
Research Article
Authenticator Rebinding Attack of the UAF Protocol on
Mobile Devices

Hui Li ,1 Xuesong Pan ,1 Xinluo Wang,1 Haonan Feng,1 and Chengjie Shi2

1School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100195, China

Correspondence should be addressed to Hui Li; lihuill@bupt.edu.cn

Received 24 April 2020; Revised 21 June 2020; Accepted 9 August 2020; Published 1 September 2020

Academic Editor: Ding Wang

Copyright © 2020 Hui Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present a novel attack named “Authenticator Rebinding Attack,” which aims at the Fast IDentity Online (FIDO) Universal
Authentication Framework (UAF) protocol implemented on mobile devices. The presented Authenticator Rebinding Attack
rebinds the victim’s identity to the attacker’s authenticator rather than the victim’s authenticator being verified by the service in
the UAF protocol, allowing the attacker to bypass the UAF protocol local authentication mechanism by imitating the victim to
perform sensitive operations such as transfer and payment. The lack of effective authentication between entities in the
implementations of the UAF protocol used in the actual system causes the vulnerability to the Authenticator Rebinding Attack.
In this paper, we implement this attack on the Android platform and evaluate its implementability, where results show that the
proposed attack is implementable in the actual system and Android applications using the UAF protocol are prone to such
attack. We also discuss the possible countermeasures against the threats posed by Authenticator Rebinding Attack for different
stakeholders implementing UAF on the Android platform.

1. Introduction

FIDO UAF is an authentication mechanism based on public
key cryptography designed for replacing password-based
authentication [1], which has been criticized for its inconve-
nience and insecurity because it requires users and verifiers to
maintain a growing list of login credentials as well as pass-
words. With FIDO UAF, users can first register their devices
installed with a FIDO UAF stack to the online service by
selecting a local authentication mechanism such as finger-
print and face recognition; then, users only need to repeat
the local authentication operation instead of entering their
passwords whenever they need to be authenticated by the
service. Because of its convenience and security, UAF has
attracted lots of attention in both the academic and industrial
societies since its release. By April 2020, there have already
been 436 certified FIDO UAF products in the market [2].

Recently, some researchers focus on analyzing the secu-
rity of UAF and point out that FIDO UAF may face various
potential security threats in the design and implementation
of the protocol. Hu and Zhang formalize the UAF protocol

and propose hypothetical attacks such as misbinding
attack, parallel session attack, and multiuser attack [3],
but they neither elaborate on the assumptions required
to perform these attacks nor give the concrete implemen-
tation of these attacks. Xenakis et al. present an informal
security analysis of the UAF protocol and identify a list
of vulnerabilities that can cause attacks such as intercept-
ing switching data, imitating the user’s online service,
and presenting false information to the user screen during
the transaction [4]. However, they fail to provide any spe-
cific verification process for these attacks and ignore the
actual factors when implementing the FIDO protocol, so
some of the proposed attacks lack feasibility.

Most of the abovementioned FIDO UAF attacks are
caused by the fact that the running environment of the
UAF protocol can meet neither the UAF security assump-
tions described in the FIDO Security Reference [5] nor the
requirements of the security standards provide by FIDO Cer-
tification [6] for FIDO products. Moreover, although FIDO
UAF is widely used on mobile devices [2, 7], due to the open-
ness and diversity of mobile devices, currently there is no

Hindawi
Wireless Communications and Mobile Computing
Volume 2020, Article ID 8819790, 14 pages
https://doi.org/10.1155/2020/8819790

https://orcid.org/0000-0003-3629-0233
https://orcid.org/0000-0001-7658-483X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8819790


specific unified standard for the implementation of the UAF
protocol on them, and certain FIDO UAF products cannot
meet the UAF security assumptions, and their security levels
are not suitable for actual scenarios. Our previous work [8]
presents an attack for the implementation of the UAF proto-
col caused by the lack of a trusted display module on the
mobile device, so the attacker may successfully tamper such
displayed information as transaction data.

In consideration of the fact that Android is one of the
most popular mobile operating systems and there are many
certified providers of certified products on the Android plat-
form [9, 10], we focus on analyzing the security of the UAF
protocol implementation on mobile devices and propose a
novel attack named “Authenticator Rebinding Attack”. The
proposed Authenticator Rebinding Attack rebinds the vic-
tim’s identity to the attacker’s authenticator and allows the
attacker to impersonate the victim to perform sensitive oper-
ations such as transfer and payment.

To the best of our knowledge, our work is the first to
study the threat of active Authenticator Rebinding Attack
of the UAF protocol on the Android platform. On the one
hand, we study the actual implementation of this attack
according to the different modes in the UAF protocol on
mobile devices. On the other hand, we point out that the rea-
son for this attack is the lack of effective authentication
between entities in the implementations of the UAF protocol
used in the real world. We also evaluate the impact of this
attack by analyzing 42 FIDO UAF applications and find that
19% of the applications that call third-party UAF Client
Applications are unable to resist the attack, while the other
81% applications that implement the UAF protocol inside
themselves might also suffer from this attack if they run in
a compromised environment.

The contributions of this paper can be summarized as
follows:

(i) We present a novel attack called Authenticator
Rebinding Attack, which impersonates the victim
to perform sensitive operations by rebinding the vic-
tim’s identity to the attacker’s authenticator

(ii) We demonstrate the technical feasibility of Authen-
ticator Rebinding Attack by giving the details of the
attack on the Hebao Pay and Jingdong Finance
applications

(iii) We prove the practical significance of this attack by
analyzing their security on the UAF applications
mined from applications in the real world

(iv) We present the main causes of this threat and the
countermeasures against this attack for different
stakeholders on implementing the UAF protocol
on the Android platform

The rest of this paper is organized as follows. In Section 2,
we present the architecture, trust model, and operations of
the UAF protocol. In Section 3, we analyze two UAF imple-
mentation modes, i.e., Out-App Authenticator Mode and
In-App Authenticator Mode. In Section 4, we present the

Authenticator Rebinding Attack under both the Out-App
and In-App Authenticator Modes as well as verify such
an attack on typical applications. In Section 5, we analyze
the security of the actual applications using the UAF pro-
tocol to evaluate the implementability of the attack and
present the main causes of such threat, as well as the
countermeasures against the threat. In Section 6, we finally
give our conclusions.

2. UAF Protocol

In this section, we introduce the architecture, trust model of
the client side, and simplified operations on the Android
platform of the UAF protocol.

2.1. Architecture. Figure 1 shows the architecture of the UAF
protocol, which includes six entities—User Agent, UAF Cli-
ent, UAF ASM, UAF Authenticator, Web Server, and UAF
Server [11]. These entities are deployed on the User Device
and the Relying Party. The User Device works as a client
and interacts with the user, generates and stores the unique
Authentication Keys, and computes and returns a response
for the challenge from the server side. The Relying Party
works as a server and initiates the challenge-response
mechanism and verifies and stores the user credentials,
e.g., unique Authentication Public Keys. The User Device
and the Relying Party communicate with each other using
a secure transport protocol (such as TLS/HTTPS [12])
established between the FIDO UAF Client and the Relying
Party. Moreover, the internal communication between
entities in the UAF protocol differs and depends on the
protocol implementations [13].

The UAF Authenticator is the entity that can be inserted
(such as a USB hardware device with PIN code protection) or
embedded (such as a fingerprint sensor in a smartphone)
into the User Device. On the Android platform, it is recom-
mended to implement the UAF Authenticator as a module
based on the TEE. The UAF Authenticator contains two
kinds of asymmetric keys, a pair of Attestation Keys and
several pairs of Authentication Keys. Attestation Keys are pre-
stored in the UAF Authenticator and used in the registration
operation. Authentication Keys are generated by the UAF
Authenticator in the registration operation and used in the
authentication operation.

The UAF ASM is a software interface between the UAF
Client and the UAF Authenticator, which provides uniform
API to the upper layer so that a UAF Client can support
diverse UAF Authenticators with different biometric factors.

The UAF Client acts as the client of the UAF protocol. It
interacts with diverse UAF Authenticators through the UAF
ASM and UAF Server through a Relying Party. The User
Agent interacts with the user and initiates the whole opera-
tion when the user enables biometric authentication.

On the Android platform, the UAF Client and the UAF
ASM can be independent applications separated from the
User Agent or built-in modules of the User Agent, which will
be introduced in detail in Section 3. TheWeb Server provides
the user application service and interacts with the UAF
Server to transfer UAF protocol messages. The UAF Server

2 Wireless Communications and Mobile Computing



is responsible for communicating with the client, verifying
the response message, and updating the public key related
to the user. In the following section, we will use one server
entity to represent the Web Server and the UAF Server to
make the description more concise.

2.2. FIDO UAF Client Trust Model. We first introduce the
FIDOUAF Client Trust Model described in FIDOUAF spec-
ification to show how these entities of the client side authen-
ticate each other; then, we present why these authentication
measures might not be effective when they are implemented
on Android platform in Section 5.2.

The FIDO UAF Client Trust Model is shown in Figure 2
[14]. The FIDO UAF specification describes the data struc-
tures for authentication and access control between entities,
in which FacetID is used for the UAF Client to authenticate
the User Agent; CallerID is used for the UAF ASM to authen-
ticate the UAF Client; KHAccessToken is used to provide
access control for an Authentication Key. The UAF Authen-
ticator ensures that a UAF ASM provides a specific KHAcces-
sToken to access the correct user Authentication Key. The
KHAccessToken is exported by the UAF ASM during the reg-
istration operation using data such as AppID, PersonalID,
ASMToken, and CallerID [15]. If the AppID received by a
UAF Client is a valid HTTPS URL, the UAF Client will
obtain a trusted FacetID list by accessing the URL (HTTPS
guarantees the list is trusted), check if the FacetID of the User
Agent is in this list and then verify the validity of the User
Agent. If the AppID is empty, the UAF Client directly sets
the FacetID of the User Agent to the AppID field and the
FacetID will be finally verified by the server [16]. Besides,
the AAID (Authenticator Attestation ID) identifies a model,
class, or batch of UAF Authenticators that share the same
characteristics. The AAID also identifies a pair of Attestation
(Public/Private) Keys [17].

According to our research, the ASM-Authenticator
Applications of the same version and vendor have the same
AAID and Attestation Keys on the Android platform. The
FacetID is a URI derived from the Base64 encoding SHA-1
hash of the APK signing certificate of the User Agent by the
UAF Client [16]. The CallerID of a UAF Client is derived
by the UAF ASM in the same way [15].

2.3. UAF Protocol Operations. The UAF protocol has two
critical operations, namely, registration and authentication
[13]. As shown in Figure 3, in order to describe the FIDO
UAF protocol more concisely, we depict the UAF protocol
operations as a challenge-response process merged from
the registration and authentication operations by omitting
some details.

The server and the UAF Authenticator first success-
fully share necessary data such as the Attestation Public
Key, AAID, and protocol policies through the process of
FIDO Metadata Service before the registration operation.
Then, the UAF Authenticator stores its Attestation Private
Key securely; the server sends a challenge to the UAF
Authenticator and checks the received response while the
UAF Authenticator generates a response according to the
challenge after verifying the user’s biological factors in
either the registration operation or the authentication
operation. The difference between these two operations is
that the UAF Authenticator generates the response with
the Attestation Private Key in the registration operation
and with an Authentication Private Key in the authentica-
tion operation. Both the Public_Key and the Private_Key
(in Figure 3) are referred to the Attestation Keys in the
registration operation, as well as the Authentication Keys
in the authentication operation. Figure 3 also shows a case
where the AppID from the server is empty as Section 2.2
describes.

In the registration operation, the UAF Authenticator
generates a pair of Authentication Keys associated with
user profile and sends the public key signed with Attesta-
tion Key (Private_Key) in the response message to the
remote server; the server then stores the user’s public
key after verifying its signature by the Attestation Public
Key; in the authentication operation, the authenticator
unlocks the related Authentication Keys after receiving
the challenge from the server and generates a response
including a signature with Authentication Keys (Private_
Key) and sends the response message to the remote server;
then, the server locates the user’s public key stored in reg-
istration operation, uses it to verify the signature in the
message, and finally achieves the purpose of authenticating
the user’s presence.

User Device

UAF protocol

User Agent

UAF Client

UAF ASM

UAF Authenticator

Authentication Keys
Attestation Keys

Relying Party

Web Server

UAF server

UAF function

Attestation Key manager

Database
Authentication Public Keys
Attestation Keys

Figure 1: Architecture of the UAF protocol.

3Wireless Communications and Mobile Computing



3. Implementations of the UAF Protocol

In this section, we describe two commonly implemented
UAF protocol modes on the Android platform: UAF imple-
mentation based on Out-App Authenticator Mode and
UAF implementation based on In-App Authenticator Mode.

3.1. Out-App Authenticator Mode. Out-App Authenticator
Mode refers to the implementation mode where the User
Agent, the UAF Client, and the ASM-Authenticator are three
separate Android applications. One example is Hebao Pay, a
third-party mobile payment product launched by China
Mobile. [18] In the following section, we describe its
implementation.

UAF Client Applications can be preinstalled in the phone
by the manufacturer or installed by the user, which provide
UAF Client functions that are compliant with the FIDO spec-
ifications and expose the standard interface. Upper-layer
applications can implicitly call the UAF Client functions,
which means that the upper-layer application and the UAF
Client Application are decoupled. Therefore, an application
can call different UAF Client Applications on devices of dif-
ferent brands without modifying their source codes. There
are multiple implementations of UAF ASM and authentica-
tors; some applications provide a UAF ASM interface to the
UAF Client Application and implement the function of an
authenticator at the same time through the native methods

UAF 
ASM

FIDO User Device

UAF
Authen-
ticator

KHAccessToken

UAF 
Client

Platform specific determination of FacetID

Platform specific determination of CallerID

User
Agent Server

Relying Party

Figure 2: Trust Model of FIDO UAF Client.

UAF Authenticator UAF ASM

Biometric verification;
Unlock Private_Key;

Sign related data and generate
Response with Private_Key.

Response

Response
Response

Response

HTTPS

Check FacetID with AppID;
AppID = FacetID.

Check CallerID;
Generate KHAccessToken.

Check Response with
Public_Key;

Additional verifications.

challenge, AppID, KHAccessToken

UAF Client

FIDO Metadata Service (attestation object, policies, etc.)

Generate challenge.

challenge, AppID

HTTPSchallenge, AppID

challenge, AppID

User Agent Server

Figure 3: Simplified UAF protocol operation.

4 Wireless Communications and Mobile Computing



or using TEE. We call such an application ASM-
Authenticator Application.

Figure 4 describes the UAF implementation of Out-App
Authenticator Mode; the specific process is as follows:

(1) As shown in Figure 4, the User Agent starts an Activ-
ity component of the UAF Client Application with
implicit intents and uses them to pass the registra-
tion or authentication request. The Android system
can automatically match the intent-filter of Activity
components with the intent parameters. When
multiple Activity components are matched, the
user will be prompted to select one of them to
start. The intent-filter of an Activity component
in the UAF Client is defined in Figure 5. Implicit
intents enable User Agents to call multiple UAF
Client Applications

(2) After the related Activity component in the UAF Cli-
ent Application is started by the User Agent, the
Activity component calls getCallingActivity() func-
tion to obtain the caller’s package name, calculates
the hash of the signature certificate of the application
corresponding to this package name, and generates
the FacetID of the caller. Then, the FacetID is checked
with AppID

(3) The UAF Client Application sends the request to the
ASM-Authenticator Application by starting the
Activity component with explicit intents, which
means that such UAF Client Application explicitly
specifies the ASM-Authenticator Application to call.

(4) After receiving the FIDO Client Application request,
the ASM-Authenticator Application calculates the
CallerID of FIDO Client Application. The calculation
method is the same as that of FacetID. The ASM-
Authenticator Application then verifies whether the
caller is a valid FIDO Client Application by checking
a whitelist. If the verification fails, the operation is
aborted. Otherwise, the UAF Authenticator with the
native implementation is called by the JNI mecha-
nism to perform the FIDO operation

3.2. In-App Authenticator Mode. In the In-App Authentica-
tor Mode, the UAF Client, UAF, ASM, and UAF Authentica-
tor modules are implemented internally inside the User
Agent. For example, Jingdong Finance, a financial and
third-party payment application launched by Jingdong [19],
implements the UAF protocol in this mode. Such applica-
tions generally implement the UAF protocol by integrating
the FIDO UAF SDK that includes the above modules. Differ-
ent FIDO UAF SDKs have different implementation details,
but the modules and calling processes implemented in these
SDKs conform to the FIDO UAF framework described by
UAF protocol specification.

We summarize the implementation of a typical In-App
Authenticator Mode as shown in Figure 6. UAF Client and
UAF ASM send parameters by calling the interface method
of the next level entity, respectively; UAF ASM stores the
authentication information (such as KeyHandle, KeyID, and
UserName) of each registration operation in the SQLite data-
base; the authenticator starts the FingerActivity through
explicit intents to complete user authentication and other
authentication functions; FingerActivity calls Android’s fin-
gerprint authentication service to verify the user’s identity,
calls the Android KeyStore to generate the Authentication
Key and signature, and saves the SignCounter to SQLite.
The FacetID and CallerID of this mode are generated by cal-
culating the hash of the User Agent’s signature certificate, so
these two values do not authenticate the UAF Client and
UAF ASM modules in the SDK.

4. Authenticator Rebinding Attack

In this section, we propose an attacking method called the
Authenticator Rebinding Attack which enables an attacker
to rebind the victims’ identity to a misused authenticator,
bypass the biofactor authentication of the victim’s device,
and initiate unauthorized payment operations. We present

User Agent

ASM-Authenticator Application1 ASM-Authenticator Application2 

UAF Client Application1
com.fidoallince.fido.uaf.ClientActivity

UAF Client Application2
com.others.fido.uaf.ClientActivity

With implicit intents
With explicit intents

Figure 4: UAF implementation in Out-App Authenticator Mode.

Figure 5: Intent-filter exposed by a UAF Client.

5Wireless Communications and Mobile Computing



the overview and details of this attack under the two imple-
mentation modes of the UAF protocol on Android, including
the threat model, the attack process, and the verification of
the attack on real-world applications.

4.1. Overview of Authenticator Rebinding Attack. Figure 7
shows an overview of the Authenticator Rebinding Attack.
In the following part, we take the fingerprint authentication
mechanism as a local authentication example and assume
that the attacker has installed malware on the victim’s device.

(1) A victim turns on the fingerprint authentication
function of an application to register a FIDO UAF
service in an Android application

(2) The malware redirects the protocol message from
this application to the attacker’s cracked device

(3) The attacker tricks his/her authenticator to continue
the UAF operations with the redirected message

(4) The misused authenticator initiates a fingerprint
authentication as expected. At the same time, the
malware running on the victim’s device uses the fake
fingerprint authentication window to pretend to ver-
ify the victim’s fingerprint which makes the victim
not aware of any abnormalities

(5) The attacker completes the UAF protocol registration
operation on behalf of the victim and rebinds the

Authentication entities

Function call
SQL operation
Crypto operation

Fingerprint
(cn.com.union.fido.ui.
finger.FingerActivity)

Android KeyStore 

SignCounter entities

SQLite

UAF Client
(cn.com.union.fido.FidoSDK)

UAF message

Command bytes

UAF ASM
(cn.com.union.fido.service.

AsmService)

UAF Authenticator
(cn.com.union.fido.service.

AuthenticatorService)

Figure 6: In-App Authenticator Mode.

4

5

The victim’s device

Turn on fingerprint verification.1

The victim’s authenticator is bypassed.

The victim does a fake fingerprint
verification initiated by the malware.

The misused authenticator received
the protocol message.

The protocol message is redirected.

The attacker does a fingerprint verification
initiated by the misused authenticator

The victim’s identity is rebound to
attacker’s authenticator.

The attacker’s device

4

2

3

Victim

Victim Attacker

Figure 7: Overview of Authenticator Rebinding Attack.

6 Wireless Communications and Mobile Computing



victim’s identity to the attacker’s misused authentica-
tor. Thereafter, the attacker can bypass the finger-
print verification in the user’s device and perform a
transfer or payment without the user’s authorization

We call this attack Authenticator Rebinding Attack
because the victim’s identity is eventually rebound to the
attacker’s authenticator. Compared with the approach using
malware to steal user’s passwords, this type of attack is less
difficult because the attacker does not need to hack the pass-
word input window, which is always protected by the
Android operating system using such techniques as TEE.
This attack can be used to bypass the biometric authentica-
tion process of the FIDO UAF protocol without destroying
the fingerprint verification mechanism of the Android sys-
tem. Therefore, with this attack, the biometric authentication
process can be bypassed in the case of remote control or tem-
porary access to the victim’s device.

We have proven that this attack is effective for both
UAF protocol implementation modes, and we will present
the detailed processes and verifications of such attack
under different protocol implementation modes in the fol-
lowing sections.

4.2. Attack under Out-App Authenticator Model. When the
User Agent of FIDO UAF is implemented using the Out-
App Authenticator Mode, even if the Android operating sys-
tem is not corrupted, it may suffer from an Authenticator
Rebinding Attack. Meanwhile, an attacker can complete this
attack at a lower cost. In this case, we call the attack Type-A
Rebinding Attack.

4.2.1. Threat Model. In Type-A Rebinding Attack, we assume
that an attacker has the following abilities.

We assume that the attacker can install malware on a vic-
tim’s Android devices through system vulnerabilities, induc-
ing users, DNS hijacking, ARP attacks, or other measures.
This assumption is reasonable because the public Wi-Fi users
may suffer from these attacks for the existence of Rogue
Access Point (RAP) [20]. Moreover, the spread of malware
is still prevalent; for example, the total number of mobile
malware infections in 2018 exceeded 110 million [21].
We assume that the attacker is able to remotely control
the victims’ mobile device temporarily or has the opportu-
nity to temporarily access the device without root permis-
sion. These two situations will cause the attacker to
implement similar attacks using different attack schemes.
For example, an attacker’s malware obtains the remote
control permission of the victim’s device by deception, or
an attacker is an acquaintance of the victim and therefore
can temporarily access the phone. But in both cases, the
attacker cannot replace the victim to complete the finger-
print verification process on the Android device. We also
assume that the malware cannot deceive the fingerprint
verification service on Android devices, because the finger-
print matching should be performed in a Trusted Execu-
tion Environment (TEE) or on a chip with a secure
channel to the TEE according to the requirements of Goo-
gle after Android 7.0 [22].

The attacker may crack the Android device and gain the
root permission. This is necessary because the attacker has
to trick the FIDO ASM-Authenticator Application in his/her
own device to process the UAF protocol request forwarded
from the victim’s device. In fact, this can be easily satisfied
for two reasons. First, many Android device vendors provide
bootloader unlocking services directly or indirectly, so users
can also obtain root permission by flashing a third-party
ROM. Second, various automated root permission acquisi-
tion tools such as KingRoot reduce the difficulty for ordinary
users to obtain root permission of the Android system.
Therefore, we assume that the attacker has a device with
the same model and the same software version as the victim;
i.e., their FIDO ASM-Authenticator Applications have the
same AAID and Attestation Keys.

4.2.2. Processes. Based on the above threat model, detailed
attack processes of Type-A Rebinding Attack are as follows:

(1) When a victim uses the User Agent in the user’s
device to open the fingerprint verification service,
the registration operation of the UAF protocol is
triggered to start

(2) The User Agent obtains the FIDO UAF registration
request containing AppID and challenge over the
TLS channel

(3) In Out-App Authenticator Mode, User Agent
launches an Activity component of the UAF Client
Application via implicit intent. The intent contains
the FIDO UAF registration request

(4) As shown in Figure 8, the Attack Agent Client and
UAF Client Application expose the same intent-
filter as described in Section 3.1. Therefore, the
Android operating system will prompt the victim
to select a UAF Client Application in the user’s
device for further operation by a pop-up window
as shown in Figure 9

(5) It is difficult for the victim to manually select the
correct UAF Client from multiple UAF Client
Applications that match implicit intents because
the UAF protocol works under User Agents and is
usually transparent to users. Therefore, the victim
may choose the Attack Agent Client by mistake to
perform further operations

(6) Through network communication, the Attack
Agent Client forwards the FIDO UAF registration
request to Attack Agent Server running on the
attacker’s device and performs a fake fingerprint
verification operation, waiting for the registration
response message returned by Attack Agent Server

(7) On the attacker’s device, the Attack Agent Server
passes the received FIDO UAF registration request
to the ASM-Authenticator Application. Since the
signature certificate of the Android application is
packaged and published with the APK file, the

7Wireless Communications and Mobile Computing



FacetID and CallerID can be easily forged. The
Attack Agent Server changes the FacetID and Call-
erID to the correct value and then passes the modi-
fied parameters to the ASM-Authenticator
Application

(8) The ASM-Authenticator Application verifies the
UAF Client Application by CallerID, uses the sys-
tem fingerprint verification service to verify the
attacker’s fingerprint, and calculates the response
with the Attestation Key. Since CallerID and Face-
tID are calculated in the same way and the
attacker also has the root permission of the
device, CallerID can be changed into a correct
CallerID easily. However, it may not be necessary
in cases such as the attack example described
below

(9) The registration response message generated by the
misused ASM-Authenticator Application is
returned to the User Agent running on the victim’s
device step by step according to the above path

(10) After the victim enters his/her payment password in
the User Agent for confirmation, he/she completes
the registration operation of the UAF protocol using
the attacker’s authenticator. Thereafter, the attacker
can bypass the fingerprint verification through the
Attack Agent Client on this victim’s device and
complete the payment operations

4.2.3. Validation. We choose Hebao Pay as the attack target
to verify the effectiveness of the Type-A Rebinding Attack.
One reason for our choice is that Hebao Pay is widely used,
and the cumulative number of total downloads of Hebao

Fingerprint verification settings

Fingerprint verification only valid to
this device

Fingerprint payment

After setting, you can complete the
payment quickly through the

system fingerprint verification,
agree to the “Fingerprint Related

Agreement”

Figure 9: A pop-up window asking the victim to choose a UAF Client.

User’s device ServerAttacker’s device

User Agent
Web Server &
UAF Server

Attack Agent
Client

UAF Client
Application

Normal process

Malicious process

Attack Agent
Server

ASM-
Authenticator
Application

ASM-
Authenticator
Application

TLS Channel

Figure 8: Type-A Rebinding Attack.

8 Wireless Communications and Mobile Computing



Pay in China has surpassed 129 million by the end of Novem-
ber 2019 [23]. Another reason is that Hebao Pay uses Out-
App Authenticator Mode to provide users with fingerprint
verification services based on the UAF protocol. In Huawei’s
smart mobile devices, Hebao Pay calls system applications
UAF Client and UAF ASM in EMUI (Emotion UI) to com-
plete the UAF protocol flow. Through reverse analysis, we
find that UAF ASM in EMUI includes the functions of
ASM and authenticator, so it can correspond with the
ASM-Authenticator Application in the above descriptions.

We implement two attack modules: Attack Agent Client
and Attack Agent Server. The former exposes the same
intent-filter and sets the application name and application
icon similar to the UAF Client in the victim’s device. The lat-
ter is achieved by using the hook methods to modify the
return value of the Activity.getCallingActivity() function of
the UAF Client in the victim’s device.

In our implementation, Hebao Pay is installed on the
same device with the Attack Agent Server and the return
value of the Activity.getCallingActivity() function is changed
to the package name of Hebao Pay so that UAF Client Appli-
cation can always calculate the FacetID of Hebao Pay. The
Attack Agent Client can also calculate the caller’s FacetID
and pass it to the Attack Agent Server; then, the Attack Agent
Server can modify the return value of the FacetID calculating
function to the received FacetID. This could make such an
attack applicable to other User Agents of Out-App Authenti-
cator Modes.

Based on the above work, we simulate the entire process
of such an attack. First, the victim attempts to open the fin-
gerprint verification service in Hebao Pay according to the
described operation in the previous sections. The fingerprint
verification window pops up on the screen of the attacker’s
mobile phone instead of the victim’s phone. After the
attacker performs fingerprint verification, the victim’s Hebao
Pay application jumps directly to the payment password
input screen. The victim inputs his/her payment password
to confirm this operation, and the fingerprint verification ser-
vice is successfully opened. The attacker can then perform a
transfer operation, and the fingerprint verification window
pops up again on the screen of the attacker’s mobile phone.
After verifying the attacker’s fingerprint, the transfer opera-
tion is successful, which means that Type-A Rebinding
Attack can bypass the fingerprint verification mechanism of
Out-App Authenticator Mode as expected.

4.3. Attack under In-App Authenticator Mode. Compared
with the Type-A Rebinding Attack, the attack in the In-
App Authenticator Mode that is called Type-B Rebinding
Attack has the same impact on the victim but requires a
higher cost. This is caused by the fact that the Relying Party
function modules and authenticator in In-App Authenticator
Mode are highly coupled, which prevents the User Agent
from calling multiple UAF Clients, thus reducing the attack
surface and increasing the difficulty of such attacks.

4.3.1. Threat Model.We assume that the attacker has the abil-
ity to download the User Agent and reverse the source code
of the UAF protocol so that the attacker can find the attack

point at which he can redirect protocol messages in an appli-
cation by manually analyzing the UAF protocol source code.
It is also assumed that the malware is installed on the victim’s
device by the attacker and can obtain the root permission of
the target device to inject the malicious code into the User
Agent because the UAF protocol module of this mode is
implemented inside the Reply Party Application. It also
means that the attacker is able to remotely control the vic-
tims’ mobile device with the root permission. The attacker
is assumed to run the same In-App Authenticator Mode
application on his/her cracked device, inject the malicious
code, and use it as a tool to complete this attack.

4.3.2. Processes. According to the above threat model, the
attack processes of Type-B Rebinding Attack are as follows.
Steps (1) and (2) are the same as those of Type-A Rebinding
Attack. (3) The attacker uses the malware to inject the mali-
cious code into the victim’s application, hook key functions
related to the UAF protocol, and obtain the protocol mes-
sages. This operation requires root permissions of the vic-
tim’s device. (4) The malware redirects the protocol
message to the attacker’s device through network communi-
cation. At the same time, the malware displays a fake finger-
print verification window to mislead the victim to wait until
it receives the response from the attacker’s device. (5) The
broken In-App Authenticator Mode application on the
attacker’s device receives the protocol message and calls its
authenticator mode to verify the attacker’s fingerprint to gen-
erate the registration response message. (6) The broken In-
App Authenticator Mode application sends back the registra-
tion response message to the victim’s device. The following
step is the same as step (10) in the Type-A Rebinding Attack.

4.3.3. Validation. We choose Jingdong Finance as the repre-
sentative application of In-App Authenticator Mode to vali-
date such attack. As of November 2019, its cumulative
number of total downloads in China has exceeded 730 mil-
lion [24]. Jingdong Finance implements the UAF protocol
in In-App Authenticator Mode and introduces the third-
party library http://cn.com.union.fido to implement this pro-
tocol. This library is also referenced by many other UAF
applications in the In-App Authenticator Mode.

Through the reverse analysis, we find that a function
named process is the entry function for the UAF ASM mod-
ule to call the authenticator module. The parameters and
return values are byte arrays. We hook this function and
inject the code of parameters forwarding to implement the
Attack Client and Attack Service modules. The function of
the malicious code injected is shown in Figure 10, in which
the process function is replaced by the processHook function
and the parameters are forwarded to the remote Attack
Server module. The Attack Server module is implemented
by replacing this function to receive Attack Client’s for-
warded parameters.

Based on the above analysis, after the victim enables the
fingerprint payment function in the Jingdong Finance appli-
cation, the registration and authentication requests of the
UAF protocol are forwarded to the attacker’s device and the
fingerprint verification mechanism of Jingdong Finance

9Wireless Communications and Mobile Computing

http://cn.com.union.fido


running on the victim’s device is successfully bypassed.
Despite requiring more rigorous attack conditions, Type-B
Rebinding Attack is possible to happen in In-App Authenti-
cator Mode User Agents.

4.4. Comparison of These Two Attacks. Both attacks under
different UAF protocol implementation modes may lead to
the fingerprint authentication mechanism of User Agent
Applications running on the victim device to be bypassed.
In general, the Type-A Rebinding Attack is easier to be
implemented because the attacker does not need to obtain
the root permission of the victim’s device or perform a
reverse analysis of the target User Agent. Moreover, some
User Agents may become the potential targets during the
attack because they communicate with the UAF Clients in
the same way (implicit intent). However, Type-B Rebinding
Attack is not easy to detect because it can be carried out with-
out any extra interaction with the victim. Table 1 shows the
difference between these two attacks.

5. Discussions

In this section, we first analyze the impact scope of this threat
by studying the security of related applications in the actual
system; then, we present its main causes and finally provide
possible countermeasures that will remedy the threats.

5.1. Impact Scope. We manually analyze several applications
that use the UAF protocol, find their characteristics, and
develop programs to automatically mine such applications
from a large number of Android applications. As what is
claimed in the UAF protocol, if an Android application calls
other UAF Client Applications to complete the FIDO UAF
operation, it must declare the FIDO-related permissions in
its Android manifest file [25]. Therefore, FIDO-related per-
missions in the manifest file can be used for searching Out-
App Authenticator Mode applications. However, the applica-

tion code in the In-App Authenticator Mode does not con-
tain the code that implements the UAF protocol but uses a
third-party Java library that implements the UAF protocol
instead. We automatically mine the target application by
retrieving the package name and critical component name
of the third-party libraries contained in an application and
checking whether these names contain the FIDO keywords.

Altogether, we find 42 FIDO UAF applications in Out-
App Authenticator Mode and In-App Authenticator Mode.
The total download number of these 42 applications in app
markets is more than 222.9 million by the end of 2019.
Among these 42 applications, 8 (19%) applications call
third-party UAF Client Applications (Out-App Authentica-
tor Mode), while the remaining 34 (81%) applications use
the In-App Authenticator Mode to complete the operation
of the UAF protocol.

For the UAF applications in Out-App Authenticator
Mode, we confirm with manual analysis methods that they
all use implicit calls to interact with third-party UAF Cli-
ent Applications, which means that the Type-A Rebinding
Attack is effective for these applications. Even if these
applications use code obfuscation and packing protections,
they still cannot resist such a threat. The total downloads
of these applications as shown in Table 2 have exceeded
27.1 million by far.

For the UAF applications in In-App Authenticator
Mode, if users use these applications on Android devices that
leak root permissions, they may become the target of Type-B
Rebinding Attack. These applications are protected by code
obfuscation technology for the code of the UAF protocol,
and their critical method names are randomly replaced with
different strings. Therefore, although attackers can determine
from the package names what kind of third-party FIDO UAF
libraries that the developers have used, the attackers have to
manually analyze the obfuscated code of every kind of appli-
cations to find the possible hook point. This will undoubtedly
increase the difficulty of carrying out this attack. Table 3

Target application

User Agent Attack module

Normal process
Malicious process

sk = new Socket(“192.168.171.86”, 8080);
result = sendProcessArguments(args, sk);
return result;UAF Client

UAF ASM
Code injection

Internet connection

Attacker’s device

UAF
Authenticator

Function call

Function call

Function call

UAF SDK

processHook()
process()

Attacker’s authenticator

Attack Server

Figure 10: Injecting the malicious code to the target User Agent.

10 Wireless Communications and Mobile Computing



shows the third-party library package names and total down-
loads of the In-App Authenticator Mode applications. The
attack effectiveness of third-party library cn.com.union.fido
is confirmed in our attack validation stage, and the attack
effectiveness of other libraries stays unconfirmed.

By analyzing the applications that use the UAF protocol,
we can conclude that the Authenticator Rebinding Attack
has already caused substantial threats to applications with a
large number of downloads, especially the applications of
Out-App Authenticator Mode with implicit calls.

5.2. Main Causes. The authentication between FIDO UAF
entities is not effectively implemented in both modes. Invalid
authentication between FIDO UAF entities will cause the
UAF Authenticator to be abused by attackers and become
an attacker’s tool for the attack. In Out-App Authenticator
Mode, UAF Client Application authenticates User Agent
via FacetID and ASM-Authenticator Application authenti-
cates UAF Client Application via CallerID. As an example
of our research, both FacetID and CallerID are obtained by
calculating the hash of the target application’s signature cer-
tificate. However, the signature certificate can only guarantee
the integrity of the Android application static code or APK
file and cannot guarantee the integrity of the application at
runtime. Similarly, in In-App Authenticator Mode, FacetID
and CallerID cannot be used to ensure that the internal mod-
ules of a User Agent are not tampered by an attacker at run-
time. Therefore, FacetID and CallerID cannot be used in
these situations to guarantee the authentication between
UAF protocol entities. On the contrary, if entities are effec-
tively authenticated and the authentication information is
included in the response, at least the remote server can detect
whether the integrity of some entities has been compromised
and then abort the protocol operation. In conclusion, it is the
lack of effective authentication between entities in the imple-

mentations of the UAF protocol that the UAF protocol used
in the actual system is vulnerable to the Authenticator
Rebinding Attack.

5.3. Countermeasures.We now discuss possible countermea-
sures to effectively mitigate Authenticator Rebinding Attack
from the perspective of protocol designers, developers of
the User Agent Applications, and mobile device providers
and users.

For designers of the UAF protocol, our suggestion is to
enhance the authentication mechanism between the UAF
entities by adding the verification of Android platform integ-
rity based on TEE or hardware. Although the Android oper-
ating system has an isolation mechanism for applications,
Android applications, for example, the application of the
User Agent or the UAF Client, may still be damaged at run-
time when the Android operating system is corrupted, which
leads to the attack mentioned above. Therefore, if the FIDO
server can authenticate the integrity of the Android operating
system and combine this with the verification mechanism of
FacetID and CallerID, the authentication between FIDO
UAF entities can be indirectly guaranteed. For example, the
TrustZone-based Integrity Measurement Architecture
(TIMA) proposed by Samsung can prove the applications
running in a trusted environment to the remote server [26].
And this technology can be integrated with the UAF protocol
so that the authenticator can sign the challenge along with the
attestation data, which contains boot component crypto-
graphic hashes to indicate the integrity of the operating sys-
tem. In this way, the server can determine whether the
authenticator is running in a secure device by checking the
TIMA attestation data.

For the developers of User Agent Applications, we first
suggest using explicit intent to call the third-party UAF Cli-
ent. In this case, the Package Manager Service (PMS) of the

Table 1: The difference between the two kinds of attacks.

Type-A Rebinding Attack Type-B Rebinding Attack

Attack target Some User Agents calling third-party UAF Clients A specific User Agent with In-App Authenticator

Requiring the root permission No Yes

Requiring additional user
interaction

Yes No

Requiring reverse analysis No Yes

Table 2: Out-App Authenticator Mode applications.

Package name Category Interaction method Downloads (million) Attack effectiveness

com.ecitic.bank.mobile Bank Implicit intents 14.59 √
com.bankcomm.maidanba Bank Implicit intents 5.38 √
cn.com.cmbc.newmbank Bank Implicit intents 2.32 √
com.cmbc.cc.mbank Bank Implicit intents 2.32 √
com.forms Bank Implicit intents 0.86 √
com.cmcc.hebao Third-party payment Implicit intents 0.75 √
com.unicom.wopay Third-party payment Implicit intents 0.49 √
com.hsbank.mobilebank Bank Implicit intents 0.39 √

11Wireless Communications and Mobile Computing



Android system can accurately locate the real UAF Client, so
the malicious UAF Client hence has no chance to launch an
attack. Second, the developers should consider implementing
the verification mechanism to the third-party UAF Client in
their applications (e.g., verifying the hash value of the third-
party FIDO UAF signing certificate with a whitelist). More-
over, if the UAF protocol is implemented in In-App Authen-
ticator Mode, application reinforcement and code
obfuscating technology can be used to prevent static analysis
of the applications. Finally, the hook detection mechanism
[27] may also be applied so that when the attacker tries to
hook functions related to the UAF protocol as described in
Section 4.3, the FIDO UAF service can be disabled in time,
which can prevent Type-B Rebinding Attack.

For mobile device providers, besides protecting the
authenticator, a strict root detection mechanism also sup-
ported by TEE [28] should be used to protect the FIDO
UAF components, which will not be compromised by mali-
cious codes without hardware-based protections. Once it is
detected that the FIDO UAF components have been cor-
rupted, disabling the FIDO UAF service can prevent the
device from being exploited by attackers in the manner
shown in Section 4.2.

For users, when choosing from multiple UAF Clients,
they should be careful and confirm the source and security
of UAF Client; for example, check whether the UAF Client
is a system application; if not, then refuse to install to make
the malware difficult to disguise as a system application

Table 3: In-App Authenticator Mode libraries and applications.

Library package name
Attack

effectiveness
Application package name

Code protection
measure

Downloads
(million)

cn.com.union.fido √

com.jd.jrapp Code obfuscation 23.83

com.csii.sns.ui App reinforcement 0.80

com.cebbank.mobile.cemb App reinforcement 0.36

cn.com.bhbc.mobilebank.per App reinforcement 0.30

com.chinamworld.klb App reinforcement 0.06

cn.com.gdbank.direct App reinforcement 0.01

com.csii.ly.ui App reinforcement 0.01

com.csii.wjnsbank App reinforcement Less than 0.01

com.urthinker.langfangbank.lfbank App reinforcement Less than 0.01

com.csii.yk.ui App reinforcement Less than 0.01

com.csii.zbdirect App reinforcement Less than 0.01

com.daon.fido.client.sdk Unconfirmed com.bochk.com Code obfuscation 0.05

com.fido.android.framework Unconfirmed com.chinatelecom.bestpayclient App reinforcement 34.45

com.iss.sdpersonalbank.fidofinger Unconfirmed

com.iss.weifangbank App reinforcement 0.17

com.iss.rizhaobank App reinforcement 0.13

com.uccb.mobile App reinforcement 0.13

com.iss.changanbank App reinforcement 0.12

com.iss.weihaibank App reinforcement 0.10

com.iss.qilubank App reinforcement 0.09

com.iss.qishangbank App reinforcement 0.09

com.iss.jiningbank App reinforcement 0.08

com.iss.taianbank App reinforcement 0.08

com.iss.dongyingbank App reinforcement 0.07

com.iss.laishangbank App reinforcement 0.07

com.iss.ysantaibank App reinforcement 0.07

com.iss.dezhoubank App reinforcement 0.06

com.iss.zaozhuangbank App reinforcement 0.02

com.lenovo.fido.framework Unconfirmed
com.baidu.wallet App reinforcement 1.69

com.bill99.kuaiqian App reinforcement 1.58

Unknown Unconfirmed

com.icbc App reinforcement 69.67

com.chinamworld.bocmbci App reinforcement 38.06

com.icbc.im App reinforcement 22.57

com.baixin.mobilebank App reinforcement 0.52

com.icbc.collegestudents App reinforcement 0.11

12 Wireless Communications and Mobile Computing



without the root permission. Besides, the user should avoid
using FIDO UAF authentication when the root permission
of the Android device is leaked, because the malware can eas-
ily use the root permission to launch this attack silently
(without additional user interaction).

6. Conclusions

In this paper, we analyze a novel attack named Authenticator
Rebinding Attack of the UAF protocol, which makes the vic-
tim’s identity be rebound to the attacker’s authenticator so
that the attacker can impersonate the victim’s identity. In
order to comprehensively study the threats of such an attack,
we first analyze the applications related to third-party pay-
ment, banking, and online shopping; mine those applications
that use the UAF protocol; and model two main implementa-
tions of the UAF protocol, i.e., Out-App Authenticator Mode
and In-App Authenticator Mode. We then describe the
detailed attack process of these two implementation modes.
We also demonstrate that the proposed attacks do work by
performing attack verification on typical actual applications.
Besides, the applications that use UAF protocol on the
Android platform in the actual system are threatened by this
attack and the applications that make implicit calls in Out-
App Authenticator Mode are more vulnerable. This threat
can be attributed to the lack of effective authentication
between entities when the UAF protocol is implemented on
the Android platform. The FacetID and CallerID used by
the UAF protocol cannot prove the integrity of the User
Agent and UAF Client. We finally present countermeasures
that can prevent this threat. We believe that our research
on the Authenticator Rebinding Attack of the UAF protocol
can help protocol designers, User Agent Application devel-
opers, and mobile device providers and users to improve
the security of the UAF protocol.

Data Availability

The APK files used to support the findings of this study are
downloaded from http://zhushou.360.cn/. The python script
used to support the findings of this study is uploaded to the
git repository https://github.com/PandaQ2014/FindFIDO.
The statistical data used to support the findings of this study
are included within the article.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This research is supported by the National Science and Tech-
nology Major Project of China (2018ZX03001010-005).

References

[1] S. Machani, R. Philpott, S. Srinivas, J. Kemp, and J. Hodges,
FIDO UAF Architectural Overview, FIDO Alliance, 2017.

[2] FIDO Alliance, “FIDO certified products,” 2019, https://
fidoalliance.org/certification/fido-certified-products/.

[3] K. Hu and Z. Zhang, “Security analysis of an attractive online
authentication standard: FIDO UAF protocol,” China Com-
munications, vol. 13, no. 12, pp. 189–198, 2016.

[4] C. Xenakis, C. Panos, S. Malliaros, C. Ntantogian, and
A. Panou, A security evaluation of FIDO’s UAF protocol in
mobile and embedded devices, International TyrrhenianWork-
shop Springer, Cham, 2017.

[5] R. Lindemann, D. Baghdasaryan, and B. Hill, FIDO security
reference, FIDO Alliance Proposed Standard, 2015.

[6] FIDO Alliance, “Certification Overview,” 2019, https://
fidoalliance.org/certification/.

[7] International Data Corporation, “Smartphone market share,”
2020, https://www.idc.com/promo/smartphone-market-
share/vendor.

[8] Y. Zhang, X. Wang, Z. Zhao, and H. Li, “Secure display for
FIDO transaction confirmation,” in Proceedings of the Eighth
ACM Conference on Data and Application Security and Pri-
vacy, pp. 155–157, New York, NY, USA, 2018.

[9] StatCounter, “Mobile operating system market share world-
wide,” 2020, https://gs.statcounter.com/os-market-share/
mobile/worldwide.

[10] FIDO Alliance, “FIDO certified showcase,” 2019, ). https://
fidoalliance.org/fido-certified-showcase.

[11] “FIDO AllianceFIDO UAF architectural overview,” 2017,
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-
uaf-overview-v1.1-id-20170202.html.

[12] M. Dietz, A. Czeskis, D. Balfanz, and D. S. Wallach, “Origin-
bound certificates: a fresh approach to strong client authenti-
cation for the web,” in Presented as part of the 21st {USENIX}
Security Symposium ({USENIX} Security 12), pp. 317–331,
Bellevue, WA, 2012.

[13] FIDO Alliance, “FIDO UAF protocol specification,” 2017,
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-
uaf-protocol-v1.1-id-20170202.html.

[14] R. Lindemann, E. Tiffany, B. Davit, D. Balfanz, B. Hill, and
J. Hodges, FIDO UAF protocol specification v1.1, FIDO Alli-
ance, 2017.

[15] FIDO Alliance, “FIDO UAF authenticator-specific Module
API,” 2017, https://fidoalliance.org/specs/fido-uaf-v1.1-id-
20170202/fido-uaf-asm-api-v1.1-id-20170202.html.

[16] FIDO Alliance, “FIDO AppID and Facet specification,” 2017,
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-
appid-and-facets-v1.1-id-20170202.html.

[17] FIDO Alliance, “FIDO technical glossary,” 2017, https://
fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-
glossary-v1.1-id-20170202.html.

[18] China Mobile, Hebao Pay, pay for reliability, China Mobile
Limited, 2020, https://www.cmpay.com/.

[19] JD Digits,A FriendWho Understands Finance, JD Digits, 2020,
https://jr.jd.com/.

[20] W. Yang, X. Li, Z. Feng, and J. Hao, “TLSsem: a TLS security-
enhanced mechanism against MITM attacks in public WiFis,”
in 2017 22nd International Conference on Engineering of Com-
plex Computer Systems (ICECCS), Fukuoka, Japan, 2017.

[21] Beijing Qihu Keji Co Ltd, 2018 Android Malware Special
Report, Technical Report, 2018.

[22] Google Inc, “Android compatibility definition (Android 7.0),”
2017, https://source.android.google.cn/compatibility/7.0/
android-7.0-cdd.

13Wireless Communications and Mobile Computing

http://zhushou.360.cn/
https://github.com/PandaQ2014/FindFIDO
https://fidoalliance.org/certification/fido-certified-products/
https://fidoalliance.org/certification/fido-certified-products/
https://fidoalliance.org/certification/
https://fidoalliance.org/certification/
https://www.idc.com/promo/smartphone-market-share/vendor
https://www.idc.com/promo/smartphone-market-share/vendor
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://fidoalliance.org/fido-certified-showcase
https://fidoalliance.org/fido-certified-showcase
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-overview-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-overview-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-protocol-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-protocol-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-asm-api-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-asm-api-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-appid-and-facets-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-appid-and-facets-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-glossary-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-glossary-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-glossary-v1.1-id-20170202.html
https://www.cmpay.com/
https://jr.jd.com/
https://source.android.google.cn/compatibility/7.0/android-7.0-cdd
https://source.android.google.cn/compatibility/7.0/android-7.0-cdd


[23] Kuchuan, “Hebao payment application data page,” 2019,
h t t p s : / / a n d r o i d . k u c h u a n . c o m / p a g e / d e t a i l /
download?package=com.cmcc.hebao&infomarketid=
10&site=0#!/sum/com.cmcc.hebao.

[24] Kuchuan, “Jingdong Finance application data page,” 2019,
h t t p s : / / a n d r o i d . k u c h u a n . c o m / p a g e / d e t a i l /
download?package=com.jd.jrapp&infomarketid=1&site=0#!/
sum/com.jd.jrapp.

[25] B. Hill, D. Baghdasaryan, B. Blanke, J. Hodges, and K. Yang,
FIDO UAF application API and transport binding specification
v1.1, FIDO Alliance, 2017.

[26] A. M. Azab, P. Ning, J. Shah et al., “Hypervision across worlds:
real-time kernel protection from the ARM TrustZone secure
world,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security - CCS '14,
pp. 90–102, New York, NY, USA, 2014.

[27] M. Szczepanik, I. J. Jóźwiak, P. P. Jóźwiak, M. Kędziora, and
J. Mizera-Pietraszko, “Android hook detection based on
machine learning and dynamic analysisWeb, Artificial Intelli-
gence and Network Applications,” vol. 1150 of WAINA 2020.
Advances in Intelligent Systems and Computing, Springer,
Cham, 2020.

[28] GlobalPlatform, The trusted execution environment: delivering
enhanced security at a lower cost to the mobile market, Glo-
balPslatform Inc, 2015.

14 Wireless Communications and Mobile Computing

https://android.kuchuan.com/page/detail/download?package=com.cmcc.hebao&infomarketid=10&site=0#!/sum/com.cmcc.hebao
https://android.kuchuan.com/page/detail/download?package=com.cmcc.hebao&infomarketid=10&site=0#!/sum/com.cmcc.hebao
https://android.kuchuan.com/page/detail/download?package=com.cmcc.hebao&infomarketid=10&site=0#!/sum/com.cmcc.hebao
https://android.kuchuan.com/page/detail/download?package=com.jd.jrapp&infomarketid=1&site=0#!/sum/com.jd.jrapp
https://android.kuchuan.com/page/detail/download?package=com.jd.jrapp&infomarketid=1&site=0#!/sum/com.jd.jrapp
https://android.kuchuan.com/page/detail/download?package=com.jd.jrapp&infomarketid=1&site=0#!/sum/com.jd.jrapp

	Authenticator Rebinding Attack of the UAF Protocol on Mobile Devices
	1. Introduction
	2. UAF Protocol
	2.1. Architecture
	2.2. FIDO UAF Client Trust Model
	2.3. UAF Protocol Operations

	3. Implementations of the UAF Protocol
	3.1. Out-App Authenticator Mode
	3.2. In-App Authenticator Mode

	4. Authenticator Rebinding Attack
	4.1. Overview of Authenticator Rebinding Attack
	4.2. Attack under Out-App Authenticator Model
	4.2.1. Threat Model
	4.2.2. Processes
	4.2.3. Validation

	4.3. Attack under In-App Authenticator Mode
	4.3.1. Threat Model
	4.3.2. Processes
	4.3.3. Validation

	4.4. Comparison of These Two Attacks

	5. Discussions
	5.1. Impact Scope
	5.2. Main Causes
	5.3. Countermeasures

	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

