1/2Pw kð Þ~VH
kð Þ�V k + 1ð Þ INMt

+ ~vH k + 1ð Þ~v k + 1ð Þ
1 − ~v k + 1ð Þk k2

 !
:

ð27Þ

Therefore, the matrix Gðk + 1Þ =Qwðk + 1ÞWwðk + 1Þ
can be obtained. Let Ĥðk + 1Þ = ½h1ðk + 1Þ, h2ðk + 1Þ,⋯,hRðk
+ 1Þ� as the estimation matrix of the channel, where R =
NMt . Due to the Khatri-Rao product Gðk + 1Þ =Hðk + 1Þ ⊙
A, we can obtain the following equation:

gr k + 1ð Þ = hr k + 1ð Þ ⊗ ar , r = 1, 2,⋯R, ð28Þ

where grðk + 1Þ denotes the rth column of Gðk + 1Þ, and ar
denotes the rth column ofA. We define the rank-one matrices
Grðk + 1Þ = unvecMr×Nðgrðk + 1ÞÞ, r = 1, 2,⋯R, as

Gr k + 1ð Þ = arhTr k + 1ð Þ: ð29Þ

Since the normalized discrete Fourier transform matrix F
and the correlation coefficient matrix Γ are constant, we can
obtain the equation of rth column of Hðk + 1Þ

hr k + 1ð Þ =GT
r k + 1ð Þa∗r : ð30Þ
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Figure 4: BER performances with abruptly changing environment.
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Figure 5: Continued.
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Figure 5: Estimated channel and real linearly changing channel (Mt = 2, Mr = 3, L = 5).
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Figure 6: Channel tracking performances with linearly change channel.
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Therefore, estimation of channel and signals are obtained
as Ĥðk + 1Þ and Ŝðk + 1Þ, respectively.We present the pseudo-
code of the proposed adaptive channel estimation algorithm
for MIMO-OFDM systems in Algorithm 1.

4. Simulation Results

In this section, we evaluate the performance of the proposed
method. We provide simulation results under three different
scenarios. In the first simulation, we test the proposed algo-
rithm and the other two existing algorithms under a station-
ary environment exhibiting abrupt changes; in the second
one, we consider the performance of the proposed method
under a more realistic case of a slowly changing environment.
In all cases, we consider the MSE as a measure of perfor-
mance. The MSE is defined as

MSE kð Þ = E H kð Þ − Ĥ kð Þ		 		2
2

n o
, ð31Þ

whereHðkÞ and ĤðkÞ are true channel parameter matrix and
their estimates, respectively. The kth received signal at the jth
antenna writes ~X jðkÞ = FHΓDjðHÞsðkÞ + njðkÞ in noisy envi-
ronment, where n jðkÞ represents the additive noise in the jth
antenna. Then, SNR is defined as

SNR = 10 log10
∑Mr

j=1 FHΓDj Hð Þs		 		2
F

∑Mr
j=1 n j

		 		2
F

dB: ð32Þ

We drop the dependency of the SNR with k in the defini-
tion, which is because we use the same SNR for all OFDM
symbols.

4.1. Abruptly Changing Environment. Here, we employ a
MIMO-OFDM system with 2 × 3 antennas; the number of
subcarriers is set to 32. The modulation scheme used is
16QAM; the length of Cyclic Prefix is set to 4. We use JðkÞ
= 200 symbols to form the initial received symbols. The for-
getting factor λ is 0.5. AWGN noise is added to the simulated
MIMO-OFDM system and SNR = 10dB. We compare the
channel estimation performance of the proposed ABCE-
SDT algorithm and methods in [15, 20] with receive symbols
vary from 200 to 1200, which can be seen in Figure 2. The
step-size μs of the SDNLMS algorithm in [15] and the
ASCE-NLMS algorithm in [20] is both set to 0.5. We use
the IEEE 802.11 Model in the simulation. The simulated
channel has the following structure; the power delay spec-
trum obeys negative exponential distribution.

E hlj j2
 �
= exp −l/10ð Þ, l = 0, 1,⋯, L, ð33Þ

where L = 4. Firstly, we can obtain a random channel
response by the simulated channel model. We start with the
channel response, and at iteration 501, we abruptly switch a
new response obtained by the simulated channel model.
We use OFDM symbols to measure time, especially, during
the intervals 0 500½ � and 501 1000½ �; we let the channel
remains static.
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Figure 7: Channel estimation performances with linearly changing channel.
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Figure 2 presents the channel tracking performance of
the proposed ABCE-SDT algorithm, SDNLMS algorithm,
and ASCE-NLMS algorithm. Obviously, the proposed ABCE-
SDT method has higher MSE than other two methods at first,
but it can achieve better performance soon, and it provides fas-
ter convergence. This is because the SDNLMS algorithm and
ASCE-NLMS algorithm use training sequence to obtain the
initial channel information whereas the ABCE-SDT method
is blind. The window we used makes full use of all previously
observed slices with different weights, which can speed up the
convergence at low error. The other two algorithms only rely
on the last observations; more symbols are needed to converge.
The complexities of the ABCE-SDT, SDNLMS, and ASCE-
NLMS algorithms for one iteration are OðN3M3

r Þ, Oð2N3M3
r

+ 2NMrÞ, and Oð3N3M3
r + 3NMrÞ, respectively. Obviously,

the proposed algorithm requires the least computational bur-
den compared to the other twomethods, which is satisfied with
what simulation shows. When the tracking process gets stable,
it can be seen that the above algorithms have stable MSE with
the iterations. When we abruptly change parameters of chan-
nel, the SDNLMS and ASCE-NLMS algorithms obtain poorer
MSE performance than the ABCE-SDT algorithm, and they
need more iterations to converge, even when the tracking pro-
cess get stable; the MSE of the two methods still keep higher
value. That is because the performance of the two competitors
has error accumulation; new estimations are obtained by
updating the old ones. The saltation of channel parameters
caused the two competitors hardly to obtain an accurate chan-

nel estimation, whereas the proposed algorithm can compute
the parameters of channel directly.

Moreover, we use Cramer-Rao bound as a benchmark.
We plot the performances of these three algorithms and the
corresponding CRB [32] in Figure 3. This result indicates
that MSEs of the proposed ABCE-SDTmethod are very close
to the corresponding CRBs. In order to reveal the perfor-
mance of the entire system from the perspective of error
probability, after the channel can be tracked, Figure 4 illus-
trates the averaged BER performance of three algorithms
over 100 independent trials. We can obtain that the BER of
three competitors decreases with the growth of SNR. At
BER of 10−1, the proposed algorithm achieves an SNR gain
of about 6 dB compared with the existing algorithms, which
means that the ABCE-SDT method achieves better BER per-
formance than the other two existing methods.

4.2. Slowly Changing Environment. Now, we consider a more
realistic scenario where the channel changes every OFDM
symbol. The simulated MIMO-OFDM has 2 × 3 antennas
with N = 32 subcarriers. We also use JðkÞ = 200 symbols to
form the initial receive symbols. The simulated channel con-
sists of five equal power taps; we create the initial parameters
of channel by the IEEE 802.11 Model; then, we change the
parameters linearly. The modulation scheme used is
16QAM. The forgetting factor λ is 0.5. AWGN noise is added
to the simulated MIMO-OFDM system and SNR = 10dB.

Firstly, we let the channel parameters change linearly in
every OFDM symbol. The simulated system has 6 paths;
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Figure 8: BER performances with linearly changing channel.
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Figure 9: Channel tracking performances under fading channel.
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Figure 10: Channel estimation performances under fading channel.
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Figure 11: BER performances under fading channel.
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Figure 12: Channel tracking performances under the condition of CFO.
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thus, we plot how the estimated channel tracked the real
channel in Figures 5(a)–5(f). The labels of the x-axis and
y-axis are real and imaginary of channel parameters, respec-
tively. We can see the estimated channels have very close
parameters with the real channels. In order to further verify
the effectiveness, MSE performance of the proposed algorithm
versus SDNLMS and ASCE-NLMS methods under the linear
changed channel over 100 independent trials was shown in
Figures 6 and 7. The step-size of the SDNLMS algorithm and
ASCE-NLMS algorithm are both set as μs = 0:5. In Figure 6,
the ABCE-SDT method has higher MSE than the other two
methods at first, but it can achieve better performance soon,
and it provides faster convergence, which is close to the station-
ary environment with the stable channel. This is because the
window we used makes full use of all previously observed slices
with different weights, but the other two algorithms only rely on
the last observations. It can also be observed that the SDNLMS
and ASCE-NLMS algorithms perform a much higher fluctua-
tion when channel can be tracked. Figure 8 represents the cor-
responding BER performance of the three competitors.
Obviously, with the growth of SNR, the BER of three competi-
tors decreases. At the BER of 10−1, the proposed algorithm out-
performs the SDNLMS and the ASCE-NLMS algorithms by
about 6dB and 8dB SNR gains, respectively. Hence, the pro-
posed ABCE-SDT algorithm achieves better BER performance
than the other two algorithms.

Then, we examine the proposed algorithm under the fad-
ing channel. To simulate Rayleigh fading, here, we use a

Jakes-like model; Doppler-frequency is 100Hz and commu-
nication frequency carrier is at 5GHz, with the data rate
and receiver speed are at 2Mbits/sec and 3m/sec, respec-
tively. The simulated channel consists of three equal power
taps, and the power delay spectrum obeys negative exponen-
tial distribution. The simulated channel consists of five equal
power taps, and the power delay spectrum obeys negative
exponential distribution; the delay of each path is
0 2e − 6 4e − 6 8e − 6 12e − 6½ �. MSE performance of
the ABCE-SDT method versus the SDNLMS and ASCE-
NLMS methods under fading channel over 100 independent
trials was shown in Figures 9 and 10. It can be seen that the
ABCE-SDT method has a lower estimation error and pro-
vides faster convergence under fading channel. The high fluc-
tuation of SDNLMS and ASCE-NLMS still exists when the
channel can be tracked. We also plot the corresponding
BER performance of the three algorithms after channel can
be tracked in Figure 11. Obviously, the proposed ABCE-
SDTmethod achieves better BER performance than the other
two competitors under the fading channel.

4.3. Carrier Frequency Offset Environment. Furthermore, we
take the effect of carrier frequency offset (CFO) on the chan-
nel estimation algorithms into consideration. The simulated
MIMO-OFDM has 2 × 3 antennas with N = 32 subcarriers.
We also use JðkÞ = 200 symbols to form the initial receive
symbols. Each tap of the simulated channel is modeled as
an independent complex Gaussian random variable, and
here, we set the number of channel taps as 5. The carrier
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Figure 13: Channel estimation performances under the condition of CFO.
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frequency offset ϕ is set as ϕ = 0:02Δω, where Δω = 2π/N is
the subcarrier spacing. The modulation scheme used is
16QAM. The forgetting factor λ is 0.9. The signal to noise
ratio SNR = 10dB, and AWGN noise was used in simulation.

We set the channel parameters to stay unchanged during
one OFDM symbol, and changes linearly vary for different
OFDM symbols. We use the Rayleigh fading channel for sim-
ulation. We plot in Figures 12 and 13 the MSE performance
of the proposed algorithm versus TALS methods in [24]
under the linear changed channel over 100 independent tri-
als. We can find out that the proposed method performs
almost the same MSE with the TALS method, and it provides
faster convergence. In fact, the computation complexity of
the TALS algorithm is Oð3N3M3

r Þ every time iteration, and
it needs almost 20 times iteration to reach the convergence
condition. Figure 14 represents the corresponding BER per-
formance of the other two competitors. Similarly, with the
growth of SNR, the BER of three competitors decrease. As
Figure 14 shows, due to lower estimation error, the TALS
method achieves a bit better BER performance than the pro-
posed algorithm. Whereas, the TALS algorithm needs pseu-
doinverse operation three times at each iteration, and the
convergence speed is slow even with a proper initialization.
The proposed ABCE-SDT algorithm can obtain faster con-
vergence speed at the loss of little performance decrease.

5. Conclusion

Adaptive channel estimation is necessary for tracking the
channel under wireless random time-varying conditions in

MIMO-OFDM systems. In this paper, we propose an adap-
tive blind channel estimation method based on PARAFAC;
the pilot sequence is not needed in the proposed ABCE-
SDT method. We used an exponential window to weight
the past observations; thus, the cost function can be
constructed via a weighted least squares criterion. The mini-
mization of the cost function is equivalent to the decomposi-
tion of third-order tensor which consists of the weighted
OFDM data symbols. To reduce the computational load, we
adopt a recursive singular value decomposition method for
tensor decomposition; then, the channel parameters can be
estimated adaptively. Computer simulations verify the
effectiveness of the proposed algorithm under diverse signal-
ling conditions.
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