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Model predictive control is theoretically suitable for optimal control of the building, which provides a framework for optimizing a
given cost function (e.g., energy consumption) subject to constraints (e.g., thermal comfort violations and HVAC system
limitations) over the prediction horizon. However, due to the buildings’ heterogeneous nature, control-oriented physical models’
development may be cost and time prohibitive. Data-driven predictive control, integration of the “Internet of Things”, provides
an attempt to bypass the need for physical modeling. This work presents an innovative study on a data-driven predictive control
(DPC) for building energy management under the four-tier building energy Internet of Things architecture. Here, we develop a
cloud-based SCADA building energy management system framework for the standardization of communication protocols and
data formats, which is favorable for advanced control strategies implementation. Two DPC strategies based on building
predictive models using the regression tree (RT) and the least-squares boosting (LSBoost) algorithms are presented, which are
highly interpretable and easy for different stakeholders (end-user, building energy manager, and/or operator) to operate. The
predictive model’s complexity is reduced by efficient feature selection to decrease the variables’ dimensionality and further
alleviate the DPC optimization problem’s complexity. The selection is dependent on the principal component analysis (PCA)
and the importance of disturbance variables (IoD). The proposed strategies are demonstrated both in residential and office
buildings. The results show that the DPC-LSBoost has outperformed the DPC-RT and other existing control strategies (MPC,
TDNN) in performance, scalability, and robustness.

1. Introduction

One major challenge in today’s society concerns energy
savings and CO2 footprint in existing and new buildings.
To date, the building sector has witnessed immense devel-
opment in the way by which building systems are man-
aged [1, 2],which aimed at alleviating the significant
environmental impact of this sector (40% of the world
energy consumption and a third of the associated CO2
emissions [3]). Decreasing this impact could be achieved
by elegant controlling the resources [4]; building energy
management systems (BEMS) provides sustainable and
efficient solutions.

An expected BEMS aims to increase energy efficiency
while maintaining the required comfort levels and enhance
environmental effects. However, based on a large number

of practical implementations, it is found that the current
problems in existing BEMS are mainly concentrated in
the following aspects: (1) the traditional BEMS mostly
has relatively sole functions. For example, the systems lack
effective monitoring and linkage management of the
dynamic environment and energy-related equipment, (2)
the family of BEMS is still far from the standardization
of communication protocols and data formats, and (3)
many systems only collect and store data employing local
databases for monitoring and lack supervisory applications
(advanced control, human-machine interactions, data anal-
ysis). The dilemma attributes to the usage of supervisory
control and data acquisition (SCADA) architecture in
existing BEMS [5].

The popularity of the Internet of Things (IoT) and its
successful industrial applications provide a new perspective
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for us to deal with the dilemma above [6–8]. Utilizing the
IoT technology, a massive amount of data is aggregated
into a unified energy management platform. GÃ¼nter
Alce proposes a new concept of IoT interaction [9]. How-
ever, some challenges have arisen. How to manage big
data (transferring, storing, preprocessing, optimization,
and control under a suitable IoT framework) [10]. On
the other hand, delivering useful information to different
stakeholders based on their use is another challenge [1,
11–13]. These challenges pose new questions: what is the
complex SCADA-based BEMS framework under IoT, and
how to build it? On top of these, what are suitable control
strategies for achieving optimal BEMS performance?

Numerous studies have proven that an advanced con-
trol strategy could significantly reduce energy use and alle-
viate greenhouse gas emissions, see, e.g., [14–16]. However,
many buildings currently adopt rule-based control (RBC)
with limited energy-saving capabilities [17–19]. Many stud-
ies have proved that the building sector can significantly
benefit from replacing the current RBC for more advanced
control strategies like model predictive control (MPC) [18].
MPC’s perfect performance is achieved by accounting to
minimize consumed energy and maintain high comfort
indexes while considering physical constraints, weather
forecasts, and building dynamics. In recent years, many
energy-efficient MPC approaches have been validated to
control the building systems [20–24]. Despite these tries,
RBC-based control remains business as usual in the build-
ing sector. A key factor prohibiting this technology transfer
to the commercial sector is the cost, time, and effort associ-
ated with capturing first-principle-based dynamical models
of the building. Also, a gap always exists between the mod-
eled and the real building, and the domain expert must
then manually tune the model to match the measured data
from the building [25, 26].

An alternative approach for implementing MPC is
using control-oriented data-driven predictive models. In
the literature, this approach is called data predictive control
(DPC) [25]. In [27, 28], the authors proposed MPC closed-
loop optimization strategies based on neural networks
(NN) for energy-saving control in buildings both in com-
mercial and residential buildings, respectively. However,
these approaches are not easily scrabbled to different types
of buildings [29]. NN is employed in the closed-loop con-
trol scheme to determine control performance indexes
instead of neural network-based system state dynamics.
Unfortunately, since NN, a nonlinear nature, the comple-
mentary MPC-based optimization problem becomes com-
putationally more demanding when the neural network’s
complexity is high.

To overcome this complexity above, the regression tree-
based approaches were employed in the literature to develop
data-driven predictive models. Authors in [30, 31] developed
RT and random forest for building control in different set-
tings. However, the simulation results demonstrated that
these models were trapped in limitations due to overfitting
and high variance [5]. In [18], a well-performing approxi-
mate MPC via machine learning has been developed based
on two multivariate regression algorithms, namely, deep

time-delay neural networks (TDNN) and regression trees
(RT) on Hollandsch Huys, which is an office building in Bel-
gium. This approach mentioned above is an advantage which
is the simplified control laws that retain comparable perfor-
mances with MPC. However, the RT-based controller scored
worse in performance than a well-tuned PID controller,
which dates back to modeling inaccuracy. To overcome the
drawbacks of previous works above, we present an ensemble
learning algorithm, called least-squares boosting (LSBoost),
which integrate multiple decision trees to produce robust
models. The residential building model data in [18] will also
be used in our simulation and validation. What is different
from prior studies is our work focus on data-driven optimi-
zation control of BEMS both in residential and office build-
ings under the IoT framework.

In this paper, we develop a data-driven energy optimiza-
tion control strategy based on an improved LSBoost under a
layered building energy IoT framework, which improves the
occupants’ comfort and reduces energy consumption. We
validate the proposed control scheme by numerical simula-
tion with two types of buildings: residential building and
office building. The work has the following contributions:

(1) We develop a novel four-tier building energy internet
architecture. This architecture is used for managing
data from both IoT devices and BEMS, by using a
cloud-based user-friendly human-machine interac-
tion interface. The motivating factor behind the
developed architecture will be elaborated details in
Section 2. The platform above can provide useful data
representations to different stakeholders (end-user,
building energy manager, and/or operator), enabling
flexibility and scalability.

(2) An optimization strategy is the first strategy pro-
posed for building energy management based on
the improved LSBoost. The LSBoost algorithm is
used to enhance the building model’s interpretability
and reduce complexity without losing accuracy. The
optimization problem takes the optimal index of
human comfort into account the constraints to
ensure a good living and office environment.

The remainder of this paper is organized as follows. A
novel building energy internet architecture is presented in
Section 2. In Section 3, two types of buildings, namely, resi-
dential and office buildings, are built. Section 4 defines the
finite receding horizon control problem with the DPC frame-
work. We compare the performance of the DPC-LSBoost
with the MPC, the TDNN, and the DPC-RT in Section 5.
Conclusions and further work are provided in Section 6.

2. Building Energy IoT System Architecture

This section describes a complex cloud SCADA-based BEMS
framework under the IoT, which is necessary for successfully
implementing DPC in public buildings.

2.1. Cloud SCADA System.When the existing SCADA-based
BEMS framework meets the IoT, the local servers will feel
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helpless against a massive amount of data. Also, the existing
SCADA-based BEMS is still far from the standardization of
communication protocols and data formats, which is unfa-
vorable for advanced control strategies implementation. We
decided to develop a cloud-based SCADA system and its eco-
system to deal with the problem above. The cloud-based
solution’s motivation is its compatibility with user-friendly
and easy access to the real data, instead of additional hard-
ware investments [32].

2.2. Four-Tire Building Energy IoT System Architecture.
The existing SCADA-based control layers in a BEMS con-
stitute three separated layers [33], and those are (1) field
layer (sensors, actuators, controllers), (2) automation layer
(signal processing, controlling, alarms activating), and (3)
management layer (system data presentation, trending,
logging, and archival). The IoT also consists of three sep-
arate layers: (1) perception layer, (2) network layer, and
(3) application layer. However, we introduce a four-tire

client-server software architecture web platform consisting
of four layers: perception control layer, network transmis-
sion layer, data intelligence layer, and representation layer.

The motivation factor behind the four-tire architecture
is the complementary advantages for the SCADA architec-
ture and the IoT architecture. One of the main advantages
of using a SCADA configuration is that the control and
communication flows can be presented sequentially [5].
However, the strength of the IoT configuration is the abil-
ity of data processing in-depth. Based on the reasons men-
tioned above, we define the first 3 layers. In addition, to
make IoT data form building useful to different stake-
holders, we decide to develop the presentation layer as
the fourth layer. The idea is inspired by a building lifecycle
data management strategy in [1]. The architecture of the
IoT in the building energy system is shown in Figure 1.

(1) Perception control layer: in BEMS, this layer is
endowed with two primary functions:
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Figure 1: The overall architecture of the IoT in the building energy system.
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(a) Collecting sensor data of environment parame-
ters (such as indoor and outdoor temperature,
humidity, and wind speed), power consumption,
pressure difference, water flow, and heat

(b) Receiving control signals from the field control-
lers or executing agencies to ensure that the con-
trol objectives, i.e., heating unit refrigeration unit,
works properly.

(2) Network transmission layer: the Internet of Things
communication technology such as NB-IoT, 5G, is
utilized to ensure the sensor data upload and control
signal U transmission.

(3) Data intelligence layer: this layer consists of two sub-
layers: the data sublayer and the supervision layer.
The data collected by sensors will be filtered and
fused first, and the abnormal signals are checked to
ensure the data’s integrity and accuracy, which is
stored in the database. Then, the existing data is used
to establish the control-oriented building models.
The supervision sublayer is based on the data-
driven predictive model, according to the set optimi-
zation objectives, using the optimization control
technology developed in this paper (such as the
MPC, the DPC-RT, the DPC-LSBoost, and the
TDNN), to form the control strategy, such as ensur-
ing the building’s indoor environment control
requirements while making the building energy con-
sumption lowest.

(4) Presentation layer: the presentation layer endows two
main functions: visual programming Language
(VPL) interface and textual programming language
(TPL) interface—dashboard. The dashboard is an
information management tool for different stake-
holders, including the environmental parameters set-
ting, real-time monitoring data display, the PMV
value, and energy consumption prediction.

3. Building Modeling and Analysis

This section describes the linear time invariant (LTI) state
space model (SSM) for residential buildings used in this
study.

Firstly, the internal structure of complex building is mod-
eled. Its purpose is to accurately build the HVAC system and
internal housing structure. Moreover, the house is easily
affected by the natural environment. The disturbance of the
external environment to the building should be considered.
Common disturbances include ambient temperature, light
intensity, wind speed, humidity, and other disturbance infor-
mation so that the mathematical model can be close to the
real building.

3.1. Residential Building Modeling

3.1.1. Model Description. The building model is located in a
six-bedroom townhouse in Bruges, Belgium. The residential
building consists of 6 guest rooms, 5 windows, and 11 single

buildings with external walls. For the temperature control
system of residential buildings, the central steam furnace is
used for heating. For the building’s parameters, including
building area, room orientation, and other information,
please refer to the literature [18].

At the beginning of building the model, the Modelica
building envelope model is implemented by using idea
library, but its complexity cannot be directly used as a
state-space model. A large number of collected data are non-
linear and need to be linearized before they can be used. For
example, the heat generated by solar radiation: the equation
of sunlight transmission and absorption through windows
is highly nonlinear, so if you want to deal with it, you have
to use a nonlinear filtering algorithm. For these unprocessed
data, to remove the burr, the processing algorithm is
extended Kalman filter [34]. After linearization, the state
space expression can be constructed. For a complete descrip-
tion of building state-space expressions, please read the paper
[35]. The sampling interval for humidity, temperature, wind
speed, light, and other sensors is 15 minutes in the sensor and
control layer. Therefore, the discrete space expression is con-
structed as follows:

xk+1 = Axk + Buk + Edk, ð1aÞ

yk = Cxk +Duk: ð1bÞ
In the above equation, xk, uk, and dk, respectively, repre-

sent the state, input, and disturbance variables at time k; y is
the output variable; the model’s sampling frequency is Ts =
900 sec. The disturbance signal dk presents the heat absorbed
and the direct and diffuse solar radiation transmitted by each
window such as radiation temperature of ambient and sky
temperature, ambient temperature, and ground temperature.
Table 1 summarizes the dimensions of the building model
variables used.

3.1.2. Model Analysis. House analysis is the analysis of the
established model (SSM). From the house’s perspective,
entering a changing curve to reflect the change of the indoor
temperature of the model without the control of the control-
ler. Entering U

U50∗1348 = R6∗1348D44∗1348½ �,
R6∗1348 = 20 + 3 ∗ sin t + k ∗ tsð Þ k = 1, 2⋯ 1348ð Þ,

ð2Þ

with R6∗1348 as the input temperature input, the external
environmental disturbance as D44∗1348, k as the sampling

Table 1: Dimensions of key variables in the building model.

Notation Description Values

nx Number of states 286

nu Number of inputs 6

ny Number of outputs 6

nr Number of output references 6

nd Number of measured disturbances 44
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Figure 2: 14-day temperature variations of 6 rooms.
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Figure 3: 14-day temperature variations with office building.
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time, and the sampling interval as 4 hours ts = 4 ðhourÞ.
The total number of simulation days is 14 days. Two
weeks can reflect the changing trend of the model temper-
ature, so as to better design the controller. Figure 2 shows
the temperature change of 6 rooms in 14 days.

The overall trend of changes in the 6 rooms is consistent
with the gradual decrease in temperature. However, it is quite
different from the preset temperature. The maximum tem-
perature of the ROOM2 can reach 37°C, which is 10°C higher
than the other two models. The same goes for other room
temperature trends. Therefore, for the model, the stability
of the model is the most important. A major feature of the
choice of the building body model is stability and robustness.
Such a building conforms to the human habitation. And
when the controller is not added, the temperature of the
room will gradually decrease, and, finally, drop to 7°C.

3.2. Office Building Modeling

3.2.1. Model Description. The office building is modeled by
Hollandsch Huys, and the building is located in Hasselt, Bel-
gium. Hollandsch Huys represents a class of geotab buildings
[36]. Hollandsch Huys is a 5-storey building, including 3-
storey office areas located in the ground floor, first floor,
and second floor; underground garage; and top loft. When
building the office building model, considering the complex-
ity of the model and the personnel distribution, it is mainly to
build a model for the three floors of the office area. Please
refer [37] for the main parameters of relevant building
structures.

Similarly, the office building’s SSM is established by
using the method described in 3.1. The office building’s
SSM construction is consistent with that of the residential
building construction, please refer to Equations (1a) and
(1b). Compared with residential buildings, the SSM of
office buildings is more complex, and the variable dimen-
sion is higher. The dimensions of the Hollandsch Huys
building model variables nx, nu, ny, nr , and nd are 700,
20, 12, 20, and 301, respectively.

3.2.2. Model Analysis. For an excellent mathematical model,
we hope that the model we build can be applied, so we need
to simulate the established SSM and simulate the output-

Table 2: Notation and meaning of the variables used in optimization control.

Notation Units Description Control setup

x [K] Building temperatures States

y [K] Controlled temperature Outputs

r [K] Reference temperature References

u [W] Radiators heat flows Inputs

d [K,W] Temperatures, heat flows, and radiation gains Disturbances

s [K] Comfort band violations Slack variables

ub [K] Upper comfort boundary Constraints

1b [K] Lower comfort boundary Constraints

Temperature
preset

value X

Disturbance
signal d

DPC control
optimizer

Building

Output
temperature

signal Y

Estimator

Control
signal U+

−

Figure 4: Schematic representation of the building optimal control closed-loop system using the DPC controller.

Table 3: Corresponding level of CIHB index.

CIHB Level Corresponding to human feeling

>85 4
Very hot and uncomfortable

Need to protect against heatstroke

~ 85 3 Too hot; need to heatstroke prevention

~ 79 2 Hot, uncomfortable, needs to be cooled

~ 75 1 Warm, comfortable

59 ~ 70 0 Most comfortable and acceptable feeling

~ 58 -1 Cold and uncomfortable

~ 50 -2 Cold and uncomfortable. Keep warm

~ 38 -3 Very cold, keep warm, and cold protection

≤25 -4 Extreme cold, prevent frostbite
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output relationship to evaluate the established model’s qual-
ity. The input we take this time is U

U321∗1348 = R20∗1348 D301∗1348½ �,
R20∗1348 = 23 + 3 ∗ sin t + k ∗ tsð Þ k = 1, 2:::1348ð Þ,

ð3Þ

with R20∗1348 as the input temperature, external environment
disturbance asD301∗1348, k as the sampling time, the sampling
interval as 4 hours, ts = 4hours, and the total number of sim-
ulation days as 14 days. The simulation results are shown in
Figure 3.

It can be seen from Figure 3 that the SSM is constructed.
The temperature change is greatly affected by external

Require:A, B, C,D, E matrix, temperature boundary lb,wb, DPC horizon N , data set, model (select control method such as RT , LSb
oost)
Ensure:U
Step 1:Build a prediction model.
(A)Data dimensionality reduction, feature selection(Algorithm 2 and Algorithm 3).
(B)Training data to build a model.
if Model==RTthen.

Build RT model MRT .(Algorithm 4).
else if Model==LSBoostthen.

Build LSBoost model MLSBoost .(Algorithm 5).
ends
Step 2:Model optimization cossntrol.
whilek <Ndo.
(A)Calculate the uk ′ from MRT or MLSBoost:

(B)Through Equation 1, calculate yk ′.
(C)Update uk ′,yk ′.
(D)Solve Equation 5 and obtain (u∗k∣k, u∗k+1∣k,⋯, u∗k+N−1∣k).
(E)uk ⟵ u∗k∣k and k← k + 1.
end
returnU = fu0, u1,⋯, uN−1g

Algorithm 1. Building data-driven predictive control.

Require: feature vector x important features p:
Step 1:Compute the covariance matrix of the feature vector x:Σ = ð1/mÞxTx
Step 2:SVD decomposition of the covariance matrix Σ,Σ =USVT ∗U , S are the principal component coefficients and variances.
Step 3: Matrix S accounts for the proportion of total features,and call it as vi,

vi = Si,i/trðSÞ
∗trðSÞ is the trace of the matrix S.
Step 4:Select the principal component variance corresponding to the q most significant singular values,

max q s:t:∑q
i=1 vi ≤ η

Step 5:Compute the normalized contribution vj of the j-th feature xj on selected principal components.

vj =∑ jUj,1,⋯,qj/max1≤k≤nx ð∑
q
i=1 jUk,1jÞ

Step 6: The p most important features that satisfy ψ are selected,
returnp = fi ∣ vj ≥ ψ,∀∈Nnx

0 g

Algorithm 2. PCA feature selection.

Require: Perturbation matrix E in equation 1
Ensure: most important features q
Step 1:Compute the l1 norm of each column vector in matrix E, given as IODi.

IODi =∑nx
j=1 kEi,jkl1 i ∈ 1,⋯, nd

Step 2:IODi Feature normalization,
AIODi = ðIoDi/∑

nd
i=1 IoDiÞi ∈ 1,⋯, nd

Step 3:Select the disturbance feature q that satisfies the threshold ζ.
returnq = fi ∣ AIoDi ≥ ζg i ∈ 1,⋯, nd

Algorithm 3. The importance of disturbing variables (IoD).
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disturbance. As long as the input has a temperature change,
the output temperature will be severely affected. The building
model itself is a time-delay system, so the temperature of the
output will change greatly. It is difficult to output the input of
tracking. From Figure 3, The temperature of each room may
change abruptly, and either it becomes very high or very low.
This established model has a certain distance from the actual
model. However, it is still in a stable state for the entire sys-
tem. Therefore, it is necessary to design a controller for the
built house building model. The most significant purpose of
the controller is to achieve stability and stability within the
human comfort zone.

4. Data-Driven Predictive Control

The supervision sublayer design’s primary purpose is to
design the controller, which plays the role of the control
decision. Because the control effect of the designed control-
ler will directly affect the indoor temperature and human
comfort, the controller design should be deeply analyzed
from the complexity, real-time, and robustness. The more
commonly used controllers in the market should be compre-

hensively analyzed, and finally, the DPC-LSBoost controller
should be selected. Because the DPC-LSBoost controller has
a perfect explanation, the regression tree constructed is
straightforward and easy to understand, convenient for
management, and decision-making.

4.1. Control Optimization Design for Comfort Objective. In
the building energy management system, most of the
designed design controllers need to meet certain comfort
and economic practicality. Therefore, when designing the
controller, the reference input is a range instead of a specific
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(a) The importance of building disturbances in residential buildings
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Figure 5: The IoD profile on two types of buildings.

Table 4: Comparison of the disturbance features of the two
buildings.

No. of
the

original

No. of
the

(PCA)

No. of
the (E)

No. of
the

selected

Reduction
rate (%)

Residential 44 12 8 8 81.81

Office 301 14 16 12 96.01
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value, which is called the comfort zone. This paper adopts the
ISO-7730 standard [38], which specifies the upper limit of
temperature between ub ∈ ½23, 26� and the lower limit of lb
∈ ½20, 23�. Equation (4) defines the mathematical expression
of the temperature comfort zone.

lbk − sk ≤ yi,k ≤ ubk − sk, ð4Þ

with s as a slack variable, k as a time series, and yi,k rep-
resents the ith room temperature at time k. It is necessary
to ensure that the output temperature is within the com-
fort zone, so as to minimize the sk and the room energy
consumption. However, the ideal comfort and energy con-
sumption are contradictory. In order to solve this prob-
lem, the control problem is transformed into an
optimization problem. Table 2 lists the symbols and mean-
ings of variables frequently used in this section.

Figure 4 is a control structure diagram designed to solve
this optimization problem. The purpose of control is to
achieve minimum energy consumption and maximum
human comfort, which involves two variables: the control
signal U and the output temperature Y . In summary, Equa-
tion 5 established an optimization function.

minu0,⋯,uN−1
〠
N−1

k=0
Qs skk k22 +Qu ukk k22
� �

, ð5aÞ

s:t:xk+1 = Axk + Buk + Edk, k ∈NN−1
0 , ð5bÞ

yk = Cxk +Duk, k ∈NN−1
0 , ð5cÞ

lbk − sk ≤ yk ≤ ubk − sk, k ∈NN−1
0 , ð5dÞ

x0 = x tð Þ, ð5eÞ
d0 = d tð Þ, ð5fÞ

59 + 3 · 2
ffiffiffi
v

p
− 32 − 0:143 + 0:143RH

0:81 + 0:143 + 0:143RH

≤ yk ≤
70 + 3:2

ffiffiffi
v

p
− 32 − 0:143 + 0:143RH
0:81 + 0:99RH

,
ð5gÞ

with Nb
a = fa, a + 1,⋯, bg as a set of integers, and xk,uk,yk

and dk represent state, input, output, and disturbance var-
iables, respectively. The prediction range is N , and k is the
k-th moment in the prediction range. (5b) and (5c) are the
time-invariant state space expressions of the building (5d).
The lower boundary lbk and the upper boundary ubk are
taken into consideration. (5g) introduces the popular
Comfort Index of Human Body (CIHB) in recent years
[39] and divides it into 9 levels to evaluate comfort
Table 3. The index also considers the effects of average
temperature, relative humidity and wind speed on human
comfort. Equation (6) is shown below.

CIHB = 1:8y − 0:55 1:8y − 0:26ð Þ 1 − RHð Þ − 3:2
ffiffiffiffi
V

p
+ 32

ð6Þ

with y as the average temperature °C, RH as the average
humidity (%), and V as the wind speed ðm/sÞ. According
to Table 3, comfort level 0 is the most liveable environ-
ment for the human body. The CIHB index should be
the most reasonable at 59 ~ 70, which is converted into
an inequality (5 h) about temperature, to construct a con-
straint (5e). Limit the maximum and minimum bound-
aries of the control signal uk. (5f) and (5g) set the initial
parameters. (5a) indicates that the objective function
finally constructed by the optimization problem outputs
a sequence u0, u1,⋯, uN−1 under the influence of 7 con-
straints, so that the output control amount is minimized,
the objective function ∥·∥22 represents the square of the sec-
ond norm, sk is a slack variable, uk is a control variable,
Qs represents the weight of human comfort, and Qu repre-
sents the weight of energy consumption. The weighting
matrices Qs and Qu are given as positive definite diagonal
matrices. Set it to Qs/Qu = 107. The first term in the objec-
tive function is the square with the lowest degree of com-
fort violation, and the second term is the square with the
lowest energy consumption.

The architecture of DPC is shown in Algorithm 1. The
DPC-LSBoost is a DPC algorithm with the LSBoost model.
The DPC-RT is a DPC algorithm with the RT model.

4.2. Feature Selection. This section proposes a simple and
systematic approach for the efficient feature selection
(FS) of predictive models in the context of building energy
control applications. Because the method introduced in
this section is versatile, it can be used to identify and
select the most relevant variables in a dynamic building
model, reducing model complexity, or reducing the cost
of sensing equipment in practice. For current building
data, feature selection based on principal component anal-
ysis (PCA) is first proposed. The simplicity and the PCA
algorithm efficiency are well known, so we choose the
method described in [40] to perform feature selection on
the dataset we build. Algorithm 2 shows the PCA feature
selection progress.

xi ≤ ti

xj ≤ tj xj > tj

xi  > ti

R1 R2 R5

R4R3

Figure 6: After dividing the regression tree twice, we get 5 sets
R1,⋯, R5.
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Now, we consider that there are N sets of observations in
a data set, and each set of observations contains s features and
n outputs, written as a mathematical expression as follows:

xi ≔ xi1, x
i
2,⋯, xis

� �
∈ Rs

yi ≔ yi1, y
i
2,⋯, xin

� �
∈ Rn

i ∈ 1, 2,⋯,Nf g
: ð7Þ

The xi shown in Equation (7) encapsulates all parameters
that change over time, for example, the current state quantity
xðtÞ, the current and future disturbance variable dðtÞ,⋯,
dðt + kTsÞ in Equation 1, and comfort boundary signals l
bðtÞ,⋯, lbðt + kTsÞ and ubðtÞ,⋯, ubðt +NTsÞ. Among
them, the feature selection for disturbance is mainly con-
sidered in the degree of influence of the disturbance vari-
able dt on the system. Among them, the feature selection
of the disturbance is mainly considered to the degree of
influence of the disturbance variable dt on the system.

In algorithm 2,the data variables have a large dimension,
so the PCA feature selection is utilized to reach a more
appropriate dimension, and the accuracy thresholds η =
0:99 and ψ = 0:99 are chosen.

Then, with the house disturbance model, the matrix E of
the LTI model constructed in Equation 1 considers the dis-
turbance’s influence on the system.

Figure 5 shows the impact of construction disturbance
both in residential and office buildings. The higher the index
of AIODi means the higher impact of the disturbance on the
system performance.

Therefore, from the above two types of algorithms, the
most relevant features can be filtered, and the intersection
of the two sets is taken as the FS that is finally selected.

FS = p ∩ q, ð8Þ

where p is the important feature set, and q is the important
disturbance set.

So, the distribution features of the models can be
obtained, as shown in Table 4. The features of residential
buildings and office buildings are 81.81% and 96.01%, respec-
tively. It is shown that the more features mean better results
using this feature selection method. It also means that many
of these features are redundant.

4.3. Design of the DPC-RT Controller. This section focuses on
the prediction modeling of multiple output regression tree.
Because of a lot of advantages of the regression tree, the con-
troller adopts a very representative The controller adopts a
very representative regression tree method in machine learn-
ing because of the RT advantages. Tree method in machine
learning. The regression tree, as the name implies, is to use
tree model to do regression problems, and each leaf will out-
put a prediction value. The predicted value is generally the
mean value of the output of the training set elements con-
tained in the leaf,

ym = ave yi ∣ xi ∈ leafm
� �

, ð9Þ

with ym as the predicted output value of the m-th leaf. When
xi ∈ leafm, the training set outputs yi. ave means averaging.

The nodes of the tree split are shown in Figure 6. With
each split, the regression tree divides the current data set into
two subsets. For example, in i-th divided nodes, the left
branch tree RL contains data divided by xi ≤ ti, and the right
branch tree RR contains data divided by xi > zi. Then, the
optimal segmentation point of each node is determined by
minimizing the sum of the mean square errors of the two
branches. The equation is

xk, tkð Þ = argmin 〠
i∣xi∈RLf g

yi1 − �yL
� �2 + 〠

i∣xi∈RRf g
yi1 − �yR
� �2,

ð10Þ

with �yL, �yR ∈ R, respectively, that represents the average out-
put of all points of the left branch tree RL and the right
branch tree RR and finds the smallest xk corresponding tk
by traversing in sequence. In this way, we can introduce the

Require: Data in Equation (7) and a Loss Function Equation (11)
Ensure:Tmin

Step 1:Using Equation (11) to recursive binary splitting makes a large tree T0 on the training data.
Step 2:Use K-fold cross-validation to choose best tree.
For k =1,...,K:
Apply cost complexity pruning(prune) to the large tree in order to obtain a sequence of best subtrees, as a function of α.
end
Step 3:After k-th fold, An optimal tree Tiin is selected.Tmin = argmin

Tk

αk, k = 1,⋯, K

returnTmin

Algorithm 4. Regression tree algorithm.

Ensemble
learning

Bagging

Boosting

Random
forest

Gradient
descent tree

Figure 7: Ensemble learning classification.
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xi≤ ti

xj ≤ tj xj > tj

xi> ti xi≤ ti

xj ≤ tj xj> tj

xi > tiF0 (x)

F1 (x)

FM (X)

Weak learner 1 Weak learner M

Figure 8: Schematic representation of the LSBoost model.

Require: Data fðx, yÞgni=1 and a Loss Function Lðyi, FðxÞÞ
Ensure: FMðxÞ

Step 1:Initialize model with a constant value:
Step 2:for m=1 to M:
(A) Compute
rim = −½∂Lðyi, FðxiÞÞ/∂FðxiÞ�FðxÞ=Fm−1ðxÞ for i = 1,⋯, n
(B) Fit a regression tree to the Rim values and create terminal regions Rim for j = 1⋯ Jm.
(C) For j = 1⋯ Jm compute
γim = argmin

γ
∑xi∈Rij

Lðyi, Fm−1ðxiÞ + γÞ
(D) Update

FmðxÞ = Fm−1ðxÞ + v∑Jm
j=1 γimIðx ∈ RjmÞ

Step 3:
return FMðxÞ

Algorithm 5. LSBoost algorithm.

Table 5: Complexity comparison of multiple methods.

PCA RT LSBoost IOD DCP-RT DCP-LSBoost

Time complexity O kndð Þ O n log nð Þdð Þ O n log nð Þdkð Þ O n2ð Þ O n log nð Þdkð Þ O n log nð Þdð Þ
Spatial complexity O knð Þ O Dð Þ O Dkð Þ O ndð Þ O kn + dk + ndð Þ O kn + nd +Dð Þ

Figure 9: A snapshot of the developed building energy management system (the building image data source: [18]).
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weight matrix Q ∈ Rn∗n and introduce it into the quadratic
optimization function as an adjustable parameter.

xk, tkð Þ = argmin 〠
i∣xi∈RLf g

yi − �yL
� �T

Q yi − �yL
� �

+ 〠
i∣xi∈RRf g

yi − �yR
� �T

Q yi − �yR
� �

:
ð11Þ

Both Equation (10) and Equation (11) provide two solu-
tions to get the optimal ðxk > tkÞ. The more times the tree is
split, the more accurate the result. In terms of (9) and (10),
the end conditions for building a tree are the same.

The process described above may produce good predic-
tions on the training set but is likely to overfit the data, lead-
ing to poor test set performance. A smaller tree with fewer
splits (that is, fewer regions R1,⋯, Rm) might lead to lower

Table 6: Machine learning parameters and dimension overview.

Notation Variable description ML setup
Residential dimensions Office dimensions

RT and LSBoost TDNN RT and LSBoost TDNN

~x Training input All features 27 36 41 62

y Output Selected features 6 6 12 12

lb Comfort zone lower border Selected features 1 1 1 1

~d Disturbance Selected features 8 8 12 12

t Time Transformed features 3 3 3 3

u Training output/training output Targets 6 6 20 20
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Figure 10: Comparison of the investigated temperature control performance in ROOM6.
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Figure 11: Comparison of the investigated controllers with respect to energy consumption in ROOM6.
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variance and better interpretation at the cost of a little bias.
Therefore, a better strategy is to grow a very large tree T0
and then prune it back in order to obtain a subtree. Intui-
tively, our goal is to select a subtree that subtree leads to the
lowest test error rate.

Tmin = min 〠
∣T∣

m=1
〠

i:xi∈Rm

yi − �ym
� �2 + α Tj j: ð12Þ

For each value of α, there corresponds a subtree T ∈ T0
such that is as small as possible. Here, ∣T ∣ indicates the num-
ber of terminal nodes of the tree T , Rm is the rectangle (i.e.,
the subset of predictor space) corresponding to the mth ter-
minal node, and ym is the predicted response associated with
Rm-, that is, the mean of the training observations in Rm. It
turns out that as we increase α from zero in prune, branches
get pruned from the tree in a nested and predictable fashion,
so obtaining the whole sequence of subtrees as a function of α
is easy. This process is summarized in Algorithm 4.

In short, when the data set is a continuous variable, the
objective function of the optimal segmentation of each input
feature is determined firstly. And then the input element with

the lowest cost is used as the segmentation variable. In this
way, we obtain the tree model Tmin from Algorithm 4.

4.4. Design of the DPC-LSBoost Controller. Although the
regression tree has the advantages of faster training and pre-
diction speed, it is also good at obtaining the nonlinear rela-
tionship in the dataset; however, it still suffers from
regression tree’s poor scalability that needs to be solved. We
change the regression tree structure from a single tree to mul-
tiple trees, enhancing the system’s stability and robustness.
Figure 7 illustrates that the enhanced tree belongs to the
branch of ensemble learning and includes two types of boost-
ing and bagging. The main focus is on reducing bias. The lat-
ter is mainly about reducing variance. Representative
learning algorithms are random forest and gradient descent
tree. The full name of LSBoost is least-squares boosting
which is a boosting algorithm in ensemble learning. It
inherits the advantages of regression trees and is developed
on the classification and regression tree (CART) algorithm.
Actually, a regression tree is a weak learner.

The LSBoost is an improvement on the gradient boosting
decision tree (GBDT) algorithm. It has been improved from a
previous classification algorithm to a regression algorithm.
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Figure 12: Control profiles of the DPC-LSBoost controller.
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Like other boosting trees, LSBoost is training hundreds or
thousands of weak learners like CART and iteratively updates
the error and eventually becomes a strong learner, which is
also the advantage of ensemble learning. Namely, each tree
is part of the training of the current optimal. All the optimal
are combined to build the strongest integrated tree. The sche-
matic description of the LSBoost model is shown in Figure 8.

The difference between LSBoost and GBDT is that GBDT
chooses to use the Gini index when the tree splits nodes,

while LSBoost uses the minimum error square as the loss
function at the tree split nodes as shown in Equation (13).

L yi, F xð Þð Þ = 1
2

yi − F xið Þð Þ2, ð13Þ

with xi that represents the i -th set of feature data in the
training set, xi as the observation value corresponding to
xi in the training set, and FðxÞ as the current prediction
data. The loss function setting here is not fixed. The
degree of fit can be checked through the trained data, eval-
uate through some indicators, such as R-square and RMSE,
and choose a suitable loss function for the current data.

LSBoost uses Equation 13 as a loss function to facilitate
the data differentiation, simplify operations, reduce compu-
tational complexity, and reduce training time. For the entire
system, it speeds up the system response and enhances
robustness. Therefore, the constructed LSBoost algorithm is
as follows.

Algorithm 5 shows the method of constructing the
LSBoost controller by training on the data set. The input
training data is the same as Equation (7), the number of
trainings is M times, the loss function uses Equation (13),
and the second step (B) is the RT weak learner established.
v is the learning rate, ranging from 0 to 1, with a default value
of 0.1. Finally, the prediction value FMðxÞ afterM trainings is
output.

4.5. Algorithm Complexity Analysis. The algorithm complex-
ity can reflect the actual operation of the algorithm, which is
divided into time complexity analysis and space complexity
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Figure 13: Selected most relevant external disturbance signals (8 signals).

Table 7: Detailed description of the disturbance signal.

Variable Unit Disturbance description

D1 W½ � Direct sunlight in horizontal plane

Weight sun radiation

D2 K½ �
Temperature between ground

and sky temperature 1

Weight sun radiation

D3 K½ � Temperature between ground
and sky temperature 2

D4 [W/m2]
Direct sun radiation on vertical

surface with orientation 3

D5 [W/m2]
Diffuse sun radiation on vertical

surface with orientation 3

D6 [W/m2]
Direct sun radiation on vertical

surface with orientation 4

D7 [W/m2]
Direct sun radiation on vertical

surface with orientation 5

D8 K½ � Ambient temperature
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analysis. For this reason, the DPC based on Algorithm 1 is
used to analyze the influence of RT and LSBoost algorithms
on the system. Table 5 shows the comparative analysis of
time complexity and spatial complexity in multiple methods.

D means the maximum depth of tree. n means the num-
ber of samples in the training set. d means the dimension of
the data. k means the number of principal components.

5. Simulation and Verification

The Internet of Things platform used in this simulation
experiment is a network service platform built by Nod-
RED, MQTT broker, and other tools. Figure 9 demonstrates
the current operation state, such as real-time sensor data dis-
play, energy consumption prediction curve, and log.

In this section, the case study’s simulation results for
indoor temperature control and energy consumption of res-
idential buildings and office buildings for 15 days are demon-
strated. We mainly focus on validating the proposed control
strategies’ performance for all investigated controllers (the
TDNN, the MPC, the DPC-RT, and the DPC-LSBoost).
The simulation objects selected this time are residential
buildings (Section 3.1) and office buildings (Section 3.2).
Based on the feature selection introduced in Section 4.4, we
construct the reduced feature space ~x dimension of the
LSBoost model and the RT model to participate in training,
following Equation (14).

ny + 2 n~r + n~dð Þ + nt , ð14Þ

with ny as the number of output variables, and nt as time con-
verted into three sinusoidal signals with different frequencies,
which correspond to days, weeks, and months, respectively.
n~r is the reference input, and n~d is the number of disturbance
signals after feature selection. An overview of control vari-
ables and machine learning parameters is given in Table 6.

For the residential building, the dimension of ~x is calcu-
lated by Equation (14): ∗ny = 6, n~r = 1, n~d = 8,and nt = 3.
For the office building, the dimension of ~x is calculated by

Equation (14): ∗ny = 12, n~r = 1, n~d = 12,and nt = 3. More-
over, the reference input lb and the disturbance d at the cur-
rent time and the next time are required during training. For
more details, please see Table 6.

TDNN consists of one input layer, two hidden layers, and
one output layer. Set the delay parameterN = 22, iterate 1000
times, and learn rate α = 0:01. The main parameter of MPC is
to set prediction horizon N = 22. For ideal training results,
the dataset is divided into training set, validation set, and test
set, which are 80%, 10%, and 10%, respectively.

5.1. Residential Building Simulation Analysis. This section
presents the simulation results for a 6-room residential build-
ing’s performance validation with the investigated control-
lers. The closed-loop profiles of 15 days are chosen from
the simulation test. To clearly show the control effects of
the building, ROOM6 is selected as the control object to ana-
lyze the temperature control and energy consumption, and
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Figure 14: Comparison of total power consumption with the investigated controllers.

Table 8: Performance comparison of multiple controllers in the
residential building.

Methods
Heating
cost

(kWh)

Cooling
cost

(kWh)

Total
cost

(kWh)

PMV
viol (-)

Prediction
time (s)

MPC 658.15 0 658.15 0 81.6

TDNN 660.67 1.29 661.96 1.2 11.6

DPC-
RT

613.68 0 613.68 0.02 9.9

DPC-
LSBoost

583.02 0.02 583.05 0 9.6

Table 9: Performance comparison of RMSE, R-square, and mean
error for the RT and the LSBoost in the residential building.

RMSE R-square Mean error

DPC-RT 0.0088 98.51% 52.1883

DPC-LSBoost 0.1244 99.99% 38.97
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the results are shown in Figures 10 and 11. The other rooms
have similar behavior.

Figure 10 shows the comparison of temperature control
effects with different control actions in ROOM6. It can be
seen that both the MPC and the DPC-LSBoost have better
control performance than the others. Under the MPC con-
troller’s action, the reference room temperature is well
tracked. The temperature obtained by the TDNN fluctuates
greatly, especially from the tenth to the thirteenth day. The
control effect obtained by the DPC-RT is relatively general.
Temperature changes abruptly on the first day, and there
are more burrs in the waveform, but they will still closely fol-
low the input. With the DPC-LSBoost, room temperature
can be tracked well, make up for the DPC-RT’s shortage,
and achieve a good control effect. Under the MPC control-
ler’s action, the temperature change in the room is very
smooth, and the temperature difference is small. The refer-
ence room temperature is well tracked to achieve a good con-
trol effect.

Figure 11 shows the effects of the investigated controllers
with energy consumption. It can be seen that the DPC-
LSBoost has the lowest energy cost.

Figure 12 shows the temperature and energy consump-
tion of 6 rooms under the DPC-LSBoost control method. It
can be found that the system will adjust the controller to
varying degrees according to the state of the room. Com-
pared with the second and sixth rooms, the first room will
spend much energy stabilizing the temperature. Through this
kind of fine management and control, each room’s tempera-
ture can be controlled independently.

The indoor temperature changes are greatly affected by
external disturbances. For the investigated residential build-
ings, there are a total of 44 external disturbances. Through
the feature selection, the eight most relevant features are
selected. Figure 13 shows the eight disturbances profiles.
Three of them are the external ambient temperature (K),
and five are the effects of solar radiation on various rooms
in the house. The abscissa is a time interval of 15 days, a total
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of 1440 time samples. Table 7 describes the specific informa-
tion of the eight disturbances D1-D8.

For power consumption, a holistic analysis is required.
Figure 14 shows the comparison results of the total power con-
sumption of the four controllers for 15 days. Figure 14 shows
that the TDNN consumes the most energy, followed by the
MPC and the RT, and the lowest energy consumption is the
DPC-LSBoost. The detailed comparison results are shown in
Table 8. Power consumption is analyzed from five dimensions:
heating cost (kWh), cooling cost (kWh), total cost (kWh),
PMV, and prediction time (s). It can be seen from the table
that the overall power consumption of the DPC-LSBoost is

the least, which is reduced by 78.909kWh compared to the
TDNN, and the overall energy consumption is reduced by
11.92% compared to the TDNN. With the prediction time,
the DPC-LSBoost has the shortest time cost. The quantitative
comparison of RMSE, R-square, and mean error for model
accuracy is summarized in Table 9. It is observed that the
DPC-LSBoost has the better model fitting capability.

5.2. Office Building Simulation Analysis. The analysis
methods for office buildings and residential buildings are
consistent. However, the temperature setting is between
20°C and 22°C in the office building.

Used features (disturbances)

Sampling interval
200 400 600 800

0

200

400

So
la

r i
ra

di
at

io
n 

(W
/m

2 )
1000 1200 1400

D1
D2
D4
D6
D7

D9
D10
D11
D12

290

280

Te
m

pe
ra

tu
re

 (K
)

270

260

0 200 400 600
Sampling interval

D3
D8
D5

800 1000 1200 1400

Figure 17: Selected most relevant external disturbance signals (12 signals).

Table 10: Detailed description of selected disturbance features.

Variable Unit Disturbance description

D1 [W/m2] Direct sun radiation on vertical surface with orientation 1

D2 [W/m2] Diffuse sun radiation on vertical surface with orientation 1

D3 [K] Weight sun radiation temperature between ground and sky temperature 1

D4 [W/m2] Diffuse sun radiation on vertical surface with orientation 2

D5 [K] Weight sun radiation temperature between ground and sky temperature 2

D6 [W/m2] Direct sun radiation on vertical surface orientation 3

D7 [W/m2] Diffuse sun radiation on vertical surface with orientation 3

D8 [K] Weight sun radiation temperature between ground and sky temperature 3

D9 [W/m2] Direct sun radiation on vertical surface with orientation 4

D10 [W/m2] Diffuse sun radiation on vertical surface with orientation 4

D11 [W/m2] Direct sun radiation on vertical surface with orientation 5

D12 [W/m2] Diffuse sun radiation on vertical surface with orientation 6
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Similar to residential buildings, the TDNN, the MPC, the
DPC-RT, and the DPC-LSBoost methods are used for com-
parative simulation verification. We chose ROOM9 as the
control object. The 15-day comparison results are shown in
Figures 15and 16.

Figure 15 shows the room temperature controlled by all
control strategies. The tracking effect is not desirable from
the results, although they are all within the comfort zone.
Figure 16 shows the energy consumption comparison of the
four control methods. It is also found that the daily energy
consumption of the MPC and the TDNN is relatively high,
but the temperature change is not large, and even there is a
certain energy loss due to the DPC-RT algorithm’s single tree
structure, which contributes to the control satisfaction viola-
tion. The DPC-LSBoost controller consumes the lowest daily
energy and makes the room temperature more stable with lit-
tle fluctuation.

The indoor temperature change shown in Figure 3, which
is greatly affected by external disturbances. The 12 most rel-
evant features are selected from 301 external disturbances
by FS for the investigated office buildings. Figure 17 below
shows the 12 perturbed features. Three of them are outside
ambient temperature (K), and there are 9 solar radiation
effects on each room. Table 10 gives detailed information
on the 12 interferences D1-D12.

Figure 18 shows the total power consumption with the
investigated controllers. The TDNN and the MPC almost
have similar control profiles with a higher peak value of the
curve, especially from the tenth day, the power consumption
began to soar, and the power consumption reached its peak
in 12 days. Table 11 shows the comparative analysis of the
control energy consumption and predicted time of the four
controllers. It is found that the TDNN has the highest energy
consumption, which is as high as 740.89 kWh. Compared
with the TDNN, both the DPC-RT and the DPC-LSBoost
are reduced significantly, which are 582.87 kWh and
515.61 kWh, respectively. It can be seen from the table that
the overall power consumption of the DPC-LSBoost is the
least, which is 225.28 kWh reduced compared to the TDNN,
and the overall energy consumption is reduced by 30.4%
compared to the TDNN. From the 15-day simulation test,
the DPC-LSBoost takes the shortest prediction time compar-
ing with other algorithms.

The quantitative comparison with three indicates
(RMSE, R-square, and mean error) is demonstrated in
Table 12. The same conclusion is achieved that the LSBoost
has the better model fitting capability.

6. Conclusion and Prospect

This paper reports an innovative study combining the data-
driven predictive control strategy with a complex cloud
SCADA-based building energy management platform, which
attempts to standardize communication protocols and data
formats and further implement advanced control strategies.
The platform also provides useful data representations to
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Figure 18: Comparison of the investigated controllers with respect to the total energy consumption.

Table 11: Performance comparison of multiple controllers in the
office building.

Methods
Heating
cost

(kWh)

Cooling
cost

(kWh)

Total
cost

(kWh)

PMV
viol (-)

Prediction
time (s)

MPC 713.37 0.02 713.39 0 302.2

TDN 728.31 12.58 740.8 0 9.2

DPC-
RT

582.86 0.0 582.87 0 8.7

DPC-
LSBoost

514.2 1.41 515.61 0 7.5

Table 12: Performance comparison of RMSE, R-square, and mean
error for the RT and the LSBoost in the office building.

RMSE R-square Mean error

DPC-RT 0.9877 93.68% 17.8487

DPC-LSBoost 0.0328 99.99% 0.8229
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different stakeholders (end-user, building energy manager,
and/or operator), enabling the platform flexibility and
scalability.

We present two algorithms, based on RT and LSBoost, to
create control-oriented models for the DPC. Moreover, an
efficient feature selection method, which depends on the
principal component analysis and the importance of distur-
bance variables, is leveraged to decrease the model’s dimen-
sion and further alleviate the DPC optimization problem’s
complexity. We then apply the DPC to two different case
studies for energy consumption in residential and office
buildings. The numerical simulation shows that the DPC-
LSBoost provides lower energy consumption while maintain-
ing the required thermal comfort compared to the MPC, the
TDNN, and the DPC-RT. With the same environmental
comfort demand, compared with the TDNN, the peak power
consumption with the DPC- LSBoost can be reduced by
11.92% and 30.4%, even compared to the DPC-RT 4.99%
and 11.54% that are achieved. These advantages make the
DPC-LSBoost an attractive tool for large-scale cyber-
physical energy systems to reduce energy consumption. Also,
in the context of prediction time, comparing with the MPC,
the prediction time of the DPC-LSBoost is reduced by 72 s
and 294.7 s, respectively.

Future work will focus on the combination of IoT with
DPC (IoT-DPC), which will apply to more complex build-
ings. IoT-DPC applications are not limited to building
energy management and include critical infrastructures such
as water supply networks, district heating, and cooling.

Data Availability

(1) The building data of Hollandsch Huys is shown in chap-
ter 2 of the report from the links as https://lirias.kuleuven.be/
retrieve/453505 and https://github.com/drgona/BeSim/tree/
master/buildings/HollandschHuys, and (2) the building data
of the residential building is in the third chapter of this paper,
linked as https://www.sciencedirect.com/science/article/pii/
S0306261918302903 and https://github.com/drgona/BeSim/
tree/master/buildings/Reno.
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