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A vehicular cloud (VC) can reduce latency and improve resource utilization of the Internet of vehicles by effectively using the
underutilized computing resources of nearby vehicles. Although the task offloading of the VC enhances road safety and traffic
management on the Internet of vehicles and meets the low-latency requirements for driving safety services on the Internet of
vehicles business, there are still some key challenges such as the resource allocation mechanism of differentiated services
(DiffServ) and task offloading mechanism of improving user experience. To address these issues, we study the task offloading
and resource allocation strategy of the VC system where tasks generated by vehicles can be offloaded and executed cooperatively
by vehicles in VC. Specifically, the computing task is further divided into independent subtasks and executed in different
vehicles in VC to maximize the offloading utility. Considering the mobility of vehicles, the deadline of tasks, and the limited
computing resources, we propose the optimization problem of task offloading in the VC system in the cause of improved user
experience. To characterize the difference in service requirements resulting from the diversity of tasks, a DiffServ model focusing
on the pricing of a task is utilized. The initial pricing of a task is tailored by the characteristics of the task and the uniqueness of
the network status. In this model, tasks are sorted and processed in order according to task pricing, so as to optimize resource
allocation. Numerical results show that the proposed scheme can effectively increase the resource utilization and task
completion ratio.

1. Introduction

In a vehicle network [1], the cloud composed of vehicles with
strong computing power is called VC [2]. The task offloading
of the VC [3] has a significant impact on the performance of
the Internet of vehicles [4], which enhances vehicle road
safety and traffic management by effectively utilizing the
underutilized computation resources of nearby vehicles and
reduces traffic congestion and accidents, thus improving the
network performance of the Internet of vehicles. The pro-
cessing of emerging message-type safety applications in the
vehicle network requires a large amount of computing
resources, such as 4K/8K ultrahigh real-time traffic video
streaming, multiview video stitching processing of autono-
mous vehicles, and AR-assisted applications related to safety
warnings. However, the collaborative scheduling of informa-
tion and data by offloading computing tasks to the vehicular
cloud can effectively enhance the utilization of computing

resources due to the limited computing resources of vehicles.
At the same time, due to its proximity to users and rich
computing resources, the vehicular cloud can meet the low
delay requirements for safe driving on the Internet of vehicles
business, which is a key technology in the existing Internet of
vehicles.

Owing to the fast-moving characteristics of vehicles,
computing resources of vehicles are dynamic. For example,
the connection of mobile vehicles can be connected or dis-
connected at any time, which will bring about unstable com-
puting resource availability. Accordingly, in order to ensure
the offloading of the task, the task should be offloaded within
vehicle contact time [5]. In vehicular cloud computing, task
offloading is inseparable from efficient resource allocation
technology. Resources involved in the entire process of off-
loading the task of the vehicle to the vehicular cloud are
mainly divided into the communication resources and the
computing resources [6]. [7–9]. For the task offloading of
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VC, Wu et al. assume that each vehicle task can be divided
into several independent subtasks, and then, the task alloca-
tion problem is solved [10]. Under the condition of ensuring
user service experience, Liu et al. study how to allocate lim-
ited computing resources to maximize the economic benefits
of MEC service providers when vehicles offload tasks to MEC
servers [11]. In order to solve the users’ selfishness, Liu et al.
have established a kind of new type of computing sharing
market in the vehicle network [12]. Several other works, such
as [13, 14], use the method of task replication to allow a task
to be executed by multiple vehicles so as to maximize the
possibility of completing the task before a given deadline
and improve the reliability.

In recent years, game theory has become an incentive
mechanism to analyze and allocate resources. A game model
can effectively capture the interaction between users and
servers [15], so game theory has become a way to analyze
and allocate resources [16]. For the sake of creating greater
social and economic benefits in the process of resource man-
agement, a pricing strategy as an effective way of network
resource management on the basis of game theory is pro-
posed, in [16]. The forementioned research believes that the
pricing mechanism is an effective way to improve resource
utilization. However, how to use the pricing mechanism to
distinguish different services in the VC system in game the-
ory has not been well explored. It also can be seen from the
above literatures that most of the resource allocation process
VC system does not DiffServ. That is to say, the relationship
between default services is equal. Unlike the resource man-
agement [17] scheme that considers the priority of a task in
the general VC computing scenario, we propose a game
theory-based DiffServ resource allocation mechanism that
DiffServ through a task’s differentiated pricing. In other
words, the higher the initial pricing of the task, the higher
the service requirements of the business. The initial pricing
of a task mainly involves two factors, namely, the urgency
of the task vehicle and the network condition around the
task. Finally, we maximize the offloading utility of tasks in
the VC system and consider the mobility of vehicles and meet
task delay constraints to maximize the completion of tasks.
The main contributions of our paper are summarized as
follows.

(i) To meet the requirements of the diversity of tasks
while effectively using computing resources, we pro-
pose a resource allocation mechanism for differenti-
ated services and offload each task according to the
pricing order

(ii) To improve the completion ratio of whole tasks in
the vehicular cloud system, a task offloading mecha-
nism that maximizes the offloading utility is pro-
posed and considers the mobility of vehicles and
the deadline of tasks

(iii) To address the problem of task offloading and resource
allocation, a distributed resource allocation algorithm
and Lagrange dual method are used, respectively

2. System Model

We consider a dynamic traffic scenario in which the vehicle
can be either a service requester or a service provider in a
finite two-way straight road. Let i ∈ ð1, 2,⋯,MÞ be the group
of M TaVs (task vehicles). We use three parameters ðdi, ci,
Tdeadline
i Þ to indicate the generated task of TaV i, by which

di (in bits) specifies the data size of the task, where ci = κdi,
ci (in CPU cycles per bit) is the computing resource required
to processing the task, κ is the mapping between CPU cycles
and task size, and Tdeadline

i is the deadline for task execution.
When the task processing delay exceeds the deadline, the task
processing fails. f i0 indicates the local computing ability of
TaV i. At the same time, j ∈ ði, 2,⋯,NÞ is denoted as a group
of vehicles with free resources, which is called SeVs (service
vehicles), where the computing resource of SeV j is defined
as Fmax

j . Figure 1 depicts a simple example of a vehicular
cloud system. Here, TaV 1, TaV 2, and TaV 3 form a vehic-
ular cloud with SeVs within their covering radius, respec-
tively. It is assumed that the communication radius of each
vehicle is Z.

2.1. Task Offloading Model. Since the size of the output task is
usually much smaller than the size of the input task, we can
ignore the return time in offloading [18, 19]. Each TaV first
offloads the computing task to one or more surrounding
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Figure 1: Vehicular cloud system model.
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SeVs for processing and then handles the size of the remain-
ing task by itself to ensure that the task is completed within
the deadline. The total offloading delay for SeV j to process
the size of a task assigned by TaV i is given as

Tij =
dij
Rij

+
cij
f ij

, ð1Þ

where dij is the task size of the TaV i offloading to SeV j, Rij is
the transmission rate of TaV i to SeV j, cij is the required
computation resource to complete task dij, and f ij is the
computing resource provided by SeV j to TaV i.

2.2. Local Processing Model.When the task is not completely
offloaded, the size of the remaining task is processed locally,
and the local processing delay is expressed as follows:

Ti0 =
ci −∑N

j=1 cij
f i0

: ð2Þ

2.3. Mobility Model. Assuming that the initial position of
TaV i and the initial position of SeV j is, respectively, ðxTaVi

, yTaVi
Þ and ðxSeV j

, ySeV j
Þ, the speed of each vehicle is defined

as vTaVi
, vSeV j

∈ ½vmin, vmax� that the vehicle maintains a uni-

form linear motion during task processing, so the motion
angle θ = f0, πg, after moving the time slot Δt, the position
of the TaV i is changed to xΔtTaVi

= xTaVi
+ vTaVi

Δt cos θ,
yΔtTaVi

= yTaVi
+ vTaVi

Δt sin θ. The position of SeV j is changed

to xΔtSeV j
= xSeV j

+ vSeV j
Δt cos θ, yΔtSeV j

= ySeV j
+ vSeV j

Δt sin θ.

According to Euclid’s theorem, after TaV i and SeV j move
through the time slot Δt, the distance between the two vehi-
cles is

s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xΔtTaVi

− xΔtSeV j

� �2
+ yΔtTaVi

− yΔtSeV j

� �2r
: ð3Þ

Communication between each other can be achieved
only when SeV j is within the communication radius Z of
TaV i. The connection time between vehicles is predicted as
follows:

Z2 = x
Tre
i j

TaVi
− x

Tre
i j

SeV j

� �2
+ y

Tre
i j

TaVi
− y

Tre
i j

SeV j

� �2
: ð4Þ

2.4. Offloading Utility Function. Considering all the TaVs in
the VC system, the total offloading utility obtained of offload-
ing TaVs to SeVs can be defined as

U = 〠
M

i=1
ui − Cið Þ, ð5Þ

where ui is denoted as the offloading revenue of TaV i and Ci
is the offload cost of the TaV i.

The total offloading revenue obtained by TaV i for
offloading tasks to the VC is expressed as follows [20]:

ui = αi 〠
N

j=1
log2 1 + dij

� �
, ð6Þ

where αi represents the task offloading revenue weight
parameter of TaV j, and its value is greater than zero.

The transmission cost required by TaV i to offload tasks
to the VC is expressed as follows:

Ci = χ〠
N

j=1
dij, ð7Þ

where χ is the unit transmission cost required for transmiting
1Mb data to any SeV.

With the aim of maximizing the task offloading of TaVs
in the VC system, the following optimization is formulated
P1:

max
dij

U

s:t: C1 : Tij ≤ Tdeadline
i ,∀i ∈M,∀j ∈N

C2 : 〠
N

j=1
dij ≤ di,∀i ∈M,∀j ∈N

C3 : dij ≥ 0,∀i ∈M,∀j ∈N

C4 : Tij ≤ Tre
ij ,∀i ∈M,∀j ∈N:

ð8Þ

C1 means that the processing delay of each subtask is
limited by the deadline of the task. C2 and C3 ensure that
the size of total tasks offloading is not greater than the gener-
ated task size and the size of offloading is positive. C4 indi-
cates that TaV i and SeV j should not spend more time on
task processing than the connection time between the two
vehicles.

3. Computing Resource Allocation Based on
Game Theory

For the sake of enabling SeVs to share their own resources to
others, we propose an incentive method which is based on
game theory as well as introduce a paid resource allocation
strategy. The offloading delay for TaV i to offload the task
to SeV j in the process of task offloading is as follows:

Tij =
di
Rij

+
ci
f ij

: ð9Þ

With the purpose of simplifying the problem, we will
consider Rij as a fixed value. According to (9), the delay for
task offloading is affected by computing resources provided
by SeV j to TaV i. It is impossible for SeV j to provide com-
puting resources to TaV i for free because of the selfishness of
vehicles. According to messages exchanged between vehicles,
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we design a distributed incentive mechanism for resource
allocation. The specific details are shown as follows.

3.1. Utility and Cost Functions

(1) With the aim of maximizing utility of SeV j, the fol-
lowing optimization problem is formulated:

max
f i j

V j = δj ln 1 + pi f ij
� �

− ccj f ij

s:t: C1 : f ij > 0

C2 : f ij ≤ Fmax
j ,

ð10Þ

where ccj represents the unit resource cost price of SeV j; δj is
the willingness of SeV j, with δj ≥ 1; pi represents the bid for
TaV i; C1 indicates that the resources provided by SeV j are
larger than zero; and C2 indicates that the total resources
provided by SeV j are not larger than the maximum
resources provided by itself.

Theorem 1. For any price given by each TaV, there must be a
unique Nash equilibrium solution in the noncooperative game
between SeVs.

Proof. The first-order derivative of V j with respect to f ij is
expressed as follows:

∂V j

∂f ij
=

δjpi
1 + pi f ij

− ccj: ð11Þ

The second-order derivative of V j with respect to f ij is
expressed as follows:

∂2V j

∂f ij
2 = −

δjpi

1 + pi f ij
� �2 : ð12Þ

As the values of all parameters in (12) are positive, the
second-order derivative of utility function is lower than zero,
namely, ∂2V j/∂f ij

2 < 0. Therefore, the utility function of SeV
j is a concave function with maximum value. The corre-
sponding optimal solution f ij = δj/ccj − 1/pi can be obtained
by ∂V j/∂f ij = 0, and there is a unique Nash equilibrium in
the noncooperative game between SeVs given the price of
the TaV.

(2) In order to maximize economic benefits, we should
minimize offloading cost. With the aim of minimiz-
ing cost function of TaV i, the following optimization
problem is formulated:

min
f i j

pi 〠
N

j=1
f ij

s:t: C1 : f ij ≥ 0

C2 : fmin
i < 〠

N

j=1
f ij ≤ fmax

i

C3 : Pmin ≤ pi ≤ Pmax,

ð13Þ

where C2 means that the total computing resources provided
by SeVs are larger than the minimum required resources fmin

i
, but it is smaller than the maximum required resources f max

i .
C3 indicates that the bids of TaVs are larger than the lowest
price Pmin, but it is smaller than the highest price Pmax.

3.2. TaV Pricing Rules. This section defines the concept of
“pricing” for tasks by their service requirements, for the
purpose of solving the problem of resource allocation.
The pricing function is used to classify tasks requested
by TaVs and further distinguish the priority of tasks.
The definition of the pricing function of the TaVs task
mainly involves two factors, namely, the urgency of the
task and the network conditions around the TaV. Accord-
ingly, the pricing of the TaV is obtained by the urgency of
the task and the network status around the TaV. Then, the
urgency of the task is related to the size of the task gener-
ated by the TaV and the deadline of the task. The network
condition around the TaV is related to the number of
requests received and the number of answers received in
the previous slot.

3.2.1. Distribution of the Number of Vehicles within the TaV
Coverage. Owing to the stability of the network, the network
condition of the previous and the next moment is
unchanged. Suppose that TaV i and SeV j are randomly dis-
tributed on the road. Then, it is known that the TaV kðk = iÞ
receives Rk requests and Sk responses at the previous time.
According to the conditional probability, the distribution
function of the number of TaVs mk and the distribution
function of the number of SeVs nk in the coverage area is
obtained.

(a) Distribution function of the number of TaVs mk
within the coverage of TaV k is expressed as follows:

P
mk

Rk

� �
= P mk, Rkð Þ

P Rkð Þ = P mk, Rkð Þ
∑∞

mk=Rk
P mk, Rkð Þ

=
CRk
mk
P1

Rk 1 − P1ð Þmk−Rk

∑∞
mk=Rk

CRk
mk
P1

Rk 1 − P1ð Þmk−Rk
,

ð14Þ

where (mk, Rk) indicates that there are totallymk TaVs within
the coverage of TaV k, among which TaV k receives Rk
requests, and P1 indicates the probability of any TaV sending
out requests.
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(b) Distribution function of the number of SeVs nk
within the coverage of TaV k is expressed as follows:

P
nk
Sk

� �
=
P nk, Skð Þ
P Skð Þ =

P nk, Skð Þ
∑∞

nk=Sk P nk, Skð Þ

=
CSk
nk
PSk
2 1 − P2ð Þnk−Sk

∑∞
nk=Sk C

Sk
nk
PSk
2 1 − P2ð Þnk−Sk

,
ð15Þ

where (nk, Sk) means there are a total of nk SeVs within the
coverage of TaV k, among which TaV k receives Sk responses,
and P2 means the probability that any SeV will respond to a
TaV after receiving it.

3.2.2. Average Number of Vehicles within the Coverage of TaV
k

(a) The average number of TaVs within the coverage of
TaV k is expressed as follows:

E mkð Þ = 〠
∞

mk=Rk

mkP
mk

Rk

� �
ð16Þ

(b) The average number of SeVs within the coverage of
TaV k is expressed as follows:

E nkð Þ = 〠
∞

nk=Sk

nkP
nk
Sk

� �
ð17Þ

3.2.3. Remaining Resources within the Coverage of TaV k.
Suppose that the resource requirements of each TaV obey
the normal distribution of Q1 ~ ðμ1, δ21Þ and the resources
provided by each SeV obey the normal distribution of Q2 ~
ðμ2, δ22Þ, the remaining resources around TaV k obtained by
(16) and (17) are expressed as follows:

Qk = E nkð ÞQ2 − E mkð ÞQ1: ð18Þ

On account of the independence of Q1 and Q2, we can
obtain the mean and variance value of Qk:

E Qkð Þ = E nkð Þμ2 − E mkð Þμ1, ð19Þ

D Qkð Þ = E nkð Þ2δ22 − E mkð Þ2δ21: ð20Þ
According to (19) and (20), we can get the distribution of

the remaining resources Qk. In other words, a new normal
distribution is expressed as follows:

F Qkð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πD Qkð Þp ðQk

−∞
e− t−E Qkð Þð Þ2/2D Qkð Þð Þ: ð21Þ

3.2.4. Initial Pricing of TaV k. According to (21), the remain-
ing resources covered by TaV k are expressed as follows:

E Qkð Þ = E nkð Þμ2 − E mkð Þμ1: ð22Þ

The initial pricing of TaV k [21] is

Pk =
λk Pmid − Pminð Þ + Pmin, E Qkð Þ ≥ 0,

−λk Pmax − Pmidð Þ + Pmid, E Qkð Þ < 0,

(
ð23Þ

λk =
2
π

arctan
fmin
k

E Qkð Þ

 !
, ð24Þ

where fmin
k means the minimum resources obtained by TaV k

, fmin
k = dk/Tdeadline

k . From the pricing function, we can see
that when the surrounding remaining resources are greater
than zero, the price will be raised by the lowest price; other-
wise, the price will be raised by the middle price.

After getting the best initial pricing, we develop a dis-
tributed resource allocation algorithm. The algorithm
dynamically changes the price of the TaV to ensure the
maximum utility of the SeV, and the TaV can obtain
resources to meet its needs. The algorithm is introduced
in detail in Algorithm 1. Firstly, the TaV sends the busi-
ness request (including the price); meanwhile, all vehicles
within the coverage of the TaV will receive the request
message. Then, the SeV that received the request message
maximizes its utility to obtain the size of computing
resources that can be provided (Steps 4-14 of Algorithm 1).
Next, the SeV sends a response (resources that the SeV
can be provided) to the TaV; meanwhile, the TaV receives
the response and adds up resources provided by SeVs.
Finally, if the sum of the total resources provided is
greater than the maximum resource demand of the TaV,
the price will be reduced; otherwise, the price will be
increased if the total resources provided are less than the
minimum resource demand of the TaV. Otherwise, the
price is the optimal price, and the optimal resource alloca-
tion result of the SeV is obtained (Steps 15-30 of
Algorithm 1).

4. Task Allocation of Vehicular Cloud System

This section is aimed at solving the problem of task allocation
of the VC system. Because the second-derivative of U for dij
in equation (5) can be obtained ∂2U/∂dij

2 < 0, the objective
function of optimization problem P1 is the concave function
of variable dij. Since the constraints C1, C2, C3, and C4 in P1
are all convex sets, the optimization problem P1 is a convex
optimization problem. In the end, the optimal dij is obtained
by Lagrange theory.
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The Lagrangian function of optimization problem P1 is
defined as follows (without considering dij ≥ 0):

L dij, ϖ, σ, ψ
� �

=U + 〠
M

i=1
〠
N

j=1
ϖij Tdeadline

i −
dij
Rij

−
κdij
f ij

" #

+ 〠
M

i=1
σi di − 〠

N

j=1
dij

 !

+ 〠
M

i=1
〠
N

j=1
ψij Tre

ij −
dij
Rij

−
κdij
f ij

 !
,

ð25Þ

where ϖ, σ, ψ are the Lagrangian multipliers.
According to the original optimization problem P1, a

Lagrangian dual problem can be obtained as follows:

P2 : min
ϖi j,δi ,ψi j

max
dij

L dij, ϖ, δ, ψ
� �

: ð26Þ

For the optimization problem P2, it can be decomposed
into a maximum task assignment problem and a minimum

Lagrangian factor update problem, which can then be solved
through iteration. The maximized part of the optimization
problem P2 is expressed as follows:

P21 : max
dij

L ϖ, σ, ψð Þ: ð27Þ

Since the optimization problem P1 is a convex optimi-
zation problem, according to the KKT condition, the opti-
mal solution of the optimization problem P21 is equal to
the optimal solution of the optimization problem P1. By
solving equation ∂Lðϖ, σ, ψÞ/∂dij = 0 and considering con-
straint dij ≥ 0, the optimal task assignment dij is obtained
as follows:

dij =

0, dij ≤ 0,
α

ln 2 χ + 1/Rij + k/f ij
� �

ϖij + ψij

� �
+ δi

� � − 1, dij > 0:

8>><
>>:

ð28Þ

1: Initialization: The cost price ccj of the SeV j and the maximum resource it can provide are Fmax
j ; the TaV i the required computing

resource is f i
min < f i ≤ f i

max

2: For t=0, TaV i to set the price piðtÞ, and send it to the vehicles within the coverage
3: fort = 1, 2, 3:⋯do
4: fori = 1, 2,⋯,Mdo
5: for j = 1, 2,⋯,Ndo
6: According to ∂V/∂f ij = 0, compute f ij
7: fork = 1 : ido
8: a = a + f kj
9: end for
10: Ifa > Fmax

j then

11: f ij = 0
12: end if
13 end for
14: end for
15: If∑N

j=1 f ij ≥ f i
maxthen

16: decrease the price, piðt + 1Þ = piðtÞ − v
17: else
18: if∑N

j=1 f ij ≤ f i
minthe

19: increase the price, piðt + 1Þ = piðtÞ + v
20: else
21: piðt + 1Þ = piðtÞ
22: end if
23: Ifpiðt + 1Þ == piðtÞthen
24: break
25: else
26: report the new price piðt + 1Þ
27: back to 3
28: end if
29: end if
30: end for

Algorithm 1: Distributed resource allocation algorithm.
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The Lagrange multipliers updating problem of P2 is
expressed as

P22 : min
ϖi j ,σi ,ψi j

L dij, ϖ, σ, ψ
� �

: ð29Þ

It can be seen from the above analysis that P22 is also
a convex problem, so the gradient descent method is used
to update the Lagrangian multipliers ϖij, σi, ψij, and the
Lagrangian multipliers ϖij, σi, ψij are all nonnegative real
numbers.

We denote ϖðtÞ
ij , σ

ðtÞ
i , ψðtÞ

ij as the Lagrangian multipliers of

the tth iteration, and then, the Lagrange multipliers ϖðt+1Þ
ij ,

σðt+1Þi , ψðt+1Þ
ij of the ðt + 1Þth iteration can be obtained as fol-

lows:

ϖ
t+1ð Þ
ij =max 0, ϖ tð Þ

ij − τ tð Þ Tmax
i −

dij
Rij

−
cij
f ij

 !( )
, ð30Þ

ψ
t+1ð Þ
ij =max 0, ψ tð Þ

ij − τ tð Þ Tre
ij −

dij
Rij

−
cij
f ij

 !( )
, ð31Þ

σ
t+1ð Þ
i =max 0, σ tð Þ

i − τ tð Þ di − 〠
N

j=1
dij

 !( )
, ð32Þ

where τðtÞ = τð0Þ/
ffiffi
t

p
is the tth update step length. In order to

ensure the convergence of the algorithm, this update step
length [22] is considered.

The task allocation algorithm can be divided into the fol-
lowing four steps: (1) Initialize the Lagrange multipliers. (2)
According to the given Lagrange multipliers, solve the opti-
mization problem P21 through KKT conditions to obtain
the optimal task allocation result; update the Lagrange multi-
pliers with the method in formula (30)–(32). (3) Get the task
allocation result by the convergence condition of Lagrange
function. (4) Judge whether the task has been completely
allocated; if it has been completely allocated, return the allo-
cation result; otherwise, judge whether the remaining unallo-
cated task can be executed locally. If possible, the rest of the
tasks are executed locally and the task assignment results
are returned. Otherwise, the task cannot be completed on
time, and the task assignment will fail. In Algorithm 2, the
task allocation algorithm will be described in detail.

5. Numerical Results

The numerical results given in this section show that the pro-
posed algorithm improves the resource utilization and total
task completion ratio in the VC system.We evaluate and com-
pare the effects of different vehicle speed, vehicle density, task
size, and number of TaVs on the performance of the proposed
scheme and other baseline schemes. We will compare the pro-
posed resource allocation scheme in this paper (PRAS) with

Require:α, di, χ
Ensure:dij, ∀d
1: Define t for counting iteration, initialize t = 0, define ε as convergence threshold
2: Initialization ϖij, σj, ψij

3: According to ϖij, σj, ψij and (28), compute dij

4: According to (25), compute Lðd∗ðtÞij , ϖðtÞ, σðtÞ, ψðtÞÞ , let LðtÞ = Lðd∗ðtÞij , ϖðtÞ, σðtÞ, ψðtÞÞ
5: According to (30)(31)(32), compute ϖðt+1Þ

ij ,σðt+1Þj , ψðt+1Þ
ij

6: According to (25), compute Lðd∗ðtÞij , ϖðtÞ, σðtÞ, ψðtÞÞ, let LðtÞ = Lðd∗ðtÞij , ϖðt+1Þ, σðt+1Þ, ψðt+1ÞÞ
7: whilejLðt+1Þ − LðtÞj > εdo

8: According to ϖðt+1Þ
ij , σðt+1Þj , ψðt+1Þ

ij , compute dðt+1Þij

9: LðtÞ = Lðt+1Þ

10: d∗ðtÞij = d∗ðt+1Þij

11: Repeat steps 5, 6
12: t = t + 1
13: if∑N

j=1 d∗ij ~ = dithen

14: d∗i0 = di −∑N
j=1 d∗ij

15: ifTi0 ≤ Tmax
i then

16: d∗i0 and d∗ij
17: else
18: d∗i0 = 0 and d∗ij = 0
19: end if
20: else
21: d∗i0 = 0 and d∗ij
22: end if
23: end while

Algorithm 2: Task assignment algorithm based on Lagrange theory.
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two benchmark schemes, including (i) LCS (Lowest Cost
Scheme): the server bids by the network conditions, and the
buyer always chooses the server with the lowest unit price,
and (ii) HRS (Highest Revenue Scheme): the buyer bids by
resource requirements, and the server always provides services
to the buyer with the highest unit bid. In addition, the pro-
posed offloading scheme in this paper (POS) is compared with
the benchmark scheme by three different comparison
methods: (i) LPS (Local Processing Scheme); (ii) AOS (Aver-
age Offloading Scheme): TaVs distribute tasks to the sur-
rounding SeVs equally; and (iii) UOS (Unified Offloading
Scheme): TaVs consider its own computing resources and
assign the task equally to the surrounding SeVs and itself.

In this paper, the MATLAB simulation platform is used
to verify the proposed algorithm. Vehicles are randomly dis-
tributed to a two-way lane with a length of 1000m and a
width of 50m. Furthermore, the computation capacity and
task size of the vehicle follow normal distribution. Relevant
simulation parameters are given in Table 1.

5.1. Effect of the Number of TaVs. Figure 2(a) shows resource
utilization for different algorithms when the number of TaVs
varies from 10 to 20, where the resource utilization ratio is
equal to the ratio of the resources used by TaVs to the total
resources of SeVs in the system. It is observed from
Figure 2(a) that the resource utilization monotonically
increases with the number of TaVs, and the growth rate grad-
ually decreases; in other words, increasing the number of TaVs
from 10 to 14 makes more TaVs benefit from the resources of
SeVs than that from 16 to 20. The reason is that the available
resources are no longer enough to respond to the requests of
new TaVs with limited computation resources. As a result,
the resource utilization gradually increased slowly. Further-
more, it can also be observed that PRAS can obtain higher
resource utilization than HRS and LCS. When the number
of TaVs is more, it can better reflect the superiority of PRAS.
This is because the number of TaVs increases, and the more
TaVs compete for limited computing resources, the probabil-
ity of successful acquisition of resources by TaVs is reduced.
For the sake of obtaining better resource utilization, compared
withHRS and LCS, PRAS further optimizes the network status
and DiffServ of different tasks based on resource allocation. In
other words, PRAS adopts a differentiated pricing strategy.
Compared with HRS which only considers network condition
and LCS which only considers its own condition, PRAS con-
siders the condition of the TaV, including whether the TaV
has urgent tasks and whether the network around the TaV is
busy. Therefore, the total resource utilization rate of the net-
work is improved. In addition, when the number of TaVs is
less than 12, the HRS and PRAS have the same resource utili-
zation as the computing resources are sufficient and both two
algorithms can provide the resources required for TaVs.

Figure 2(b) depicts the task completion ratio of different
algorithms where the number of TaVs varies from 10 to 20,
where the task completion ratio is equal to the number of
tasks successfully completed within the deadline over the
total number of tasks in the system. It can be seen from
Figure 2(b) that POS can achieve a relatively higher task com-
pletion ratio compared with the three baseline schemes. This

is because UOS and AOS do not consider mobility of vehicles
and task deadline constraints. However, the proposed
scheme jointly optimizes mobility of vehicles and the dead-
line of the task, which is conducive to making full use of
resources. Hence, more tasks can be offloaded and task com-
pletion is significantly increased. In addition, since LPS does
not consider the choice of SeVs, the increase in the number of
TaVs does not affect the task completion ratio of LPS.

Figure 3 shows the price for different task sizes of the TaV
when the number of TaVs varies from 10 to 20. It is observed
from Figure 3 that the price monotonically increases with the
number of TaVs, and the price also monotonically increases
with task size. The reason is that increasing the size of tasks
and the number of TaVs will reduce the TaV surrounding
idle resources. The price function of the TaV is a piecewise
function of the surrounding remaining resources. When the
remaining resources of the TaV are greater than zero, the
price is increased based on the lowest price. When the
remaining resources around the TaV are greater than zero,
the price is increased based on the middle price.

5.2. Effect of Vehicle Density. Figure 4 shows the resource uti-
lization and task completion ratio of the VC system versus
the vehicle density. Numerical results demonstrate that vehi-
cle density is inversely related to resource utilization and pos-
itively related to the task completion ratio. This is because the
number of SeVs increases with increasing vehicle density,
and resource utilization decreases due to the constant num-
ber of TaVs. Moreover, with the increase in the number of
SeVs, there will be more available resources around TaVs
and more computation tasks can be offloaded to SeVs, which
will lead to the improvement of the task completion ratio. On
the contrary, when the vehicle density in the system is con-
stant, the resource utilization increases and the task comple-
tion ratio decreases with the increase of the number of TaVs.
As the number of TaVs increases, more TaVs compete for
limited resources, which will lead to the increase in resource
utilization. The reason is that when the number of TaVs
increases to a certain extent, the resources of SeVs are fully
utilized but still cannot meet resources required for the exces-
sive growth of the number of TaVs. In the end, the size of
total offloading is no longer changed and the task completion
ratio is reduced.

Table 1: Simulation parameter.

Parameter Value

v 80 − 120½ � km/h

Z 300m

R 5Mb

Tmax 1 ~ 3 s

Fmax
j N 4 ∗ 1010, 0:5 ∗ 1010

� �
(CPU cycle/s)

f i N 2 ∗ 1010, 1 ∗ 109
� �

(CPU cycle/s)

d 3, 7½ � (Mb)

k [15] 18000 cycles/bit

M +N 20 − 30½ �
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Figure 2: (a) Resource allocation versus the number of TaVs. (b) Task completion ratio versus the number of TaVs.
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5.3. Effect of TaV Speed. Here, we make comparison of TaV
speed performance under different schemes. Figure 5 shows
offloading utility and task completion ratio for different algo-
rithms when TaV speed varies from 80 km/h to 120 km/h. It
can be concluded that the task completion ratio and offload
utility of POS, UOS, AOS, and LPS all decrease with increas-
ing speed from Figures 5(a) and 5(b). As the speed of TaVs
increases, the contact time between TaVs and SeVs becomes
shorter, and the size of offloading task data decreases. There-
fore, the offloading utility and task completion ratio decrease.
Then, by comparing POS with other schemes, it can be seen
that the task completion ratio and offload utility of POS are
optimal. This is because POS optimizes the mobility of vehi-
cles, the deadlines of TaVs, local computing resources of
TaVs, and the service differentiation of different types of
tasks. The resource allocation is superior to other schemes,
and task allocation is also more reasonable than other
schemes. Hence, the task completion ratio and offloading
utility of POS are superior to other solutions. In addition,
with the decrease of the task size processed by SeVs, the task
offloading time is shortened and the success rate of task off-
loading is increased accordingly. What is more, since the
choice of SeVs is not considered, LPS is not sensitive to the
increase of speed on the task completion ratio of LPS.

5.4. Effect of Task Size. Figure 6(a) shows offloading utility
versus the task size of TaVs. Numerical results demonstrate

that task size is positively related to offloading utility. The
numerical results show that when the task size is less than
4Mb, the offloading utility of AOS is optimal and the offload-
ing utility of POS is close to UOS. Since POS and UOS pro-
cess a part of tasks locally, the size of offloading tasks is
reduced, resulting in lower offloading utility than AOS.
Moreover, it can be seen from Figure 6(a) that when the sizes
of tasks are greater than 4Mb, the offloading utility of POS is
the highest. It can also be obtained that with the increase of
task size of TaVs, the offloading utility of POS, HRS, and
LCS first increases rapidly and then slowly increases. This is
because the number of SeVs remains unchanged. When the
task size of TaVs begins to increase, the offloading utility
increases rapidly. However, with the increase of the size of
the task to a certain extent, the resources of SeVs are fully uti-
lized, which still cannot meet the resource requirements of
the excessive increase in TaVs’ task size, so the growth trend
of offloading utility gradually slows down.

We also compare the task completion ratio in terms of
the task size in Figure 6(b). It is interesting to see that the task
completion ratio decreases with the increase of the task size.
The reason is that as the sizes of the tasks processed by each
vehicle increases, the risk of task exceeding the deadline also
increases due to the constant deadline. As a result, the task
completion rate is reduced. In addition, it can be seen that
the UOS and AOS methods do not take the task processing
time beyond the deadline into account, which results in the
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Figure 3: Price versus the number of TaVs.
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Figure 4: (a) Resource allocation versus vehicle density. (b) Task completion ratio versus vehicle density.
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Figure 5: (a) Offloading utility versus TaV speed. (b) Task completion ratio versus TaV speed.
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Figure 6: (a) Offloading utility versus task size. (b) Task completion ratio versus task size.
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task offloading success rate lower than the POS, and the task
completion rate is lower than the POS. What is more, LPS is
executed locally without computational offloading, so it takes
more time than the offloading mode.

6. Conclusion

In this paper, we investigate the joint task offloading and
resource allocation mechanism in the VC system and maxi-
mize the total offloading revenue of tasks under the con-
straints of task completion deadlines and rapid vehicle
movement characteristics. Considering the different types
of services required by tasks in VC, this paper proposes a
resource allocation model based on differentiated services
and designs the pricing function of a task. Its pricing relies
on the size of the task, the deadline for the task, and the num-
ber of requests and responses received by the vehicle that
generated the task in the previous time slot. Furthermore,
considering the mobility of vehicles, the deadline of tasks,
and the limited computing resources, the centralized
Lagrange dual method is used to solve the task offloading
problem of the VC system. The simulation results show that
the optimization effect of DiffServ offloading strategy is sig-
nificantly improved, and the resource utilization and task
completion ratio are significantly increased.
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