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System logs can record the system status and important events during system operation in detail. Detecting anomalies in the system
logs is a common method for modern large-scale distributed systems. Yet threshold-based classification models used for anomaly
detection output only two values: normal or abnormal, which lacks probability of estimating whether the prediction results are
correct. In this paper, a statistical learning algorithm Venn-Abers predictor is adopted to evaluate the confidence of prediction
results in the field of system log anomaly detection. It is able to calculate the probability distribution of labels for a set of
samples and provide a quality assessment of predictive labels to some extent. Two Venn-Abers predictors LR-VA and SVM-VA
have been implemented based on Logistic Regression and Support Vector Machine, respectively. Then, the differences among
different algorithms are considered so as to build a multimodel fusion algorithm by Stacking. And then a Venn-Abers predictor
based on the Stacking algorithm called Stacking-VA is implemented. The performances of four types of algorithms (unimodel,
Venn-Abers predictor based on unimodel, multimodel, and Venn-Abers predictor based on multimodel) are compared in terms
of validity and accuracy. Experiments are carried out on a log dataset of the Hadoop Distributed File System (HDFS). For the
comparative experiments on unimodels, the results show that the validities of LR-VA and SVM-VA are better than those of the
two corresponding underlying models. Compared with the underlying model, the accuracy of the SVM-VA predictor is better
than that of LR-VA predictor, and more significantly, the recall rate increases from 81% to 94%. In the case of experiments on
multiple models, the algorithm based on Stacking multimodel fusion is significantly superior to the underlying classifier. The
average accuracy of Stacking-VA is larger than 0.95, which is more stable than the prediction results of LR-VA and SVM-VA.
Experimental results show that the Venn-Abers predictor is a flexible tool that can make accurate and valid probability
predictions in the field of system log anomaly detection.

1. Introduction

With the rise of distributed and cloud computing technology,
the scale of the system continues to expand. The explosive
growth of large-scale Internet services supported by large-
scale server deployment has brought great challenges to oper-
ation and maintenance personnel to maintain the normal
operation of the system. The generated operation log can
locate anomalies, but due to the exponential growth of the
log volume generated by the distributed system and different
systems will adopt different fault tolerance mechanisms,
manual retrieval is time-consuming and labor-intensive.

With the development of machine learning, log anomaly
detection methods based on machine learning have become
a research focus.

Machine learning techniques have been used to detect
anomalies. For example, statistical anomaly detection models
based on data distribution [1, 2] propose a hypothesis that
the dataset obeys a certain distribution or probability model
and realizes anomaly detection by judging whether a certain
data point conforms to the distribution model, but this
method is only suitable for point anomaly detection. With
the increase of data dimensions and data volume, the effi-
ciency of this method’s anomaly detection would decrease
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accordingly. The nearest nearby method based on distance
[3, 4], its basic idea is that normal data is similar to its nearby
data, while abnormal data is different from nearby data. This
method does not need to master the data distribution, nor
does it require a labeled training dataset. It is theoretically
suitable for high-dimensional data anomaly detection, but
due to its high computational complexity, it is difficult to
determine the parameters, which limits its application. Clus-
tering based anomaly detection methods [5, 6] assumes that
normal data is located in a dense area, and anomalies are
far away from this area. Because the results of anomaly detec-
tion depend on the effect of clustering, the complexity and
time complexity of the calculation method increase with the
increase in dimensionality. An anomaly detection method
based on neural network [7, 8] is generally realized by com-
paring the predicted value of the model with the actual mea-
sured value. The anomaly detection method based on neural
network has strong ability to detect abnormal data, but its
shortcoming is that the neural network model parameter set-
ting has a great influence on the model result and is difficult
to determine. There is no unified standard for the selection
and optimization of the network structure, and it will also
increase the time complexity and the computational com-
plexity of the model when processing large amounts of data
or high dimensions.

This paper is aimed at detecting anomalies in system logs.
System anomaly detection is a necessary condition for the
stable operation of a computer system. The system logs
record information about hardware, software, and system
problems in the system. At the same time, it can also monitor
events that occur in the system. It records system states and
significant events in detail, which can help administrators
troubleshoot or understand what is happening in the system
at a detailed level. Zhu et al. [9] summarizes the structure of
common system logs and the dependencies between events
(note: https://github.com/logpai/loghub provides a complete
system log dataset). Therefore, only when the log can be cor-
rectly parsed can the rich information in the log be effectively
used for system health diagnosis and avoid serious problems
such as system downtime. Xu et al. [10] proposes to automat-
ically detect system runtime problems by parsing the console
system log, and use a PCA-based feature extraction algo-
rithm to accurately describe the complex state information
of a large-scale system. Lou et al. [11] categorizes the console
system logs after being structured, and judges abnormal
events by counting the distribution of various logs over a
period of time. He et al. [12] converts the console system
log into an event template, slices the original log into a set
of log sequences and forms a feature vector through different
grouping techniques, and uses three supervised and three
unsupervised methods for log anomaly detection. The
LSTM-based deep neural network model Deeplog proposed
by Du et al. [13] is an integrated framework for anomaly
detection that combines LSTM and online learning. It is used
to solve the impact of unknown abnormal events in the
future that are difficult to predict on system operation and
maintenance diagnosis. Li et al. [14] uses the longest com-
mon subsequence method to compare the similarity between
new time series data and historical data. Later, Xia et al. [15]

propose LogGAN (Log Generative Adversarial Networks), an
anomaly detection model based on generative adversarial
networks, to generate more abnormal event samples to solve
the problem of the imbalance between the numbers of abnor-
mal events and normal events. Recently, Xia et al. [16] further
improve the generative confrontation network based on the
attention mechanism and train the generator based on the
recurrent neural network to converge through the machine
of confrontation learning, which is further improved than
the anomaly detection accuracy of LogGAN.

These algorithms can only give one prediction (for classi-
fication, it is the prediction label; for regression, it is the pre-
dicted value), and no reliability evaluation of the prediction
result is provided, that is, the evaluation of the credibility of
the prediction result and the evaluation guarantee of validity
[17, 18]. At present, the most popular probability prediction
algorithms are conformal predictor and Venn-Abers predic-
tor. The conformal predictor gives p value as an estimate of
prediction reliability under confidence [19], but that is not
a direct probability. The paper is aimed at introducing an
algorithm that converts the results of the conformal predictor
into probabilities and giving estimates of the probabilities of
the predicted results, which makes the results more intuitive.

The validity of probabilistic prediction is very important
for probabilistic prediction methods. Validity refers to the
estimated probability for predicted label is unbiased, which
means the estimated probability is equal or close to the
observed frequency that predictions are correct [20]. The sta-
tistical learning algorithm Venn-Abers predictor used in this
paper has a validity guarantee [21]; this method can evaluate
the reliability of log anomaly detection results, which means
it can make effective probability predictions about the cor-
rectness of prediction results. It is a flexible machine learning
framework that uses probability to classify data. Any
machine learning algorithm can be used as its underlying
algorithm. The only assumption required for the Venn-
Abers predictor is that the example distribution is the
exchangeability assumption, which can be easily satisfied by
the log data, and it does not need specific distribution of
the log data once the exchangeability assumption is satisfied;
thus, the validity of predicted probabilities is guaranteed. At
present, Venn-Abers predictors have obtained reliable and
effective probabilistic prediction results in many fields [22–
24]. The Venn-Abers predictor is introduced in system log
anomaly detection so that the system log abnormality can
be detected more reliably and effectively.

This paper evaluates proposed method using a real sys-
tem HDFS log dataset. The Venn-Abers predictor has been
proved to be perfectly calibrated [25]. However, the cost is
that Venn-Abers predictors are multiprobabilistic predictors,
in the sense of issuing a set of probabilistic predictions
instead of a single probabilistic prediction; intuitively, the
diameter of this set reflects the uncertainty of our prediction.
Two Venn predictors are based on two underlying machine
learning methods (Logistic Regression and Support Vector
Machine) for the system logs, respectively [26]. The multi-
probabilistic prediction outputs are replaced by Venn-
Abers predictors with a probability prediction value. This
approach makes it facilitate a comparison of various
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algorithms using loss functions. The validity of the prediction
results is compared by the loss function of the underlying
machine learning methods and Venn-Abers predictors.
Two Venn-Abers predictors base on two underlying machine
learning methods separately so as to detect system log anom-
alies. The probability prediction value of the Venn-Abers
predictor is converted into the prediction results. By this
way it is convenient to use the loss function to compare the
effectiveness of various algorithms. The experimental results
turn out that the method of using Venn-Abers predictors to
evaluate the correctness of the system anomaly detection is
valid and accurate [27].

Moreover, considering the differences in the data pro-
cessing principles of different algorithms, full play is given
to the advantages of each model, and integrated learning is
used in order to achieve a stronger generalization ability.
Common integrated learning methods such as AdaBoost
and Bagging use autonomous sampling (booststrap) [28] to
construct different training sets, and Random Forest (RF)
uses different random feature spaces. The commonality of
these methods is based on the integration of the same algo-
rithm, so the multiple base classifiers produced are different,
and the combination of classifiers is generally voting. Stack-
ing is different, and it is based on multiple different classifiers
generated by different algorithms and learns again on the
prediction of multiple classifiers to achieve a combined inte-
gration method. This paper proposes a Stacking multimodel
fusion strategy based on 5 different classifiers, named SVM,
KNN, DT, RF, and GBDT for combination, and develops a
Venn-Abers predictor based on Stacking to achieve high-
precision anomaly detection.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines the overall structure of the paper, including a
brief description of the five steps of anomaly detection, and it
also introduces the Venn-Abers framework and single
model, multimodel fusion methods. Section 3 reviews the
evaluation indicators of the experiment. The comparative
experiments are reported, and the experimental results are
analyzed in Section 4; besides, the experimental conclusions
and future plans are given in Section 5.

2. Framework

Figure 1 illustrates the overall framework for log-based
anomaly detection. Log anomaly detection framework
mainly includes four steps: log collection, log parsing, feature
extraction, and anomaly detection. In the process of log
anomaly detection, this paper introduces a probability pre-
diction statistical learning method Venn-Abers predictor,
which compares with the underlying machine learning algo-
rithm in terms of threshold; thus, it draws the probability of
predicting the label, which will make the prediction result
more effective.

2.1. HDFS Logs. Modern large-scale systems record system
runtime information by generating logs. Each log contains
unstructured data such as time stamps, log priorities, system
components, and log entries themselves. Typically, a log mes-
sage records a specific system event with a set of fields. Eight

log lines are extracted from the HDFS logs on Amazon EC2
platform as shown in Figure 1 [10], while some fields are
omitted here for ease of presentation.

2.2. Log Parsing. The goal of log parsing is to extract a set of
log event templates. That is, the constant part (fixed plain
text) and the variable part (such as blk_id in Figure 1) are dis-
tinguished from the log data content [10–12]. The log tem-
plate event mainly includes a constant part and a wildcard:
the constant part constitutes the fixed plain text, which
remains the same for every event occurrence and can reveal
the event type of the log message, while the wildcard carries
the runtime information of interest, such as the values of
states and parameters (e.g., the IP address: 10.251.31.5); thus,
it may vary among different event occurrences, and it is
replaced by a string of the form <∗ > . Each different log
event template is numbered as event_id, and each log event
template corresponds to an identifier blk_id.

2.3. Feature Representation. Results obtained from the previ-
ous step are used to generate an event count matrix X, which
will be fed into a log anomaly detection model. In the event
count matrix, each row represents a block, while each column
indicates one event type. The value in cell Xi,j records how
many times event j occurs on block i. X is generated with
one pass through the parsed results. Instead of directly
detecting anomaly on X, TF-IDF [29] is a well-established
heuristic in information retrieval, and it is often used as a fea-
ture representation of documents in information retrieval
and text mining.

2.4. Anomaly Detection. Based on the previous log prepro-
cessing results, log anomaly detection is used to find out sus-
picious blocks that may indicate problems. The underlying
supervised learning method is the input of a given historical
feature vector, and our prediction model outputs the proba-
bility of an upcoming failure. If the computed probability
exceeds a predefined threshold c, it will be considered abnor-
mality to indicate a failure. In this paper, two supervised
learning algorithms are used for experiments, i.e., Logistic
Regression and Support Vector Machine.

Logistic Regression (LR) is a widely used machine learn-
ing classification model. Firstly, training instances are used to
establish the logistic regression model. After obtaining the
model, a testing instance X is fed into the logistic function
so as to compute its possibility p of anomaly; the label of X
is anomalous while p ≥ 0:5 and normal otherwise.

Support Vector Machine (SVM) is a supervised learning
method for classification. The basic idea is to solve the sepa-
ration hyperplane that can correctly divide the training data-
set and have the largest geometric interval. Similar with LR,
the training instances are event count vectors together with
their labels. In anomaly detection via SVM, if a new instance
is located above the hyperplane, then, it would be reported as
an anomaly; otherwise, it will mark as normality.

2.5. Integrated Learning Stacking. Ensemble learning is based
on statistical learning theory [30]. Stacking is an integrated
learning algorithm proposed by Wolpert. Unlike bagging
and boosting, which use the same classification algorithm
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to continuously iteratively train a single learner, Stacking can
combine the prediction results of multiple underlying classi-
fiers so as to generate a new model and customize the combi-
nation strategy [31]. In the combined model, different types
of underlying classifiers are selected in order to reduce the
generalization error of the model. In the Stacking integrated
learning model, it is necessary not only to analyze the indi-
vidual prediction ability of each base learner but also to com-
prehensively compare the combined effect of each base
learner, so that the Stacking integrated learning model can
obtain the best prediction results.

As shown in Figure 2, a Stacking integrated learning
framework firstly divides the original dataset into several
subdatasets and inputs to each base learner of the layer 1 pre-
diction model, so each base learner outputs its own predic-
tion result. Then, the output of the first layer is used as the
input of the second layer, besides the metalearner of the pre-
diction model of the second layer is trained, and the final pre-
diction result is output by the model located at the second
layer. The Stacking learning framework generalizes the out-
put of multiple models to improve the overall prediction
accuracy.

The models selected in the first layer of the Stacking
model in this paper are as follows: SVM as a classic stability
classifier which has a good generalization ability in solving
binary classification problems and has certain advantages in
solving high-dimensional datasets; KNN has good practical
application effects due to its mature theory and high training
efficiency; the single-layer tree-structure DT; bagging inte-
grated learning method representing random forest (RF)
[32]; and boosting integrated learning method representing
gradient boosted decision tree (GDBT). The selected model
in the second layer is logistic regression with strong general-
ization ability, which constantly minimizes the prediction
function error through the stochastic gradient descent
method to improve the generalization ability of the model;
besides, the loss function adopts the corresponding regulari-
zation method to ease the model degree of overfitting.

2.6. Venn-Abers Predictor. In this part, the Venn-Abers pre-
dictor is used to evaluate the likelihood of underlying
machine learning algorithms predicting log anomaly detec-

tion results correctly. The Venn-Abers predictor [33] trans-
forms the predicted results into probabilities. It applies
isotonic regression to transform the output of other classi-
fiers into probabilities.

Suppose given a standard binary classification problem: a
training set of examples ðz1, z2, z3,⋯, zn−1Þ. Each zi consists
of a pair of object xi and label yi. The possible labels are
binary, that is, y ∈ Y = f0, 1g. Besides, given a new object xn
, the goal is to predict the label yn for the new object xn and
give the estimation of the likelihood that the prediction is
correct.

A scoring algorithm trains a classifier on the training set
and uses the classifier to output a prediction score sðxnÞ for
the new object xn; besides, it predicts the label of xn to be
“1” only while sðxnÞ ≥ c (c is a fixed threshold). So sð·Þ is
hereby called the scoring function. Many machine learning
algorithms for classification are scoring algorithms. In the
paper, the decision function in Sections 2.4 and 2.5 is a scoring
function. It is “increasing,” which means a function f ð·Þ is
increasing if its domain is an ordered set and t1 ≤ t2 → f ðt1Þ
≤ f ðt2Þ. For the “isotonic regression,” it is a monotonically
increasing function on the set fðsðx1Þ, y1Þ,⋯, ðsðxn−1Þ, yn−1Þg
that maximizes the likelihood

∐
n

i=1
pi, pi =

f s xið Þð Þ, if yi = 1,

1 − f s xið Þð Þ, if yi = 0:

(
ð1Þ

Log 1 PacketResponder 1 for block blk_3 
terminating

Log 2 PacketResponder 0 for block blk_6 
terminating

Log 3 BLOCK∗ NameSystem.addStoredBlock: 
added to blk_71 size 67108864

Log 4 BLOCK∗ NameSystem.addStoredBlock: 
added to blk_30 size 67108864

Log 5 Received block blk_35 of size 67108864 
from /10.251.42.84

Log 6 Received block blk_54 of size 67108864 
from / 10.251.214.112

Log 7 Verification succeeded for blk_91
Log 8 Deleting block blk_-87 file /mnt/hadoop/

dfs/data/current/subdir29/blk_-87

1. HDFS logs
Event templates:

Event 1 PacketResponder <∗> for block blk_<∗> 
terminating

Event 2 Received block blk_<∗> of size <∗> from 
/<∗>

Event 3 BLOCK∗ NameSystem.addStoredBlock:
added to blk_<∗> size <∗>

Event 4 Verification succeeded for blk_<∗>
Event 5 Deleting block blk_<∗> file /<∗>/blk_<∗>
Log events:

Log_id Event_id blk_id
Log1 Event 1 blk_3
Log2 Event 2 blk_6
Log3 Event 3 blk_71
Log4 Event 4 blk_30

Log_id Event_id blk_id
Log5 Event 3 blk_35
Log6 Event 3 blk_54
Log7 Event 4 blk_91
Log8 Event 5 blk_87

2. Log parsing

Blk_3 1 3 5 1 0
0 1 2

0 1 2
1 3 4

1 0 2

1 0

0 1 0 1 0

……………
Blk_6 ……………

……… ………………

Blk_112 ……………

3. Feature extraction

Blk_3:[Event4, Event5, Event7…...……Event22]
Blk_6:[Event7, Event5, Event5……...…Event5]

……………

Blk_112:[Event3, Event6, Event8….…Event21]

4. Anomaly detection

Model Score() Venn-Abers

[p0, p1] p Normal

Abnormal

p<1–𝜀

p>1–𝜀

Model Score() Abnormal

Normal

>=t

<t

Figure 1: Framework of anomaly detection.

Original

data

set

SVM

KNN

DT

RF

GBDT

LR Predictions

Figure 2: Framework of integrated learning Stacking.
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Such function f ðÞ is indeed unique and it can be easily
found using the “pair-adjacent violators algorithm” (PAVA),
described in detail in the summary of [34]. The Venn-Abers
predictor corresponding to the given scoring classifier is the
multiprobabilistic predictor that is defined as follows. Try the
two different labels 0 and 1, for the test object xn, where s0 is
the scoring function for ðz1, z2, z3,⋯, zn−1, ðxn, 0ÞÞ, s1 refers
to the scoring function for ðz1, z2, z3,⋯, zn−1, ðxn, 1ÞÞ, f0
means the isotonic calibrator for

s0 x1ð Þ, y1ð Þ,⋯, s0 xn−1ð Þ, yn−1ð Þ, s0 xnð Þ, 0ð Þð Þ, ð2Þ

and f1 describes the isotonic calibrator for

s1 x1ð Þ, y1ð Þ,⋯, s1 xn−1ð Þyn−1ð Þ, s1 xnð Þ, 1ð Þð Þ: ð3Þ

The multiprobabilistic prediction output by the Venn-
Abers predictor is ðp0, p1Þ, where p0 = f0ðs0ðxÞÞ and p1 = f1ð
s1ðxÞÞ. The Venn-Abers predictor is described as Algorithm 1.

3. Evaluation Methods

Venn-Abers predictors are compared with known probabi-
listic predictors using standard loss functions. Since Venn-
Abers predictors output pairs of probabilities rather than
point probabilities, it is necessary to fit them (somewhat arti-
ficially) in the standard framework generating one probabil-
ity p from the pair: p0 and p1.

3.1. The Validity of Probabilistic Predictions. Probabilistic
prediction can provide reliability estimate on the prediction.
However, the estimated probability should be valid. In this
paper, loss function is used to examine the validity of proba-
bilistic predictions; besides, square loss is applied. Supposing
y is the probability value for predicted label of testing exam-
ple x and y is equal to 1 if the prediction is abnormal; other-
wise, the value of y is 0. The square loss function is described
as

λsq p, yð Þ = y − pð Þ2: ð4Þ

As to the characteristics of the loss function, while the
prediction is correct, the larger the predicted probability
value is, the smaller the loss function is; while the prediction
is wrong, the smaller the predicted probability value is, the
greater the loss function is.

Firstly, supposing that loss function is λsq and given a
multiprobabilistic prediction ðp0, p1Þ, it needs to find the cor-
responding minimax probabilistic prediction p [35]. If the
true outcome is y = 0, it can replace p0 when p is equal to p2

− p0
2. If y = 1, it can replace p1 when p is equal to ð1 − pÞ2

− ð1 − p1Þ2. The first regret as a function of p ∈ ½0, 1� strictly
increases from a nonpositive value to 1 while p changes from
0 to 1. The second regret as a function of p strictly decreases
from 1 to a nonpositive value while p changes from 0 to 1.
Therefore, the minimax regret is the solution to

p2 − p20 = 1 − p2
� �

− 1 − p1ð Þ2, ð5Þ

which is

p = p1 +
p20
2

−
p21
2
: ð6Þ

While calculating the loss function of Venn-Abers’ pre-
diction results, the above formula is substituted into λsq to
calculate the loss function. The smaller the loss function is,
the higher the effectiveness of the prediction is. Therefore,
the index of the effectiveness of the probability prediction
or multiprobability prediction based on the loss function is
defined. Given n testing examples, for different methods,
the root mean square error ðdsqÞ is calculated and compared:

dsq =
∑N

1=1λsq pi, yið Þ
N

: ð7Þ

For each method, the smaller the dsq is, the better the
validity of the method is.

3.2. The Accuracy of Probabilistic Predictions. In order to
measure the accuracy of log anomaly detection, for the
labeled dataset, this paper takes the test set with a true label
of 0 as a positive result; otherwise, it is a negative result. In
this experiment, precision, recall, F-measure, and accuracy
are used as the evaluation of each prediction result metrics.
The calculation about these four values depends on the fol-
lowing values:

(i) TP: the number of prediction results is positive, but
the number is actually positive

(ii) FP: the prediction result is positive, but the number
is actually negative

(iii) TN: the prediction result is negative, and the number
is actually negative

(iv) FN: the number of predictions is negative, but the
number is actually positive

The precision rate formula is shown in (8). It represents
the proportion of positive data predicted by the model as cor-
rect to all positive data predicted. At the same time, the ability
of the model to reduce the false alarm rate can be measured
by it.

P = TP
TP + FP

: ð8Þ

The recall formula is shown in (9). It means the propor-
tion of the data measured by the model are positive examples
to the actual data of the positive examples, and it can describe
the size of the coverage of the positive examples identified by
the model.

R =
TP

TP + FN
: ð9Þ

The accuracy formula is shown in (10). It describes the
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proportion of data judged correctly by the model to the total
data. It can also describe the model’s ability to correctly iden-
tify log anomalies.

Acc = TP + TN
TP + FP + TN + FN

: ð10Þ

The formula of F-measure is shown in (11). It refers to
the harmonic average of precision and recall and is used to
comprehensively measure the precision and recall of the
model.

F‐measure =
2 ∗ Precision ∗ Recall
Precision + Recall

: ð11Þ

4. Results and Discussion

The experiments were conducted on the following platform:
Intel(R) Core(TM) i5-4200U CPU @1.60GHz, 8GB RAM,
and Windows operating system. The dataset comes from
the Hadoop cluster deployed by Amazon on EC2 nodes
[10–12]. It runs the sample Hadoop map-reduce jobs for
almost 39 hours and generates HDFS log data. In particular,
the HDFS logs have well-established anomaly labels, each of
which indicates whether or not a request for a data block
operation is an anomaly. The labels are made based on
domain knowledge, which are suitable for these evaluations
on anomaly detection with different log parsers. Specifically,
the dataset with 11,175,629 raw log messages records 575,061
operation requests with 29 total event types. Among all the
575,061 requests, 16,838 of them are marked as anomalies,
which are used as ground truth in the evaluation.

This dataset only contains logs of events such as adding,
moving, deleting, and their exceptions. HDFS uses a series
of file blocks as its storage unit, and each file block has its
own ID [36]. During the experiment, the original data was
firstly processed into event templates, with a total of 29 mes-
sage types. Event templates with the same blk_ID are
grouped together in order to form a vector. The dimension
of each vector corresponds to a different event template,
and the value of the dimension represents the number of
times the event of the template occurs, so the event count
matrix has a dimension of 575,062 × 29. But during the
actual experiment, many vectors were found to be exactly
the same. In fact, there are only 580 different vectors; that
is, most file blocks go through a common execution action.

Figures 3 and 4 show F1 and F0, respectively, corresponding
to all vectors and deduplicated vectors drawn by Venn-
Abers. In Figure 3 of all vectors, because there are a large
number of repeated vectors, the degree of dispersion of the
F value is poor, and in Figure 4 after deduplication, the dis-
tribution of the F value is obvious. So in the following exper-
imental results, a dataset of 580 feature vectors is used.

4.1. Single Model Performance Comparison

4.2. Comparison of the Validity. The average loss function
value is the average sum of squares of the differences between
the true category and the probability of the predicted result in
all cases. The true category must be 1 or 0 (true or false),
while the prediction result probability is a value between 0
and 1. For a set of predicted values, the lower the average loss
function value, the better the prediction calibration is. The
data is divided into four datasets of different sizes according
to the different feature vectors for testing the loss value. As
shown in Table 1, the loss values obtained by the two
Venn-Abers predictors SVM-VA and LR-VA, developed
based on SVM and LR, have all declined to varying degrees,
which demonstrate the ability of Venn-Abers predictors to
improve the classification performance.

The box plots of the square loss values of LR, SVM, LR-
VA, and SVM-VA in all datasets are shown in Figure 5.
Box plots are mainly used to display the statistical distribu-
tion of data. The figure generation method is used to sort
the upper edge, lower edge, median, and two quartiles of a
group of data and connect the two quartiles to form a box.
The median, the top, and bottom edges are all connected.
From the median loss value, the LR-VA model drops up to
3.6% compared with the LR model, and the SVM-VA model
is 6% lower than the SVM model. Looking at the overall dis-
tribution, the quartiles of LR-VA, LR, SVM-VA, and SVM
are 0.085, 0.088, 0.035, and 0.06, respectively. It can be easily
seen that the LR-VA and SVM-VA models are mainly dis-
tributed in lower areas and have small spans. The model with
the lowest loss value is evaluated as SVM-VA; the SVM
model is second; the LR-VA model is third; the worst per-
forming is the LR model. The assessment criteria of validity
of Venn-Abers predictors are all smaller than that of corre-
sponding underlying methods, which indicated that the
probabilistic prediction conducted by Venn-Abers predictors
is more valid than corresponding underlying machine learn-
ing methods.

Input: training sequence ðz1, z2, z3,⋯, zn−1Þ
Input: test object xn
Output: multiprobabilistic prediction ðp0, p1Þ

fory ∈ f0, 1gdo
set sy to the scoring function for ðz1, z2, z3,⋯, zn−1, ðxn, yÞÞ
set f y to the isotonic calibrator for ðs1ðx1Þ, y1Þð ,⋯, ðs1ðxn−1Þ, yn−1Þ, ðsyðxnÞ, yÞ
py = f yðsyðxnÞÞ

end for

Algorithm 1: Venn-Abers predictor.
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4.3. Comparison of the Accuracy. In Section 3.1, the probabil-
ity pair output by the Venn-Abers predictor is fit to one
probability p, which is easy to compare with other classifiers.
Because the probability p represents the probability that the
predicted label is 1, the larger the p value, the higher the prob-

ability that the predicted label is 1; the smaller the p value, the
lower the probability that the predicted label is 1 and the
higher probability that the label is 0. In the process of system
log anomaly detection in this paper, a label of 0 indicates that
the prediction log is normal, and a label of 1 indicates that the
prediction log is abnormal. The scatter plot of the distribu-
tion between the predicted labels (0 and 1) and the probabil-
ity value p is shown in Figures 6 and 7. If the probability p
results obtained by the Venn-Abers predictor are polarized
in the [0, 1] interval, it means that the quality of the Venn-
Abers predictor is well, as shown in Figures 6(d) and 7(d).
However, during the experiment, the distribution of proba-
bility p is not limited to the vicinity of 0 and 1. Then, accord-
ing to the statistical distribution of the probability p in the [0,
1] interval, the label of the test object will be predicted again.
We exercise some amount of control over these metrics in
Section 3.2 by setting a threshold valuec, where p > c means
that the label corresponding to the test object is abnormal
[37]. During the experiment, the threshold c is adjusted so
as to make the prediction accuracy as close to 1 as possible.

In this way, the probability value can be transformed into
a prediction result, and then, three groups of experimental
results based on Venn-Abers are referred to as VA_0.6,
VA_0.72, and VA_0.8 separately. Compared with the under-
lying threshold-based classification method as shown in
Figure 8, the Venn-Abers predictor-based classification
method has not only been successfully applied but also
improved the accuracy of anomaly detection to a certain
extent. Compared with the underlying threshold-based clas-
sification method in the LR algorithm as shown in Figure 8,
the experimental results obtained by the Venn-Abers predic-
tor are the best while c = 0:72, with accuracy and recall
increased by 2% and 3% precision and F1 values increased
by 1%. While c = 0:8 and 0.6, the experimental results
obtained by the Venn-Abers predictor show more false pos-
itives and false negatives, and the results make it inferior to
the underlying threshold-based classification method.

In the SVM algorithm, the same method is also used for
judgment. As shown in Figure 7, while the thresholds c =
0:6, 0.72, and 0.8 separately, the distribution of the probabil-
ity p and the label. The experimental results of the underlying
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Table 1: The square loss function values obtained by two Venn-
Abers predictors (LR-VA and SVM-VA) and two underlying
algorithms (LR and SVM) in datasets of different sizes.

Dataset
LR SVM

LR LR-VA SVM SVM-VA

HDFS_116 0.300 0.178 0.100 0.080

HDFS_232 0.200 0.155 0.150 0.120

HDFS_348 0.130 0.070 0.160 0.040

HDFS_464 0.080 0.060 0.100 0.090

HDFS_580 0.112 0.094 0.163 0.115

0.05

LR LR-VA

Square loss boxplot

SVM SVM-VA

0.10

0.15

0.20

0.25

0.30

Figure 5: The loss value of different algorithms in all datasets.
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threshold-based classification method SVM and Venn-Abers
predictor are as shown in Figure 9. It can be seen that while
c = 0:72, the accuracy and F1 values of the Venn-Abers pre-
dictor increase by nearly 7%, and the recall increases 13%;
besides, the false alarm rate was reduced from 12% to 3%.
An increase in the number of false positives at c = 0:8 causes
the values of accuracy, precision, and F1 to decrease. While
c = 0:6, the number of false positives decreases but the effect
is not as well as that of c = 0:72. Therefore, it is important
to choose the right threshold. Through the above experi-
ments, it will be found that compared with the underlying
threshold-based method, the Venn-Abers predictor method
will dynamically change the value of c to capture more abnor-
mal data; thereby, it can have better judgments.

The distribution of the probability p in the interval [0, 1]
is analyzed. If the probability p is distributed at the poles of
the interval [0, 1], the detection effect will be the best. While
analyzing the distribution of probability p in the LR model,
the result is that p = 0:487805 occurs 91 times, p = 0:689441
occurs 3,190 times, and p = 0:765957 occurs 12,665 times.
Tracing the feature vector corresponding to the probability
p, the result shows that the feature vector corresponding to
the same probability p has a high degree of similarity, and
only one dimension is different. For example, the feature vec-
tor corresponding to p = 0:689441 is only different from 6
occurrences of event11 and 2 occurrences of event12. The
same situation occurs in the SVM model, the p = 0:738409
occurs 13,258 times, and the feature vector corresponding
to the probability p is either repeated or highly similar. The

detection of a single model cannot make good judgments
on highly similar feature vectors. If model fusion can be used
to take advantage of different algorithms, then the log data
can be further judged so as to obtain better detection results,
which will be discussed in the future.

4.4. Multimodel Performance Comparison. The integrated
learning framework Stacking constructed in Section 2.5 was
used to analyze the performance of multiple models. First
of all, the comparison of classification performance of models
is built separately from the base classifiers (SVM, KNN, DT,
RF, and GBDT) and integrated models. Then, the classifica-
tion performance of Stacking and Stacking-VA in the log
anomaly detection data is compared.

4.5. Underlying Model Analysis. First, using the constructed
feature data and all labels, 80% of the total data is divided into
the training set, and the rest are used as the test set. The five
models (SVM, KNN, DT, RF, and GBDT) are conducted per-
formance tests on log data separately as shown in Table 2.

4.6. Stacking Model Fusion Analysis. The Stacking model
fusion process is as follows: the five underlying classifiers of
SVM, KNN, DT, RF, and GBDT are exerted in order to,
respectively, perform five-fold cross-validation on the train-
ing data. For the first base classifier, the four-fold training
data is used as the training set, and the other is employed
to predict another one-fold validation data, and trainPre1 n
ðn = 5Þ is obtained. At the same time, the prediction dataset
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Figure 6: Scatterplot of the distribution of predicted probabilities p and test labels (0 and 1) in the LR model under different threshold values.
(a) The distribution of probability p and label when threshold = 0:72. (b) The distribution of probability p and label when threshold = 0:6. (c)
The distribution of probability p and label when threshold = 0:8. (d) The distribution of probability p and label in ideal situation.
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does not include five-fold cross-validation, so each time the
model is used to predict the corresponding test data, and te
stPre1 nðn = 5Þ is given. After the training set is five-fold
cross-validated, the average of testPren output from each test

set is taken as testPre1 mean, testPre1, and testPre1 mean which
are spliced together as new feature data ½trainPre1 1, trainP
re1 2, trainPre1 3, trainPre1 4, trainPre1 5, trainPre1 mean�.
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Figure 9: Accuracy of SVM model and Venn-Abers predictors
under different thresholds.

0.20.0 0.4 0.6 0.8 1.0 0.20.0 0.4 0.6 0.8 1.0

0.20.0 0.4 0.6 0.8 1.0 0.20.0 0.4 0.6 0.8 1.0

La
be

l

0

1

0

1

La
be

l

0

1

0

1
SVM scatter plot SVM scatter plot

(a) (b)

(c) (d)

Figure 7: Scatterplot of the distribution of predicted probabilities p and test labels (0 and 1) in the SVM model under different threshold
values. (a) The distribution of probability p and label when threshold = 0:72. (b) The distribution of probability p and label when
threshold = 0:6. (c) The distribution of probability p and label when threshold = 0:8. (d) The distribution of probability p and label in ideal
situation.
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Next, the other four underlying classifiers adopt the above
method to generate new feature data ½trainPre2 1, trainPre2
2, trainPre2 3, trainPre2 4, trainPre2 5, trainPre2 mean�⋯ ½t
rainPre5 1, trainPre5 2, trainPre5 3, trainPre5 4, trainPre5 5
, trainPre5 mean�. Finally, the new feature data generated by
the first five base classifiers are used as new training set data
to train the LR classification model. The model fusion results
are shown in Table 3.

In the experiment, a Stacking model fusion framework
was constructed and compared with the effects of other five
methods. According to the comprehensive analysis, the
effects of the six methods from low to high are DT, SVM,
KNN, RF, GBDT, and Stacking. DT, RF, and GBDT all com-
bine multiple tree models. DT is the underlying classifier, and
one tree determines the prediction result. Its effect is not as
good as DT + Boosting = GBDT and DT + Bagging = RF.
Multiple trees together determine the prediction result. The
GBDT algorithm is an addition model composed of k trees;
thus, the effect is better than DT, and RF greatly increases
the diversity of trees due to the addition of random attribute
selection; thereby, it can achieve better results; Stacking is the
best, Stacking is combined with the underlying classifier
which adopts the relearning method to construct a complex
learning process, and then, it can learn more information.
Therefore, Stacking is based on different algorithms and sec-
ondary learning so as to achieve the optimal generalization
effect.

4.7. Stacking and Stacking-VA Analysis. The Stacking model
fusion algorithm has a score function decision_function(),
which can be used as the input of the Venn-Abers predictor,
thereby constructing the Venn-Abers predictor Stacking-VA
based on the Stacking algorithm. The score function of the
Stacking model and the label corresponding to the test set
are adopted as the input of the Venn-Abers predictor and
the multiprobability sequence values ½p0, p1� as output. p0
and p1 are fused according to formula (6) to obtain an accu-

rate prediction result p, which can be compared with the
experimental index of Stacking fusion.

It can be seen from Figure 10 that it is easy to choose a
dynamic threshold of 0.5 to distinguish the prediction result
of Stacking-VA. The performance comparison of Stacking
and Stacking-VA is shown in Table 4. The performance of
the multimodel fusion algorithm based on Venn-Abers pre-
dictor is better than that of Stacking.

The reason why Stacking-VA predictor is superior to
Stacking can be analyzed theoretically. Stacking-VA uses
dynamic thresholds to predict results based on the distribu-
tion of multiple probability values. Unlike Stacking-
integrated learning using static thresholds, the judgment of
abnormal logs will be more accurate. For example, as shown
in Figure 10, if the dynamic threshold is set to 0.7, the prob-
ability value p is not less than 0.7; then the prediction is nor-
mal; or otherwise, it is abnormal. Stacking through the
decision_tree() function is greater than 0, and it is predicted
to be normal; otherwise, it is predicted to be abnormal, so
that Stacking-VA can capture the labels that Stacking itself
predicts through the dynamic threshold; thereby, it can
reduce the number of false positives.

Integrated learning compares the prediction effect of a
single model. Because the Stacking model makes full use of
the advantages of each algorithm, it effectively reduces the
risk of poor generalization performance of a single model
and makes the distribution of predicted label data closer to
the distribution of real label data. For example, for the single
model, because the feature vectors corresponding to part of
the data are highly similar, the score function cannot be effec-
tively calculated to further make the distribution of probabil-
ity p more dispersed. And this situation will be avoided in
Stacking. In the process of Stacking model fusion, combining
the characteristics of multiple models and relearning can get

Table 2: Model accuracy comparison.

Model Accuracy Precision Recall F1 score

SVM 0.82 0.91 0.81 0.86

KNN 0.88 0.92 0.90 0.91

DT 0.71 0.83 0.70 0.76

RF 0.88 0.92 0.91 0.92

GBDT 0.91 0.91 0.96 0.94

Table 3: The model fusion results.

Model Accuracy Precision Recall F1 score

SVM 0.82 0.91 0.81 0.86

KNN 0.88 0.92 0.90 0.91

DT 0.71 0.83 0.70 0.76

RF 0.88 0.92 0.91 0.92

GBDT 0.91 0.91 0.96 0.94

Stacking 0.93 0.94 0.95 0.97
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Figure 10: Distribution of p values and test labels.

Table 4: Stacking and Stacking-VA performance comparison.

Model Accuracy Precision Recall F1 score

Stacking 0.93 0.94 0.95 0.97

Stacking-VA 0.95 0.96 1.0 0.96
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an effective score function, so that the distribution of proba-
bility p is close to the two extreme values: 0 and 1, which can
reduce the existence of intermediate values.

5. Conclusion

In this work, HDFS is really a dataset to detect abnormal sys-
tem logs. A flexible machine learning framework, Venn-
Abers, was introduced to make precise and valid probabilistic
prediction for the log data. Instead of predicting only a single
label for the unknown object, Venn-Abers predictors are able
to calculate the label probability distribution of a set of sam-
ples and provide evaluation of the validity of predictive labels
with a degree of certainty. This paper attempts to exploit the
Venn-Abers predictor on a single model such as logistic
regression, support vector machine, and integrated learning
algorithm Stacking for log anomaly detection. Two Venn-
Abers predictors are developed and compared with two
underlying classification methods in the aspect of the validity
of probabilistic predictions. The results show that the validity
of Venn-Abers predictors holds all the way as the samples
increased. In terms of probability prediction accuracy, the
Venn-Abers predictors are developed from a single model
and integrated learning methods, and then, the probability
values of the predicted labels are calculated separately. The
probability values and the distribution of the predicted labels
are determined through statistics, and the optimal threshold
is set to more accurately detect log abnormalities.

The experimental results show that the Venn-Abers pre-
dictor under integrated learning can take advantage of differ-
ent algorithms to obtain the best anomaly detection results. It
proves that the Venn-Abers predictor can be effectively
applied in the field of system log anomaly detection from
multiple aspects. The accuracy of machine learning predic-
tion log data results can be evaluated and classified accurately
and validly.

In the future, more diverse scoring classifiers will be con-
sidered to be integrated into this prototype platform for
anomaly detection of system logs. Different underlying algo-
rithms are selected according to the degree of correlation,
which can maximize the advantages of different algorithms.
On the other hand, the Venn-Abers predictor will analyze
the probability interval to further improve the accuracy of
log anomaly detection.
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