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In this paper, we investigate secure unmanned aerial vehicle (UAV) communication in the presence of multiple UAV adaptive
eavesdroppers (AEs), where each AE can conduct eavesdropping or jamming adaptively by learning others’ actions for
degrading the secrecy rate more seriously. The one-leader and multi-follower Stackelberg game is adopted to analyze the mutual
interference among multiple AEs, and the optimal transmit powers are proven to exist under the existing conditions. Following
that, a mixed-strategy Stackelberg Equilibrium based on finite and discretized power set is also derived and a hierarchical Q-
learning based power allocation algorithm (HQLA) is proposed to obtain the optimal power allocation strategy of the
transmitter. Numerical results show that secrecy performance can be degraded severely by multiple AEs and verify the
availability of the optimal power allocation strategy. Finally, the effect of the eavesdropping cost on the AE’s attack mode
strategies is also revealed.

1. Introduction

With the inherent advantages in mobility, flexibility, and
adaptive altitude, unmanned aerial vehicle (UAV) wireless
communication has experienced an upsurge of interest in
both military and civilian applications [1–6]. However, both
the broadcast nature of the wireless medium and the mali-
cious attackers make the electromagnetic environment of
UAV communication hostile. Hence, the security issue of
UAV communications is of paramount importance yet a
significant challenge [7].

As an option, the physical layer security (PLS) technique
with lower computation complexity has been proven that it
can protect wireless communication networks from wiretap-
ping and interfering by exploiting the random characteristics
of wireless channels in recent years [8–11]. Naturally, due to
the payload-limited characteristic of UAV, many PLS
approaches [12–23] combining with the high altitude and
mobility of UAV have been applied widely in UAV-
involved communications.

However, most approaches in the above work that mainly
focused on the single-mode scenarios are not fully suitable
for the novel attackers, named as “adaptive eavesdroppers
(AEs),” “active eavesdropper,” or “smart eavesdropper.”
They use programmable radio devices to flexibly choose their
attack methods, such as eavesdropping, jamming, and spoof-
ing, according to the ongoing transmission status and the
radio channel states. For example, an AE sends spoofing sig-
nals if she has a similar channel state with Alice or sends jam-
ming signals if she is very close to Bob. Compared with the
traditional single-mode attackers each performing a single-
mode attack, an AE can be more harmful to the UAV trans-
mission by reducing the secrecy capacity. Therefore, it is
urgent to investigate the effective countermeasures against
this type of eavesdropper.

In recent years, some literature began to investigate AE.
One form of the AE is achieved by the manner of multian-
tenna full-duplex (FD) technology [24–27], which can assign
one part of antennas to wiretap and the other antennas inter-
fere simultaneously. Another type of AE emerges during the

Hindawi
Wireless Communications and Mobile Computing
Volume 2020, Article ID 8825120, 15 pages
https://doi.org/10.1155/2020/8825120

https://orcid.org/0000-0002-0220-4088
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8825120


channel estimation phase in the form of time-division
duplex, and it leads to pilot contamination by sending the
same pilot sequence as the legitimate node [28–31]. While
in the data transmission phase, the AE reverts to passive
eavesdropper again. Nevertheless, it should be noticed that
the attack modes of these two forms of AE are predefined
which means it cannot change the attack mode adaptively.
The third form of AE in [32–36] can adjust its attack strate-
gies adaptively. But there are still several problems remaining
unsolved. Firstly, current work rarely considered multiple
AEs case and the mutual interference between themselves.
Secondly, existing studies neglected the AE adaptivity sup-
ported by the learning ability in searching for the optimal
strategies of the transmitter and did not reveal the impact
of the learning ability of AE on the secrecy performance of
the considered system. How to search the transmitter’s
optimal power strategies in the face of multiple AEs with
the learning ability and how to handle the mutual interfer-
ence from AEs to improve the security capacity of the UAV
communication system are necessary to be considered.

In our work, we mainly concentrate on a secure UAV
communication scenario in the presence of multiple UAV
AEs, which can eavesdrop or jam adaptively by learning
others’ strategies as well as dynamic environments. For the
considered scenario, each AE’s attack activity may affect the
signal to interference plus noise ratio (SINR) of others. This
implies that each AE’s decision-making is not only coupled
with the interactions from the transmitter but also from
other AEs. Considering these hierarchical interactions
between the transmitter-side and AEs-side, the Stackelberg
game [37–41] is a suitable framework to capture the sequen-
tial interactions between the transmitter and AEs. Then, the
Stackelberg Equilibrium (SE) points of the formulated game
turn to be the feasible solutions to the transmit power alloca-
tion problem. However, the SE points solely provide theo-
retic solutions and it is challenging to obtain the SE
solutions. In particular, the AE with the learning ability in
this paper makes decisions spontaneously and indepen-
dently, which results in unpredictable attack modes of the
whole AE set. In this context, it is not feasible to handle this
problem by centralized means because the number of each
attack mode and locations of AEs are unknown, which moti-
vates applying the idea of reinforcement learning (RL). So, we
incorporate RL technology into the proposed game and a
hierarchical Q-learning based power allocation algorithm is
proposed to obtain the mixed-strategy equilibrium solution.
The main contributions of this paper are summarized as
follows:

(i) We propose a secure UAV communication model
which constitutes of one transmitter-receiver pair
and multiple UAV AEs. Each AE decides to eaves-
drop or jam adaptively by learning the other nodes’
strategies as well as the dynamic environment to
maximize its damage. Also, the interference among
AEs is investigated.

(ii) We formulate the UAV secure transmission prob-
lem as a one-leader and multi-follower Stackelberg

game where the transmitter acts as the leader and
all AEs are followers. The optimal transmit power
of leader are obtained by analyzing the pure strategy
SEs under the existing conditions. Besides, the
mixed-strategy SE is also derived for the finite and
discretized power set. Then, we apply a hierarchical
RL framework in which each player chooses its
attack strategy based on a probability distribution
and a hierarchical Q-learning based power alloca-
tion algorithm is proposed to discover the mixed-
strategy equilibrium of the formulated game.
Besides, we provide rigorous theoretical proof about
the convergence of the proposed algorithm.

(iii) Numerical results show the availability of the opti-
mal power allocation strategy of the legitimate trans-
mitter in the more hostile situation and reveal the
impact of AE’s learning ability on the secrecy rate.
Meanwhile, we show that the proposed algorithm
has a significant convergence advantage over the
single-agent RL algorithm. Finally, the effect of the
eavesdropping cost on the AE’s attack mode strate-
gies is also revealed.

(iv) We organize the rest of this paper as follows. In
Section 2, we present the related work. Then, we
present the system model in Section 3. In Section 4,
we formulate the UAV secure transmission game
and investigate a power allocation policy in Section
5. In Section 6, we provide the simulation results
and conclude the work in Section 7.

2. Related Work

In UAV communication, there have been abundant
approaches, such as 3D beamforming [12–14], trajectory opti-
mization [5, 15–19], multi-UAV cooperation [17, 20], and
resource management techniques [21–23], concerning on the
single attack mode. Whereas, it is inappropriate to apply them
directly to defend the novel attacker that has the multiple abil-
ities of eavesdropping, jamming, spoofing, and so on.

As a novel attacker, the AE can eavesdrop and jam simul-
taneously by the FD capability [24–27]. Specifically, Tang
et al. investigated the physical layer security issue in the pres-
ence of an FD AE within a hierarchical game framework in
[24]. In [25], Mukherjee and Swindlehurst examined the
design of an FD active eavesdropper in the 3-user MIMOME
wiretap channel, where the adversary intends to optimize its
transmit and receive sub-arrays and jamming signal parame-
ters to minimize the MIMO secrecy rate of the main channel.
In [26], the potential benefits of an FD receiver node in the
presence of an active FD eavesdropper was studied. The opti-
mal receive/transmit antennas allocation at the receiver
against active eavesdropper in an FD pattern is provided in
[27]. The second AE scenario adopts time-division duplex
technology. The adaptive eavesdropper sent the same pilot
sequence as the legitimate user node in the training phase
leading to pilot contamination [28–31]. Zhou et al. discussed
how an AE attacked the training phase in wireless communi-
cation to improve its eavesdropping performance in [28]. A
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simple protocol to determine whether an AE is present or not
using the channel properties of MMIMO is proposed in [29].
A novel random-training-assisted (RTA) pilot spoofing
detection algorithm and a zero-forcing based secure trans-
mission scheme is proposed to protect the confidential infor-
mation from the active eavesdropper in [30]. Unfortunately,
all AEs in the above scenarios cannot adjust attackmode adap-
tively. More recently, the AE that can determine the attack
mode autonomously has been studied in [32–36]. To be spe-
cific, Li et al. studied the secure communication game under
the AE from UAV with the imperfect channel estimation but
ignored the mobility of UAV in [32]. Li et al. formulated the
MIMO transmission in the presence of AE as a noncoopera-
tive game and obtained the power control strategy based on
Q-learning in [33]. Zhu et al. proposed a noncooperative stra-
tegic game tomake a complex decision between users that per-
form uplink transmission via relay and an active malicious
node in [34]. In [35], Xiao et al. formulated a subjective smart
attack game for the UAV transmission and proposed a deep
Q-learning RL based UAV power allocation strategies. How-
ever, these above researches did not refer to the multiple
AEs’ scenario, and the mutual interference between AEs is
hardly considered. Moreover, these AEs cannot learn from
others’ strategies and the dynamic environment. A summary
of the proposed literature about AE has been given in Table 1.

Our work in this paper is different from the above
researches that we focus on the AE with learning ability that
can choose the attack mode independently and investigate
the secure transmission problem of UAV communication
in the presence of multiple AEs. Note that the approach of
defending multiple AEs using the Stackelberg game in UAV
communication networks was presented in our previous
work [37], and the main differences and new contributions
are (i) aim to the actual UAV communication, we introduce
the mixed-strategies for the discretized transmit power set,
and (ii) we assume that each AE has the learning ability
and reveal the impact of the AE’s learning ability on the
secrecy rate. Besides, the similarity between the most related
work in [32] and our work is that the Stackelberg game-based
power allocation problem in the secure transmission of UAV
communication is investigated. The main differences are (i)
we consider the multiple AEs case which is more actual in
UAV communication while the work in [32] ignores it, and
(ii) the mutual interference among themselves is considered.

3. System Model

As shown in Figure 1, we consider the downlink of a UAV
communication system consisting of a transmitter (Alice), a
receiver (Bob), and M number of UAV AEs randomly dis-
tributed around transmitter-receiver pairs, where all nodes
are single-antenna and UAVs are all hovering. Here, we
adopt a 3D Cartesian coordinate system with the Alice,
Bob, and theAEm located at ðxa, ya, haÞ, ðxb, yb, hbÞ, and
ðxm, ym, hmÞ. Alice communicates with Bob by using trans-
mit power that is denoted by Ps ∈ ½0, Pmax�, where Pmax is
the maximum transmit power. Without the loss of generality,
being a programmable radio device, when Alice is transmit-
ting a signal to Bob, some AEs act as passive eavesdroppers

to overhear Alice’s signals if they can derive enough informa-
tion. The rest of the AEs send jamming signals if they can
effectively block Alice’s signal to Bob. Each AE can either
eavesdrop on Alice or jam Bob, under a half-duplex con-
straint. Here qm ∈ fe, jg,m ∈ ½1,M�, corresponding to eaves-
dropping and jamming, denotes the specific attack mode of
AEm. Hence, the sets of the passive eavesdroppers and the
active jammers can be denoted by ΦE and ΦJ , respectively,
where ∣ΦJ ∣ +jΦEj =M.

Considering the low mobility of low-altitude UAVs, all
the channels are assumed to be quasi-static fading, i.e., the
channel gains are constant with each transmission block.
Besides, the channel gains between the UAVs follow the
free-space path loss model, which is determined by the
distance between the UAVs, i.e.,

gi,j = β0d
−η
i,j =

β0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζi − ζj
�� ��2q� �η , ð1Þ

where β0 is the channel power gain at the reference distance
of d0 = 1m, di,j is the distance from node i to node j, ζi is the
coordinate of node i , and η is the path loss exponent.

Remark 1. Since each AE can eavesdrop or interfere adaptively
by learning the communication environment, Alice and other
AEs can monitor the AE’s position when it chooses to jam. So,
we assume that the number and locations of all nodes (legiti-
mate communication pairs and all AEs) are available between
each other via a priori measurement following the above anal-
ysis. In addition, as the AE considered in this paper can only
eavesdrop and interfere, at each time slot, each node judged
other’s actions by sensing the jamming signal. If one AE does
not jam, other nodes consider that it chooses to eavesdrop.

At each time slot, Alice first sends a normalized signal xa
with transmit power Ps. Then, all AEs conduct different
attack modes by learning others’ strategies. The legitimate
link and all passive eavesdroppers suffer interference from
all active jammers. The interference to legitimate link and
the kth passive eavesdropper (k ∈ΦE) is given by ∑j∈Φ J

Pjgj,b
and ∑j∈Φ J

Pjgj,k, where Pj is the jamming power.

The received signal at Bob can be expressed as

yb =
ffiffiffiffiffiffiffiffiffiffiffiffi
Psga,b

q
xa + 〠

j∈Φ J

ffiffiffiffiffiffiffiffiffiffiffi
Pjgj,b

q
xj + nb, ð2Þ

where nb ~ CNð0, σ2
nÞ is the additive white Gaussian noise

(AWGN) at Bob. The received SINR at Bob can be expressed as

rab =
Psω0d

−η
a,b

I J ,B + 1 , ð3Þ

where ω0 = β0/σ2
n and I J ,B =∑j∈Φ J

Pjω0d
−η
j,b that denotes the

interference from all AEs who choose to jam. We can obtain
the data rate of the Alice-Bob link as
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Rab = log2 1 + rabð Þ: ð4Þ

Due to Remark 1, each AE can get the other AEs’ actions.
So, the signal received at the kth passive eavesdropper can be
expressed as

ye =
ffiffiffiffiffiffiffiffiffiffiffi
Psga,k

q
xa + 〠

j∈Φ J

ffiffiffiffiffiffiffiffiffiffiffi
Pjgj,k

q
xj + ne, ð5Þ

where ne ~ CNð0, σ2
nÞ is the AWGN at the kth passive eaves-

dropper. Similarly, the received SINR at the kth passive eaves-
dropper can be expressed a

rk =
Psω0d

−η
a,k

I J ,E + 1 , ð6Þ

where I J ,E =∑j∈Φ J
Pjω0d

−η
j,k .

Assuming the maximal eavesdropped information is
determined by the maximal SINR among all passive eaves-
droppers, i.e., rE =max

k∈ΦE

rk. We obtain the maximal data rate

of the Alice-AE links, which is given as

Rae = log2 1 + rEð Þ: ð7Þ

From (4) and (7), the secrecy rate of Alice can be written as

Ra = Rab − Rae½ �+, ð8Þ

where ½X�+ returnsX ifX is positive, while returns 0 otherwise.

4. Secure Transmission Game

In this section, we investigate the secure transmission prob-
lem with multiple UAV AEs. The interactions between the
transmitter and multiple UAV AEs are formulated under
the Stackelberg game framework. The optimal power alloca-
tions and secrecy rate of Alice and the best attack modes of all
AEs are derived by analyzing the equilibrium of the game.

4.1. Secure Transmission Game Formulation. The secure
transmission problem of this proposed system can be formu-
lated as a two-stage Stackelberg game. Specifically, Alice is a
leader and all AEs are followers. Alice decides its transmit
power firstly and all AEs take their action adaptively based
on the observation of the leader’s action in the sequel. The
secure transmission game is formulated as

G = N ,P ,Q,Ua,Umf g: ð9Þ

Here, N = fAlice, AE1,⋯, AEm,⋯, AEMg is modeled as
the players, and P ∈ ½0, Pmax� and Q = fe, jg are the strategy
space of Alice and AE, respectively. Also, Ua and Um are
the utility of Alice and AE, respectively.

In this system, Alice wants to send a confidential message
and thus naturally intends to maximize its secrecy rate.
Meanwhile, the transmission cost is inevitable during the
transmission. Therefore, the utility of the leader is the
trade-off of the secrecy rate and transmission cost, which
can be formulated as

Alice

Bob

Adaptive eavesdropper

Eavesdropping/jamming

Legitimate link

ga,b

gj,b

gs,b

ga,e

Figure 1: System Model.
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Ua = Ra ln 2 − CaPs, ð10Þ

where Ca denotes the cost of the unit transmit power of Alice.
For computational convenience, we multiply the data rate by
a coefficient ln 2.

The objective of the leader is to solve the following
problem to obtain the optimal power allocation:

P∗
s = arg max

Ps∈ 0,Pmax½ �
Ua Ps, q∗m, q∗−mð Þ , ð11Þ

where q∗1 ,⋯, q∗m denotes the optimal action of all AEs.
On the other hand, each AE attempts to minimize the

secrecy rate of Alice by changing its attack mode adaptively
according to Alice’s transmit power. Therefore, we formulate
the utility of AEm with the trade-off of the secrecy rate and its
attack cost as follows

Um = −Ra − θqm , θqm ∈ e, jf g, ð12Þ

where θe and θj denotes the cost of each AE to perform as the
passive eavesdropper and active jammer, respectively. We
assume that θe is related to the Rae, i.e., θe = CeRae, where
Ce denotes the cost of unit rate of Rae. θj = CjPj, where Cj

denotes the cost of the unit transmit power of jammer.
To calculate the utility of a single AE accurately, at each

time slot, when Alice is transmitting a signal to Bob, we
divide all AEs into three parts, which are denoted as Φ−m

E ,
Φ−m

J , and AEm, respectively, i.e., ∣Φ−m
E ∣ + ∣Φ−m

J ∣ +jAEmj =

M. Φ−m
E is the set of passive eavesdroppers except AEm and

Φ−m
J is the set of active jammers except AEm.
If AEm decides to act as a passive eavesdropper, the Ra

can be expressed as

Ra = Rab − Rae½ �+ = log2 1 + rabð Þ − log2 1 + rEð Þ½ �+

= log2 1 + Psω0d
−η
a,b

I−mJ ,B + 1

 !
− log2 1 + max max

k∈Φ−m
E

rkð Þ, rm
� �� �" #+

= log2 1 + Psω0d
−η
a,b

I−mJ ,B + 1

 !
− log2 1 + max r−mE , rmð Þð Þ

" #+
,

ð13Þ

where I−mJ ,B is the interference received at Bob from Φ−m
J , and

rm is the SINR of AEm:
Similarly, if AEm selects to jam, Ra can be expressed as

Ra = Rab − Rae½ �+ = log2 1 + rabð Þ − log2 1 + rEð Þ½ �+

= log2 1 + Psω0d
−η
a,b

I−mJ ,B + Im + 1

 !
− log2 1 + max

k∈Φ−m
E

rkð Þ
� �" #+

,

ð14Þ

where Im is the jamming power of AEm, and r−mE is the max-
imal SINR among all passive eavesdroppers in Φ−m

E .
In conclusion, Um can be expressed as

Similarly, the objective of AEm is to solve the following
problem:

q∗m = arg max
qm∈ e,jf g

Um P∗
s , qm, q∗−mð Þ, ð16Þ

where q∗−m denotes the optimal action of all AEs except AEm.

4.2. Analysis of Strategy Equilibrium. Now, we will analyze
the proposed Stackelberg game model and solve the optimi-
zation subproblems of (11) and (16). As a follower, each
AE will adjust its attack mode after sensing Alice’s strategy.
Therefore, the subgame of followers is analyzed firstly.

Proposition 1. Given the strategy of Alice, the optimal attack
mode strategy ofAEm is expressed as (17) if (17(a)) and (17(b))
hold.

Um =
log2 1 + Psω0d

−η
a,b

I−mJ ,B + 1

 !
− log2 1 + max r−mE , rmð Þð Þ

" #+
− CeRae, qm = e  að Þ,

log2 1 + Psω0d
−η
a,b

I−mJ ,B + Im + 1

 !
− log2 1 + max

k∈Φ−m
E

rkð Þ
� �" #+

− CjPj, qm = j  bð Þ:

8>>>>><
>>>>>:

ð15Þ

q∗m Psð Þ =
e,  if CjPj ≥ log2

1 + P∗
s ω0d

−η
a,b + I−m∗

J ,B
� �

I−m∗
J ,B + Im + 1

� �
1 + r−m∗

Eð Þ
1 + P∗

s ω0d
−η
a,b + I−m∗

J ,B + Im
� �

I−m∗
J ,B + 1

� �
1 +max r−m∗

E , rmð Þð Þ1−Ce

" #
  að Þ,

j, if CjPj ≤ log2
1 + P∗

s ω0d
−η
a,b + I−m∗

J ,B
� �

I−m∗
J ,B + Im + 1

� �
1 + r−m∗

Eð Þ
1 + P∗

s ω0d
−η
a,b + I−m∗

J ,B + Im
� �

I−m∗
J ,B + 1

� �
1 +max r−m∗

E , rmð Þð Þ1−Ce

" #
  bð Þ,

8>>>>><
>>>>>:

ð17Þ
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where P∗
s is the optimal power allocation, and I−m∗

J ,B =
∑j∈Φ−m∗

J
Pjω0d

−η
j,b denotes the interference from Φ−m∗

J , in which

each AE chooses to jam as an optimal strategy, r−m∗
E = max

k∈Φ−m∗
E

ðrkÞ denotes the maximal SINR among all AEs in Φ−m∗
E where

each AE chooses to overhear as an optimal strategy.

Proof. If (17(a)) holds, from (12), we have

If (17(b)) holds, from (12), we have

Um P∗
s , j, q∗−mð Þ −Um P∗

s , e, q∗−mð Þ

= log2 1 + P∗
s ω0d

−η
a,b

I−m∗
J ,B + 1

 !
− log2 1 +max r−m∗

E , rmð Þð Þ
" #

− log2 1 + Psω0d
−η
a,b

I−m∗
J ,B + Im + 1

 !
− log2 1 + r−m∗

Eð Þ
" #

+ Ce log2 1 + max r−m∗
E , rmð Þð Þ − CjPj

= log2
1 + P∗

s ω0d
−η
a,b + I−m∗

J ,B
� �

I−m∗
J ,B + Im + 1

� �
1 + r−m∗

Eð Þ
1 + P∗

s ω0d
−η
a,b + I−m∗

J ,B + Im
� �

I−m∗
J ,B + 1

� �
1 + max r−m∗

E , rmð Þð Þ1−Ce

" #

− CjPj ≥ 0:

ð19Þ

Thus (17) holds.
As shown in Proposition 1, if passive eavesdropping can

bring worse secrecy rate and less cost than active jamming,
the AE will select to overhear and vice versa.

As the leader of the game, Alice first chooses to transmit
power. The optimal power strategy of Alice can be derived by
solving (11), which is revealed in Proposition 2.

Proposition 2. The optimal power allocation is P∗
s , which sat-

isfies the following equation:

ω0d
−η
a,b − ω0 max

k∈Φ∗
E

d−ηa,k/I∗J ,E + 1
� �

I J ,B − ω0 max
k∈Φ∗

E

d−ηa,k/I∗J ,E + 1
� �

1 + I∗J ,B + P∗
s ω0d

−η
a,b

� �
1 + P∗

s ω0 max
k∈Φ∗

E

d−ηa,k/I∗J ,E + 1
� �� � = Ca  að Þ,

0 ≤ P∗
s ≤ Pmax  bð Þ,

8>>>><
>>>>:

ð20Þ

if (21(a)) and (21(b)) hold.

where I∗J ,B and I∗J ,E denotes the interference from Φ∗
J in which

each AE chooses to jam as an optimal strategy to Bob and the
kth passive eavesdropper, respectively.

Proof. We obtain the following differential equation describ-
ing the evolution of the utility of Alice:

∂Ua

∂Ps
=
ω0d

−η
a,b − ω0 max

k∈Φ∗
E

d−ηa,k/I∗J ,E + 1
� �

I J ,B − ω0 max
k∈Φ∗

E

d−ηa,k/I∗J ,E + 1
� �

1 + I∗J ,B + P∗
s ω0d

−η
a,b

� �
1 + P∗

s ω0 max
k∈Φ∗

E

d−ηa,k/I∗J ,E + 1
� �� �

− Ca,
ð22Þ

Um P∗
s , e, q∗−mð Þ −Um P∗

s , j, q∗−mð Þ = − log2 1 + P∗
s ω0d

−η
a,b

I−m∗
J ,B + 1

 !
− log2 1 +max r−m∗

E , rmð Þð Þ
" #

+ log2 1 + Psω0d
−η
a,b

I−m∗
J ,B + Im + 1

 !
− log2 1 + r−m∗

Eð Þ
" #

− Ce log2 1 + max r−m∗
E , rmð Þð Þ + CjPj

= − log2
1 + P∗

s ω0d
−η
a,b + I−m∗

J ,B
� �

I−m∗
J ,B + Im + 1

� �
1 + r−m∗

Eð Þ
1 + P∗

s ω0d
−η
a,b + I−m∗

J ,B + Im
� �

I−m∗
J ,B + 1

� �
1 + max r−m∗

E , rmð Þð Þ1−Ce

" #
+ CjPj ≥ 0:

ð18Þ

max
k∈Φ∗

E

d−ηa,k
I∗J ,E + 1

 !
< d−ηa,b
I∗J ,B + 1  að Þ,

ω0d
−η
a,b − ω0 max

k∈Φ∗
E

d−ηa,k/I∗J ,E + 1
� �

I J ,B − ω0 max
k∈Φ∗

E

d−ηa,k/I∗J ,E + 1
� �

1 + I∗J ,B + P∗
s ω0d

−η
a,b

� �
1 + P∗

s ω0 max
k∈Φ∗

E

d−ηa,k/I∗J ,E + 1
� �� � ≤ Ca ≤

ω0d
−η
a,b

1 + I∗J ,B
− ω0 max

k∈Φ∗
E

d−ηa,k
I∗J ,E + 1

 !
  bð Þ,

8>>>>>>>><
>>>>>>>>:

ð21Þ
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∂2Ua

∂P2
s

= ω0d
−η
a,b

1 + I∗J ,B + Psω0d
−η
a,b

� � + ω0 max
k∈Φ∗

E

d−ηa,k/I∗J ,E + 1
� �

1 + Psω0 max
k∈Φ∗

E

d−ηa,k/I∗J ,E + 1
� �� �

2
664

3
775

�
ω0 max

k∈Φ∗
E

d−ηa,k/I∗J ,E + 1
� �

1 + Psω0 max
k∈Φ∗

E

d−ηa,k/I∗J ,E + 1
� �� � −

ω0d
−η
a,b

1 + I∗J ,B + Psω0d
−η
a,b

� �
2
664

3
775:

ð23Þ
If (21(a)) holds, (23) is less than zero. Thus, we have

∂2Ua

∂P2
s

< 0, ð24Þ

which indicates that ∂Ua/∂Ps monotonically decreases with
Ps. Therefore, if (21(b)) holds, we have

∂Ua

∂Ps

����
Ps=0

= ω0d
−η
a,b

1 + I∗J ,B
� � − ω0 max

k∈Φ∗
E

d−ηa,k
I∗J ,E + 1

 !
− Ca > 0, ð25Þ

∂2Ua

∂P2
s

�����
Ps=Pmax

= ω0d
−η
a,b

1 + I∗J ,B + Pmaxω0d
−η
a,b

� �

−
ω0 max

k∈Φ∗
E

d−ηa,k/I∗J ,E + 1
� �

1 + Pmaxω0 max
k∈Φ∗

E

d−ηa,k/I∗J ,E + 1
� �� � − Ca < 0,

ð26Þ
indicating that there is a sole solution to ∂Ua/∂Ps = 0, given
in (20(a)). From (22)–(24), we can find that UaðPs, q∗m, q∗−mÞ
increases with Ps, if Ps < P∗

s , while it decreases otherwise.
Thus, (11) also holds and ðPs, q∗m, q∗−mÞ is a Nash Equilibrium
(NE) of the game. In this way, we have completed the proof
of Proposition 2.

As shown in Proposition 2, Alice stops the transmission
when (21(b)) does not hold. In other words, Alice will stop
the transmission under the circumstances that radio channel
degradation is serious and the security cannot be guaranteed.

Another NE ðPmax, q∗m, q∗−mÞ is revealed in Proposition 3.

Proposition 3. The secure game has the NE ðPmax, q∗m, q∗−mÞ if
(21(a)) and the following equation hold:

ω0d
−η
a,b

1 + I∗J ,B + Pmaxω0d
−η
a,b

� � − ω0 max
k∈Φ∗

E

d−ηa,k/I∗J ,E + 1
� �

1 + Pmaxω0 max
k∈Φ∗

E

d−ηa,k/I∗J ,E + 1
� �� � > Ca:

ð27Þ

Proof. (21(a)) has been discussed above.
Therefore, if (27) holds, we have

∂Ua

∂Ps
≥
∂Ua

∂Ps

����
Ps=Pmax

≥ 0,∀0 ≤ Ps ≤ Pmax, ð28Þ

which indicates that Ua monotonically increases with Ps,
ðPmax, q∗m, q∗−mÞ is also an NE of the game. In this way,
we have completed the proof of Proposition 3.

As shown in Proposition 3, low transmission costs in (27)
will make Alice select the maximum transmit power to trans-
mit the signals.

5. Hierarchical Reinforcement Learning
Framework for Secure Transmission Game

The proposed UAV secure communication problem with
multiple AEs has been formulated as a Stackelberg game,
which belongs to the category of two-stage dynamic game
and has a significant two-layer game structure. Alice and all
AEs become intelligent agents and have the learning ability
to automatically optimize their configuration. Besides, the
mixed-strategy is applied by both sides of the communication
to confuse each other. In this section, we apply a hierarchical
RL framework to derive the mixed-strategy equilibrium and
implement the UAV secure communication.

5.1. Analysis of Mixed-Strategy Equilibrium. Considering the
actual wireless communication scenario, we assume that
Alice has a finite and discretized power set. Specifically, a
policy of Alice at time slot t is defined to be a probability
vector πt = ðπt

1, πt
2,⋯πt

LÞ, where πt
l means the probability

with which Alice chooses action (power level) Pl from a
finite discrete set P , which satisfies ∑L

l=1π
t
l = 1. Similarly,

δtm = ðδtm,1m , δ
t
m,2mÞ denotes the policy of AEm at time slot t,

where δtm,im means the probability with which AEm chooses
action (attack mode) Qi from a finite discrete set Q, which
satisfies ∑2

i=1δ
t
m,im = 1.

Based on the above analysis, we have the following defini-
tion of an SE for the hierarchical RL framework based on Eqs.
(10) and (12). Alice’s objective is to maximize its revenue as

π∗ = arg max
π

Ua π, δ∗m, δ∗−mð Þ, ð29Þ

Similarly, each AE’s objective is

δ∗m = arg max
δm

Um π∗, δm, δ∗−mð Þ, ð30Þ

Then, we will define the SE in a hierarchical reinforce-
ment learning framework.

Definition 1. A stationary policy profile ðπ∗, δ∗m, δ∗−mÞ is the
SE for hierarchical RL framework if the followings hold.

Ua π∗, δ∗m, δ∗−mð Þ ≥Ua π, δ∗m, δ∗−mð Þ að Þ
Um π∗, δ∗m, δ∗−mð Þ ≥Um π∗, δm, δ∗−mð Þ bð Þ

(
: ð31Þ

Proposition 4. For the proposed hierarchical RL framework,
there exists Alice’s stationary policy and an AEs’ NE policy
that form an SE.
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Proof. If the Alice follows a stationary policy π, the Stackel-
berg game is simplified into an M-player hierarchical RL
game. It has been shown in [42] that every finite strategic-
form game has a mixed policy equilibrium. As a result, there
always exists an NE ðπÞ in our formulation of the discrete
power allocation game given Alice’s policy π. The rest of
the proof follows directly from the definition of an SE and
is thus omitted for brevity.

5.2. Hierarchical Q-Learning Based Power Allocation
Algorithm. In the proposed UAV secure transmission game,
since there is no information exchange between Alice and
AEs, both sides can only maximize their expected utilities
through repeated interactions with each other. When the
action taken by the agent (Alice or AEs) brings positive
feedback to the agent, the agent will strengthen the action,
otherwise the agent will weaken the action. Agents constantly
adjust their strategies based on the feedback to achieve opti-
mal long-term returns. Thus, a hierarchical Q-learning based
power allocation algorithm (HQLA) is adopted, where each
agent’s policy is parameterized through the Q-function that
characterizes the relative expected utility of a particular
action.

To be specific, for the follower’s learning, let Qt
mðqtm,imÞ

denote the corresponding Q-function of AEm ′s action qtm,im
based on current police δtm,im at time slot t. Then, after con-
ducting the action qtm,im , the corresponding Q-value is
updated as follows

Qt+1
m qm,im

	 

=Qt

m qtm,im

	 

+ α Um Pt+1

l , qtm,im , q
t+1
−m,i−m

	 

−Qt

m qtm,im

	 
	 

,

ð32Þ

where α ∈ ½0, 1Þ is the learning rate and UmðPt+1
l , qtm,im ,

qt+1−m,i−mÞ is the utility of AEm at time slot t + 1.
Each AE updates its policy based on Boltzmann distri-

bution

δt+1m,im qm,im

	 

=

exp Qt
m qtm,im

	 

/τ

h i
∑qs,is∈Q

exp Qt
m qts,js

	 

/τ

h i , ð33Þ

where temperature τ controls the trade-off between explora-
tion and exploitation, i.e., for τ→ 0, AEm greedily chooses
the policy corresponding to the maximum Q-value which
means pure exploitation, whereas for τ→∞, AEm ′s policy
is completely random which means pure exploration [43].
Accordingly, the Q-value of Alice is updated as follows

Qt+1
a Plð Þ =Qt

a Plð Þ + α Ua Pl, qt+1m,im , q
t+1
−m,i−m

	 

−Qt

a Plð Þ
	 


,

ð34Þ

where UaðPl, qt+1m,im , q
t+1
−m,i−mÞ is the utility of Alice at time slot

t + 1. Then, Alice updates its policy based on Boltzmann
distribution

πt+1
l Plð Þ = exp Qt

a Plð Þ/τ� �
∑Pj∈P exp Qt

a Pj

� �
/τ

� � : ð35Þ

Now, we present the detailed description of the Q-learning
based hierarchical RL algorithm.

5.3. Convergence Analysis of Algorithm 1. The learning
algorithm results in a stochastic process of choosing a power
level, so we need to investigate the long-term behavior of the
learning procedure. Along with the discussion in [43], we
obtain the following differential equation describing the
evolution of the Q-values:

dQt+1
a Plð Þ
dt

= α Ua Pl, qt+1m,im , q
t+1
−m,i−m

	 

−Qt

a Plð Þ
	 


, ð36Þ

dQt+1
m qm,im

	 

dt

= α Um Pt+1
l , qtm,im , q

t+1
−m,i−m

	 

−Qt

m qtm,im

	 
	 

:

ð37Þ

In the following, we would like to express the dynamics in
terms of strategies rather than the Q-values. Toward this end,
we differentiate (35) with respect to time t and use (36). Sim-
ilarly, we differentiate (33) with respect to time t and use (37).

Hierarchical Q-learning Based Power Allocation Algorithm
1: Initialize t = 0,Qt

aðPlÞ = 0,Qt
mðqtm,imÞ = 0, πt

l ðPlÞ = 1/L, δtm,im = 1/2,m ∈N \ fAliceÞ;
2: Loop:
3: t = t + 1;
4: Update Alice’s policies πt

l ðPlÞ and AEm ′s policies δtm,imðqm,imÞ according to (35) and (33), respectively;

5: Alice chooses the action Pl with πt
l ;

6: Each AEm sensing the Alice’s transmit power, and selects qm,im with δtm,im ;

7: Alice updates UaðPl , qt+1m,im , q
t+1
−m,i−mÞ according to (10), and each AEm updates UmðPt+1

l , qtm,im , q
t+1
−m,i−mÞ according to (12);

8: Alice and all AEs update Q-values according to (34) and (32), respectively;
9: End Loop;

Algorithm 1.
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We can obtain the equations like (38) and (39).

dπt+1
l Plð Þ
dt

= πt+1
l Plð Þ α

τ
Ua Plð Þ − 〠

j∈P
πt+1
j Pj

� �
Ua Pj

� �" #(

− τ〠
j∈P

πt+1
j Pj

� �
ln πt+1

l Plð Þ
πt+1
j Pj

� �
 !)

,

ð38Þ

dδt+1m,im qm,im

	 

dt

= δt+1m,im qm,im

	 
 α
τ

Um qm,im

	 

− 〠

is∈Q
δt+1s,is qs,is

	 

Um qs,is

	 
" #(

− τ〠
is∈Q

δt+1s,is qs,is

	 

ln

δt+1m,im qm,im

	 

δt+1s,is qs,is

	 

0
@

1
A):

ð39Þ
The steady-state strategy profile zs = ðπsðPlÞ, δsm,imðqm,imÞÞ

can be obtained [43].

πs Plð Þ = exp Qt
a Plð Þ/τ� �

∑Pj∈P exp Qt
a Pj

� �
/τ

� � , ð40Þ

δsm,im qm,im

	 

=

exp Qt
m qtm,im

	 

/τ

h i
∑qs,is∈Q

exp Qt
m qts,js

	 

/τ

h i : ð41Þ

Let Zt = ðzt1,⋯, ztNÞ the strategy profile of all players at
time slot t. In the following analysis, we resort to an ordinary
differential equation (ODE) whose solution approximates the
convergence of Zt . The right-hand side of (38) and (39) can
be represented by a function f ðZtÞ as α→ 0. Zt will converge
weakly to Z∗ = ðπ∗

0 , δ∗0 Þ, which is the solution to

dZ
dt

= f Zð Þ, Z0 = Z0: ð42Þ

Proposition 5. The HQLA can discover a mixed-strategy SE.

Proof. We prove this by contradiction. Suppose that the
process generated by (33) and (35) converges to a non-SE.
But the solutions of (42) are by definition stationary points.
This implies that HQLA will only converge to stationary
points. This means that stationary points that are not SEs
are stable, which is contradicting Proposition 4.

6. Simulation Results

Simulations are carried out to evaluate the performance of
the proposed power allocation strategies against multiple
UAV AEs. This scenario has one transmitter-receiver pair
and three UAV AEs denoted as Alice, Bob, AE1, AE2, and
AE3, respectively. We set up a scenario network where all
the UAVs are distributed in a 200m ∗ 200m region. The
system parameters are chosen for some typical scenarios
including the cost of unit transmit power and jamming

power, i.e., Ca = Cj = 0:1 and Ce = 0:5, the path loss exponent
η = 2 and ω0 = 80:

Figure 2 shows the expected utilities of the leader under
different algorithms. We can find that the expected utility
achieved by the proposed HQLA is significantly lower than
the single-agent Q-learning algorithm (SAQL). This is
because in SAQL, only Alice applies the reinforcement learn-
ing mechanism to maximize the secrecy rate but all AEs’
behaviors constituting joint actions are considered to be
stated in the Q-learning algorithm which means each AE
cannot choose the optimal strategy adaptively to maximize
its utility. While in HQLA, each AE with reinforcement
learning ability can maximize its damages to the secrecy rate
of the considered system through repeated interactions with
Alice’s and other AEs’ strategies. The comparison of the
leader’s expected utilities with SAQL implies that the agent’s
learning ability has a significant impact on its utility. So, the
proposed HQLA provides an optimal power allocation strat-
egy in a more hostile case that suffers the adaptive attacks
from multiple AEs. On the other hand, the proposed HQLA
is superior to the random selection algorithm (RS) because
the proposed HQLA may converge to a desirable solution,
whereas the RS is an instinctive approach.

Figure 3 shows the cumulative distribution function
(CDF) of the convergence of HQLA and SAQL. As observed
from Figure 3, we can find that the proposed algorithm
converges at about 500 iterations, while the contrast algo-
rithm converges at about 1000 iterations, which means
the convergence rate of HQLA is significantly better than
SAQL. This is because that all AEs in SAQL select action
randomly without learning ability whereas in HQLA, taking
the interactions between two sides of communication into
account, all AEs make decisions according to the mixed-
strategy derived by RL which can obtain the optimal strat-
egy via trials-and-errors. This also means that the learning
ability has a significant positive impact on the convergence
rate.

Figure 4 presents the strategy selection probabilities evo-
lution of the leader’s transmit power. At the very beginning,
Alice randomly selects transmit power according to a uni-
form distribution. As Algorithm 1 iterates, the strategy selec-
tion probabilities keep on updating until convergence after
about 500 iterations. It is worthy to note that Algorithm 1
under this scenario converges to pure strategy NE points
since the probability of selecting one power level is equal to
1, while the probabilities of the other levels of transmit power
decrease to 0 if the time slots are large enough. So, the theo-
retical prediction in Proposition 4 is verified under the exist-
ing conditions. Specifically, the Pmax in Figure 4(a) as the
optimal transmit power is consistent with Proposition 3,
and the P∗

s in Figure 4(b) is consistent with Proposition 2.
The leader’s expected utility comparison under different

Ce is shown in Figure 5(a). It is noted that the steady value
of the leader’s expected utility increase with the value of Ce
growing because that Ce leads to changes in AEs’ attack strat-
egies. Specifically, as a rational agent, all AEs choose to inter-
fere with Bob finally in Figure 5(b) because they find the
utility of the jammer is higher than eavesdropper according
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to the learning process when the difference of Ce = 0:8. Thus,
the maximal data rate of the Alice-AE link is zero which
means the leader will obtain the maximal secrecy rate and
expected utility. Similarly, in Figure 5(d), all AEs find the util-
ity of eavesdropper is higher than jammer when Ce = 0:2 and
every AE choose to eavesdrop on Alice. As a result, the max-
imal data rate of the Alice-AE link between all AEs is
achieved and the leader suffers the lowest utility. When Ce

= 0:5 (in Figure 5(c)), according to the utilities of themselves,
AE1 and AE3 always choose to interfere with Bob and AE2
prefers eavesdropping which makes the expected utility of
leader is between Ce = 0:8 and Ce = 0:2. In addition, it is wor-
thy to note that the attack strategies of all AEs have a pure
strategy equilibrium since the probability of selecting one
attack mode is equal to 1 while the probability of another
attack mode decreases to 0.
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7. Conclusions and Future Work

In this paper, we have investigated the transmit power opti-
mization problem of secure UAV communication in the
presence of multiple UAV AEs. A secure transmission game
is formulated to prove the existence of the NE by analyzing

the interactions between the legitimate user and AEs. Within
a hierarchical game framework, we obtain the optimal
transmit power solutions for the legitimate transmissions.
Numerical results verified the theoretical analysis and shown
that the secrecy performance could be degraded severely by
AEs’ learning ability. Moreover, the outperformance of the
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Figure 5: Expected utility of leader and attack mode probabilities of all AEs under different Ce:
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HQLA’s convergence and the impact of the eavesdropping
cost on the decision of AE’s attack mode is also demon-
strated. To take advantage of the UAV’s mobility that can
bring the potential performance enhancement, in future
work, we will devote our efforts to joining the UAV’s trajec-
tory and resource allocation optimization against multiple
AEs.
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