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With the development of the technology, the wireless systems are becoming more heterogeneous with the introduction of various
power nodes including femtocells, relays, or distributed antennas. Among the research of wireless network performance, the meta
distribution of the signal-to-interference ratio (SIR) has attracted significant attention. Compared to the standard success
(coverage) probability, the meta distribution provides much more fine-grained information about the network performance. In
this paper, we analyze the meta distribution of the SIR in the multi-tier heterogeneous and hybrid networks, where each tier is
based on a homogeneous independent Poisson point process model. For the open tiers (the users can associate with any tier)
and the closed tiers (the users can only associate with a certain tier), we study the bth moment of the conditional success
probability for the typical user and give the beta approximation of the meta distribution from analysis and simulations.
Furthermore, we analyze the per-link rate control for open tiers and closed tiers, which answers the question: “how to set the
SIR threshold to meet a target reliability?”. We give the approximate value of the SIR threshold to meet a target reliability and
show how the value is related to the path loss exponent and densities.

1. Introduction

1.1. Motivation. The developing technology makes the wire-
less communication influence more and more on the daily
life of human beings. In 5G, the objective of the wireless tech-
nology is to support three generic services with vastly hetero-
geneous requirements: enhanced mobile broadband (eMBB),
mass machine-type communications (mMTC), and ultra-
reliable and low latency communications (URLLC). Under
such a background, the structure of the network is becoming
more and more heterogeneous. Meanwhile, direct communi-
cation between mobile devices can save transmit power and
help utilize the network resources more efficiently, such as
the device-to-device (D2D), machine-to-machine (M2M),
and vehicle-to-vehicle (V2V), which makes the network
more hybrid. A modern wireless network usually consists of
some open tiers of nodes that can be accessed by users
through its association rule, such as the heterogeneous cellu-
lar networks (HCNs), and some closed tiers that users are
served only by partial tiers, such as some direct communica-
tions. More heterogeneous and hybrid is becoming one of the

characteristics of the future wireless networks. In this paper, a
heterogeneous network with the direct communications is
called a het-hybrid network.

The conventional SIR analysis or the mean success
probability provides limited information about the network
performance [1]. It is defined as the complementary cumula-
tive distribution function (CCDF) of the SIR evaluated at the
typical link. Such a performance metric is merely a macro-
scopic quantity by averaging the conditional success proba-
bility (CSP) PsðθÞ ≜ℙðSIR > θ ∣ΦÞ over the underlying
point process Φ. Hence, it provides no information about
the difference between links. It cannot answer such questions
as “How are the link reliability distributed among users in
different tiers ?” or “What is the reliability level that the ‘5%
user’ can achieve in each tier?”. To obtain a fine-grained infor-
mation on the SIR performance, the notion of meta distribu-
tion, as the distribution of CSP was introduced in [2]. The
concept characterizes the distribution of the CSP of the indi-
vidual links given the point process and is widely researched
in many network scenarios, such as the cellular networks [3–
5], the HCNs [6–9], the millimeter wave networks [10, 11],
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the large-scale non-orthogonal multiple access (NOMA) net-
works [12], the dual-hop Internet-of-Things (IoT) networks
[13], and the ultra-dense networks [14].

In this paper, we mainly investigate the SIR meta distri-
bution in the het-hybrid networks that consist of open tiers
and closed tiers, to get a fine-grained analysis on the success
transmission probability and analyze the rate control based
on the SIR meta distribution.

1.2. Related Work. The meta distribution of the SIR has been
applied to different scenarios since it was formally formu-
lated in [2]. For instance, [3] focused on the SIR meta distri-
bution in cellular networks with fractional power control.
Some bounds, the analytical expression, the mean local delay,
and the beta approximation of the meta distribution were
provided. Recently, the joint meta distribution of the SIR at
different locations and its applications to physical layer
security and cooperative reception were studied in [4]. And
for moving networks, the SIR meta distribution was
researched in [5], which demonstrated that the moving BSs
can reduce the variance of users while keeping the mean
success probability constant.

The SIR meta distribution of k-tier downlink HCNs with
cell range expansion was researched in [6], where the bth
moments of the CSP for each tier and for the entire network
were derived, and the metrics including the mean success
probability, the variance of the CSP, the mean local delay,
and the asymptotic SIR gains of each tier were also obtained.
The SIR meta distribution in HCNs with base station cooper-
ation was researched in [7], where the meta distribution in
HCNs with downlink coordinated multipoint transmission/-
reception (CoMP) was derived. For the HetNet, [8] derived
the meta distribution of the downlink SIR in a Poisson cluster
process-based model. And for the general cellular networks,
[9] provided the AMAPPP (approximate meta distribution
analysis using PPP) in the SIR meta distribution analysis to
obtain the meta distribution of an arbitrary stationary and
ergodic point process from the meta distribution of the
Poisson point process (PPP).

The meta distribution of the SINR and the data rate for
millimeter wave (mm-wave) D2D networks were derived in
[10], where the approximation by using higher moments of
the conditional SINR distribution was also proved to be effec-
tive. Using stochastic geometry tools, [11] analyzed the meta
distributions of the downlink SIR/SNR and data rate of the
typical device in a cellular network with coexisting sub-
6GHz and mm-wave spectrums. The meta distribution and
moments of the conditional success probability (CSP) in
large-scale NOMA networks were studied in [12], where a
tractable framework was developed to analyze both the
uplink NOMA and downlink NOMA. The meta distribution
of the downlink SIR attained at a typical device in a dual-hop
IoT network was characterized in [13], where the IoT device
associates with either a serving macro base station for direct
transmissions or associates with a decode and forward relay
for dual-hop transmissions. For ultra-dense networks, [14]
studied the meta distributions of SIR in a near-optimally
short, perfect, Euclidean distance edge-weighted, bipartite
matching between two binomial point processes, to obtain

a bipartite Euclidean matching and investigate the reliability
of communication. For the SIR meta distribution of D2D
communication underlaying cellular wireless networks, [15]
derived the moments of the conditional SIR distribution to
calculate analytical expressions and the mean local delay of
the typical receiver.

Another important application of the SIR meta distribu-
tion or the rate control was considered in [16]. From [16], the
per-link reliability and rate control were proved to be the two
facets of the SIR meta distribution.

The work mentioned above considered the SIR meta
distribution either in a single tier or a hybrid network, or in
a heterogeneous network with only open tiers. The SIR meta
distribution of the multi-tier heterogeneous network with
hybrid structure has not been covered yet.

1.3. Contributions. In this paper, we focus on the heteroge-
neous and hybrid network that consists of open tiers and
closed tiers and analyze the SIR meta distribution under
Rayleigh fading to provide a fine-grained analysis on the
network performance. Specifically,

(i) We derive the bth moments of the CSP for both the
open tiers and the closed tiers. We find the open tiers
and closed tiers make different effects on the bth
moment of open tiers, while they impact the bth
moment of the closed tiers in the same way.

(ii) We give the beta approximation for the SIR meta
distribution by matching the first and second
moments of CSP for the open tiers and closed tiers.
The simulations show that the beta distribution is
an effective approximation in the het-hybrid
networks.

(iii) We analyze the mean local delay for the users of
open tiers in a het-hybrid network based on the b
th moments of the CSP.

(iv) We study the rate control by setting the SIR thresh-
old to meet a target reliability and derive the approx-
imate values of SIR threshold for open tiers and
closed tiers. We find that the path loss exponent
affects the SIR threshold settings differently in open
tiers and closed tiers.

2. System Model and Method

2.1. Network Model. The het-hybrid network is modeled as a
K-tier ðK ≥ 1Þ wireless network where each tier consists of
the transmitting nodes of a particular class. The nodes across
tiers may differ in terms of the transmit power, the sup-
ported data rate, and their spatial density. We assume that
the transmitting nodes of the ith tier are spatially distributed
as an independent PPP Φi with density λi, and transmit
power Pi. All transmitting nodes are active, and we do not
consider any cooperation between the transmitters.

All tiers are classified into open tiers and closed tiers. The
open tiers mean a group of (≥1) tiers of transmitting nodes
that can be accessed openly by users through the association
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rule, also named as open group. In this paper, we consider the
downlink performance and the average strongest signal asso-
ciation rule in open tiers. Hence, a transmitter from any open
tier can be the signal provider only if it can provide the aver-
age strongest signal. There is no need to distinguish the users
of each open tier, since they can connect to the arbitrary tier
of the open group. The corresponding users of the open tiers
are called open users and are assumed to be distributed as an
independent PPP.

Each closed tier means a single tier of transmitting nodes.
The corresponding users can only associate with the single
tier of transmitters, which seems like this tier is closed to
other tiers. Moreover, each transmitter is assumed to have a
dedicated receiver located at a fixed distance in a random
direction in our assumption, such as some direct communi-
cations [15, 17]. In such cases, the transmitters and receivers
of the closed tier form a Poisson bipolar network. Although
in many bipolar networks, the transmitters are active with a
probability, here, we only consider the active transmitters at
a time slot, or a snapshot of the active nodes. The network
can have several closed tiers at the same time, where each tier
is closed to other tiers.

In the rest of the paper, we useΦB =
S
Φi∣i∈B to denote the

group of open tiers, where B ⊆ f1, 2,⋯Kg, and Φi∣i∉B denote
one of the closed tiers. The notation x is used to denote both
the location of a transmitter and the transmitter itself, and
∣x ∣ is used to denote the distance between the transmitter
and the origin.

2.2. SIR. Without loss of generality, we conduct analysis on
the typical user located at the origin. To analyze the open
tiers, we condition on that typical user to be an open user
and vice versa when analyzing the closed tier. The fading
between a transmitter located at point x and the typical user
is denoted by hx, which is assumed to be i.i.d. exponential
(Rayleigh fading). The standard power-law path loss model
is lðrÞ = r−α with exponent α > 2. For open tiers, assume the
typical user is associated with x0 in the kth ðk ∈ BÞ tier, and
the fading is hox0; the received SIR can be given by

SIRo∣k =
Pkh

o
x0 x0j j−α

∑x∈Φk ,x≠x0Pkhx xj j−α +∑i≠k∑x∈Φi
Pihx xj j−α , ð1Þ

where the numerator is the desired signal and the denomina-
tor is the aggregate interference suffered by the user.

Similarly, the SIR received by the typical closed user of
tier jðj ∉ BÞ is

SIRc∣j =
Pkh

c
x0dj

−α

∑x∈Φ j ,x≠x0Pjhx xj j−α +∑i≠j∑x∈Φi
Pihx xj j−α , ð2Þ

where dj is the fixed distance between the jth tier transmitters
and their receivers, and hcx0 is the fading.

The difference between the open tiers and the closed tiers
lies in the association rule, besides the open tiers usually
being a group of tiers while each closed tier being a single tier.
Since the average strongest association rule in open tiers,
node x0 of the kth tier in fact is the signal provider with a cer-

tain probability (equation (6)). Other node in ΦB can also be
the potential signal provider. That means the serving power
and the serving distance are not certain until the link is estab-
lished. Even when the open group has only one tier, the serv-
ing distance is uncertain due to the Poisson distribution of
nodes. While in a closed tier, the user is definitely served by
the transmitter with a certain power and the determined
serving distance.

2.3. The Meta Distribution. The SIR meta distribution of the
typical user for a threshold θ and a reliability ν is given as
follows:

�F θ, νð Þ = �FPs
θ, νð Þ ≜ ℙ Ps θð Þ > νð Þ, θ ∈ R+, ν ∈ 0, 1½ �, ð3Þ

where PsðθÞ is a random variable that represents the link
success probability conditioned on the point processS

ði ∈ f1:::KgÞΦi. It can be given by

Ps θð Þ ≜ℙ SIR > θ ∣
[

i∈ 1⋯Kf g
Φi

0
@

1
A, ð4Þ

where the probability is taken with respect to the fading. The
meta distribution is the CCDF of the conditional link success
probability PsðθÞ.

The standard success (coverage) probability psðθÞ (the
SIR distribution) can be obtained from the SIR meta distribu-
tion as the mean of the conditional success probability PsðθÞ,
i.e., psðθÞ ≜ℙðSIR > θÞ = EðPsðθÞÞ =

Ð 1
0
�Fðθ, xÞdx. Clearly, the

distribution of PsðθÞ provides much more fine-grained infor-
mation than merely the average of PsðθÞ.

The exact meta distribution can be expressed by the Gil-
Pelaez theorem [18] as

�F θ, νð Þ = 1
2 + 1

π

ð∞
0

J e−jt log νMjt

� �
t

dt, ð5Þ

where JðzÞ denotes the imaginary parts of z ∈ℂ, j =
ffiffiffiffiffiffi
−1

p
,

and Mb denotes the bth moment of PsðθÞ, i.e., Mb = EðPs

ðθÞbÞ, b ∈ℂ.
2.4. Method. Based on the above model, we analyze the SIR
meta distribution of the typical user for open tiers and closed
tiers, respectively. Different from the HCNs [6], the users of
the open tiers suffer more interference for the existence of
closed tiers. For the similar reason, the receivers of the closed
tiers also receive the interference from open tiers. We try to
probe the impacts of the tiers on the SIR meta distributions
of the open tiers and the closed tiers. The bth moments of
the CSP are derived firstly, and then, the mean local delay
or the -1st moment of the open tiers is analyzed. The numer-
ical analysis of the SIR meta distribution is mainly approxi-
mated by the beta distribution with the first and the second
moments. For the per-link rate control of the open tiers
and closed tiers, the stochastic interference equivalence [19,
20] is considered to facilitate the analysis. In such a frame-
work, the signal received by the user can be simplified as
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the serving signal from a tier with density λS plus the interfer-
ence signal from a tier with density λI .

For brief expression, we use δ to denote 2/α, Fb,δ,θ to
denote 2F1ðb,−δ ; 1 − δ;−θÞ, and Γb,δ to denote ðΓðb + δÞÞ/
ðΓðbÞΓð1 + δÞÞ in the rest of the paper.

3. The SIR Meta Distribution in the Het-
Hybrid Network

3.1. The bth Moment of the CSP. In this section, we firstly give
the bth moment of the CSP for the typical user of the open
tiers, and then the bth moment for a closed tier.

For the open tiers, the desired signal received by the typ-
ical user is possibly from any transmitter in ΦB. Assume that
the provider of the desired signal x0 is from the kth (k∈ B)
tier, and the distance is R0; the access probability that the
typical user is associated with the kth tier is

P kð Þ
a¯R0

=
Y

Φ j∣ j∈B, j≠k

exp −πλj

Pj

Pk

� �δ

R0
2

 !
: ð6Þ

It can be found in Lemma 5 of [6]. By considering the
conditional access probability in (6), the bth moment of the
CSP for the open tiers can be easily obtained.

Theorem 1. For the typical open user served by the kth tier in
a het-hybrid network, the bth moment of the conditional
success probability is given by

Mopen
b, kð Þ =

1

∑Φi∣i∈B
λi/λkð Þ Pi/Pkð ÞδFb,δ,θ +∑Φ j∣ j∉B

λj/λk
� �

Pj/Pk

� �δθδ πδ/ sin πδð Þð Þð ÞΓb,δ
:

ð7Þ

Proof. See Appendix A.

Since the open group consists of several tiers, the bth
moment of the typical user CSP for the overall open tiers is
given by

Mopen
b =〠

k∈B

1
∑Φi∣i∈B

λi/λkð Þ Pi/Pkð ÞδFb,δ,θ +∑Φ j∣ j∉B
λj/λk
� �

Pj/Pk

� �δθδ πδ/sin πδð Þð ÞΓb,δ
:

ð8Þ

Remark 2. From (7), the closed tiers affect the bth moment of
the open tiers by∑Φj∣ j∉B

ðλj/λkÞðPj/PkÞδθδðπδ/sin ðπδÞÞΓb,δ as

a term of the denominator. It is different from that of the
open tiers ∑Φi∣i∈B

ðλi/λkÞðPi/PkÞδFb,δ,θ, due to their different

association rules. When there is no closed tier or ΦB =S
i∈f1::KgΦi, the bth moment of CSP for the kth tier user can

be simplified as

Mb,k =
1

∑K
i=1 λj/λk
� �

Pj/Pk

� �δFb,δ,θ
, ð9Þ

and the bth moment of the CSP for the overall network is

Mb =
1

Fb,δ,θ
: ð10Þ

It just describes the bth moment of the CSP for the typical
user of HCNs without any range expansion [6].

For the bth moment of the CSP of the typical closed user,
we have the following theorem.

Theorem 3. The typical closed user of jth tier with the distance
dj in a het-hybrid network has the bth moment of the CSP as

Mclosed
b, jð Þ = exp −πθδd2j πδ/sin πδð Þð Þ:Γb,δ 〠

K

i=1
λi Pi/Pkð Þδ

 !
: ð11Þ

Proof. See Appendix B.

Remark 4. From Theorem 3, we can see there is no difference
among the tiers that affect the bth moment of the closed tier.
Adding more tiers or increasing any tier density, whether for
an open tier or a closed tier, will only reduce the bth moment.
The quantity is also an exponential function of the square of
distance dj.

3.2. Mean Local Delay. Based on the bth moment of the SIR,
we further consider the mean local delay which is defined as
the mean number of transmission attempts waiting for a
packet successfully decoded over a wireless link [2, 15]. Gen-
erally, the mean local delay is the −1st moment of the CSP,
i.e. M−1. But we find that M−1 cannot be derived directly
from (7) because the Γb,δ is not defined when b = −1. Fortu-
nately, the distribution of the conditional local delay is geo-
metric with mean M−1 and the local delay can be seen as
the expectation of the CSP with respect to the static elements
of a network [21]. Based on this idea, we derive the mean
local delay for the typical user of the open tiers as

Mopen
−1, kð Þ = 〠

Φi∣i∈B

λi
λk

� �
Pi

Pk

� �δ

F1,δ,θ + 〠
Φ j∣ j∉B

λj

λk

� �
Pj

Pk

� �δ

θδ
πδ

sin πδð Þ ,

ð12Þ

for Γ1,δ = 1.
Specially, if there is no closed tier, the mean local delay

for the typical user can be derived from (7):

M−1,k =
1 − δ

∑K
j=1 λj/λk
� �

Pj/Pk

� �δ 1 − δ 1 + θð Þð Þ
, ð13Þ

for 2F1ð−1, b ; c ; zÞ ≡ 1 − bz/c.
The mean local delay is only related to the path loss expo-

nent α and the SIR threshold θ in a single tier Poisson net-
work [2]. But in a multi-tier network, the mean local delay
is also related to the ratio of density and power of each tier,
as (13). It can be seen that the mean local delay is finite when
θ < ð1/δÞ − 1 from (13). Conversely, if θ ≥ ð1/δÞ − 1, the
mean local delay is infinite due to the correlated interference
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in the system. The value of θ = ð1/δÞ − 1 is called the critical
value for phase transition.

For the same reason, the -1st moment of the closed tier
cannot be obtained from (11) directly. In our assumed
model, there is no transmission waiting in the closed tier,
because all transmitters are active and each transmitter has
a dedicated receiver. Otherwise, the local delay may be infi-
nite if there are more receivers, unless the transmit probabil-
ity is less than 1 [2], which has been discussed in [15].

3.3. Beta Approximation. Even though the expression of the
meta distribution in (5) is exact, it is hard to gain direct
insights due to its complexity, and it is not very convenient
to evaluate numerically. Fortunately, the beta distribution
can be taken as an approximation to analyze the meta
distribution.

Beta distribution, as a conjugate prior distribution of the
Bernoulli distribution and the binomial distribution, is a nat-
ural choice to approximate the distribution of the PsðθÞ. It
has been verified that the standard beta distribution can
provide an efficient approximation by matching the first
and the second moments of the CSP [2, 3, 6, 7, 9, 10, 15,
22]. Specifically,

�F θ, νð Þ ≈ 1 − Iν
βM1
1 −M1

, β
� �

, ν ∈ 0, 1½ �, ð14Þ

where β = ððM1 −M2Þð1 −M1ÞÞ/ðM2 −M2
1Þ, and Iν is the

regularized incomplete beta function.
It is worth noting that recently, as shown in [23], the

meta distribution can also be directly obtained from the
moments by a simple linear transform, which is a more con-
venient way for efficient calculations. And [24] showed that
the entire meta distribution can be reconstructed from its
moments using the Fourier-Jacobi expansion.

3.4. Per-Link Rate Control. Another important application of
the SIR meta distribution is the rate control. It has been
proved in [16] that the SIR meta distribution as a function
of the SIR threshold is equivalent to the SIR threshold distri-
bution such that each link is guaranteed a target reliability.
For the Poisson bipolar networks, [16] studied the rate con-
trol and revealed the trade-off between the SIR threshold
(equivalently, the distribution of the transmission rate) and
the reliability. In our network model, we also consider the
per-link rate control based on the SIR meta distribution.
The problem to be solved in this section is “how to set the
SIR threshold θ, i.e., the rate control, such that the link can
achieve exactly the target reliability ν?”.

Firstly, the mean CSP over the fading and the point pro-
cesses is just the first momentM1. For the typical link of the k
th tier in the open group, the value of the SIR threshold is the
solution of θ:

1
∑Φi∣i∈B

λi/λkð Þ Pi/Pkð ÞδF1,δ,θ +∑Φ j∣ j∉B
λj/λk
� �

Pj/Pk

� �δθδ πδ/sin πδð Þð Þ
= ν,

ð15Þ

where ν is the target reliability. It is difficult to express θ in an
exact closed form. Here, we give an approximate value of θ
based on two lemmas.

Lemma 5. For a Poisson point process Ψ, let ri denote the dis-
tance from node xi ∈Ψ, i = 0, 1,⋯n to the origin, and r0 =
min frig; then, the mean of the sum of the r0/ri satisfies
E½∑iðr0/riÞα� = 2/ðα − 2Þ.

Proof. The fr0/rigi=1⋯n constitutes a relative distance process
(RDP), see Definition 2 in [25].

Lemma 6. For a Poisson point process Ψ, if the distance from
the node xi ∈Ψ, i = 0, 1,⋯n to the origin is ri, and r0, r1,⋯
rn are in ascending order, then Eð∑n

i=0r
−α
i Þ = ðλπÞα/2Γðn − ðα/

2ÞÞ/ΓðnÞ).

Proof. It is derived from the probability density function of ri
in a PPP as [26]:

f ri Xð Þ = exp −λπX2� �
:
2 λπX2� �i
XΓ ið Þ : ð16Þ

Theorem 7. Given the reliability ν, the SIR threshold of the
typical open user connecting to the kth (k ∈ B) tier can be
approximated as

θ ≈
log 1/νð Þ

2/ α − 2ð Þα − 2ð Þ + Γ 1 + α/2ð Þð Þ λI/λsð Þð Þα/2
, ð17Þ

where λS =∑Φi∣i∈B
λiðPi/PkÞδ and λI =∑Φ j∣ j∉B

λjðPj/PkÞδ are

called service density and interference density, respectively.

Proof. See Appendix C.

Remark 8. From (17), it can be seen that the approximate SIR
threshold is related to both the service density and the inter-
ference density. Since the serving node can be anyone of the
open tiers, the service density is the combined density of all
the open tiers as λS =∑Φi∣i∈B

λiðPi/PkÞδ. The interference den-
sity means that the density of nodes acting only as interfer-
ence. For the open user, the densities of the closed tiers are
combined as the interference density, which is expressed as
λI =∑Φ j∣ j∉B

λjðPj/PkÞδ. From (17), the effect of the closed tiers

on the approximate SIR threshold of open tiers is expressed
as Γð1 + ðα/2ÞÞðλI/λsÞα/2 in the denominator. That is to say,
the approximate SIR threshold can be maintained if the ratio
of the λS and λI is constant.

A special case is that the network consists of only the
open tiers, or just B = f1, 2,⋯, Kg, the value of the SIR
threshold can be approximated as θ ≈ ððα − 2Þ log ð1/νÞÞ/2,
which is the SIR approximate value in a K-tier HCN.

Similarly, we can get the approximate SIR threshold for
the closed link. For the closed tier (assume the jth tier), the
SIR threshold can be approximated as the following theorem.

5Wireless Communications and Mobile Computing



1

𝜃 = 0.1

Open tiers (Sim.)
Open tiers (Ana.)
Closed tier (Sim.)
Closed tier (Ana.)

Open tiers (Sim.)
Open tiers (Ana.)
Closed tier (Sim.)
Closed tier (Ana.)

𝜃 = 1

0.9

0.8

0.7

0.6

0.5

1-
F

 (𝜃
, v

)

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6

The reliability v

0.7 0.8 0.9 1

Figure 1: The CCDF of the CSP as a function of the reliability.

Open tiers (Sim.)
Open tiers (Ana.)
Closed tier (Sim.)
Closed tier (Ana.)

Open tiers (Sim.)
Open tiers (Ana.)
Closed tier (Sim.)
Closed tier (Ana.)

v = 0.9

v = 0.1

0.9

0.8

0.7

0.6

0.5

1-
F

 (𝜃
, v

)

0.4

0.3

0.2

0.1

0
–10 –8 –6 –4 –2 0 2 4 6

The SIR threshold (dB)

Figure 2: The CCDF of the CSP as a function of the SIR threshold.

6 Wireless Communications and Mobile Computing



Theorem 9. Given the reliability ν, the SIR threshold of the
typical closed user can be approximated as

θ ≈
log 1/νð Þ

dαj λSπð Þα/2 + λIπð Þα/2
� � , ð18Þ

where λS = λj is the density of this closed tier, and λI =∑i≠j

λiðPi/PkÞδ is the density of interference from all other tiers.

Proof. See Appendix D.

Remark 10. For the closed user of jth tier, the signal provider
is the only transmitter in a fixed distance dj with a random
orientation. It is obvious that the increase of dj may lead to
a lower SIR threshold setting. Besides the distance, we can
see from (18) that the approximate value is inversely propor-
tional to densities by ðλSπÞα/2 + ðλIπÞα/2. That means densi-
ties of the open tiers and the closed tiers affect the SIR
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Figure 3: The SIR threshold settings for the open tiers.
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Figure 4: The SIR threshold settings for the closed tier.
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threshold in the same way. The reason lies in that all the
other nodes of the same tier and all the other tiers are
interference definitely. It is different from that in the open
tiers; any transmitter can be the serving node with a prob-
ability. Consequently, the increase of any node in the
interference tier or the serving tier will only cause a lower
SIR threshold.

4. Results and Discussion

In this section, we will present the simulation results of the SIR
meta distribution, or the distribution of the CSP (PsðθÞ), and
the per-link rate control for open tiers and closed tiers in the
model mentioned above. The platform we used is MATLAB,
and the distributed range of transmitters is ½0,100� × ½0,100�.
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The het-hybrid network consists of 3 tiers, named tier-1, tier-
2, and tier-3, where tier-1 and tier-2 form the group of open
tiers, and tier-3 is a closed tier. The corresponding transmitters
densities are set as λ1 = 0:01, λ2 = 0:02, and λ3 = 0:05, and the
transmitting power is set as P1 = 10, P2 = 5, and P3 = 3, respec-
tively. The fading is distributed as exponential random vari-
ables with mean 1, and the path loss exponent α is 4 in our
assumption. The density of open users is set as 0.05, and the
distance from the transmitter to the dedicated user is set as
10 in the closed tier. We repeat 300 transmissions to calculate
the success transmission probability and the reliability.

Firstly, the results of the SIR meta distribution for the
open tiers and the closed tier are shown in Figures 1 and 2.
The numerical results approximated by beta distribution
based on the bth moments are also shown in the two figures.
For open users, we show the performance for the overall
open tiers. Figure 1 is the SIR meta distribution as a function
of reliability ν with the given SIR thresholds θ = 1 and
θ = 0:1. Figure 2 is the SIR meta distribution as a function
of the SIR threshold with the given reliabilities ν = 0:1 and
ν = 0:9.

As Figures 1 and 2 illustrate, the beta distribution pro-
vides a good match for the distribution of the link success
probabilities, which verifies that the approximation of beta
distribution is effective in the het-hybrid network. More-
over, we can find some indications from the figures based
on our settings. In Figure 1, the users of open tiers have
a higher quantity of success transmission than the closed
tier when the SIR threshold is set 1, but more percentage
of the closed users can successfully transmit when the
SIR threshold is deduced to 0.1. That means the meta dis-
tribution of the closed tier is more sensitive to the SIR
threshold than that of the open tiers. A similar trend can
be found in Figure 2. For the same SIR threshold, more
percentage of the open users can be covered when the reli-
ability is set a high value (ν = 0:9), while with decreasing
the value of ν, the closed users are easier to get a higher
success probability. In other words, the meta distribution
of the closed tier is also more sensitive to the reliability
than that of the open tiers in our settings. The hidden rea-
son is the difference of association rules, that the users of
open tiers have more opportunities to associate with a
favorable transmitter while the users of closed tier have
the fixed transmitter.

For the per-link rate control, it is intuitively that the SIR
threshold declines with the increasing reliability, shown in
Figures 3 and 4. Figure 3 shows the SIR threshold settings
for open tiers to meet the reliability. Figure 4 shows the SIR
threshold settings for the closed tier. The path loss exponent
α is set 4 in both figures. According to Figures 3 and 4, we can
see the approximate values calculated as (17) and (18) are
close to the simulations, so the SIR threshold can be set
conveniently by the formulas to control the rate to meet the
target reliability.

Besides the service density and interference density, we
can see from (17) and (18) that the approximate value of
SIR threshold is related to the path loss exponent for a target
reliability. Figure 5 shows the trend of the SIR threshold fol-
lowing the path loss exponent for open tiers. It is noticed that

the trend is not monotonous, and the SIR threshold can
get a peak value when the path loss exponent α = 3:6 or
so. A lower or greater value of α leads to a lower threshold
to meet the same target reliability. However, the effect of
the path loss exponent in the approximate SIR threshold
is different in the closed tier, as Figure 6, where the trend
is monotonous and a lower α only leads to a greater SIR
threshold setting.

5. Conclusions

The meta distribution is a fine-grained key performance met-
ric of wireless systems. In this paper, we study the SIR meta
distribution in the multi-tier heterogeneous and hybrid net-
work characterized by different powers, different densities,
and different association rules of each tier. At first, we derive
the bth moments of conditional success probability for the
users of the open tiers and the closed tiers, respectively. Based
on the bth moments, we give the expressions of SIR meta dis-
tribution or the CCDF of the conditional success probability
and approximate the expressions by beta distribution. The
accuracy of the approximation is confirmed by simulations.
Then, the mean local delay for users of the open tiers is also
analyzed. Furthermore, using another facet of SIR meta dis-
tribution, we study the per-link rate control for the open tiers
and closed tiers and derive the corresponding approximate
value of SIR threshold to control the link rate. The simula-
tions show that the approximate value we derived can be used
effectively for setting the SIR threshold to meet the specified
reliability.

Appendix

A. Proof of Theorem 1

Conditioned on the typical user associated with the transmit-
ter x0 of the kth tier in the open group and assume the dis-
tance from x0 to the user is R0, the CSP is expressed as

Popen
s, kð Þ =ℙ

Pkh0R0
−α

∑x∈Φk ,x≠x0Pkhx xj j−α +∑i≠k∑x∈Φi
Pihx xj j−α > θ∣

[
Φi

 !
:

ðA:1Þ

By averaging over the fading, we get the conditional bth
moment of the CSP, given by

Mb,R0
=

Y
x∈Φk ,x≠x0

1
1 + θ R0/∣x ∣ð Þαð Þb

Y
i≠k

Y
x∈Φi

1
1 + θ Pj/Pk

� �
R0/∣x ∣ð Þα� �b

=
Y

x∈Φk ,x≠x0

1
1 + θ R0/∣x ∣ð Þαð Þb

Y
i∈B,i≠k

Y
x∈Φi

1
1 + θ Pj/Pk

� �
R0/∣x ∣ð Þα� �b

Y
i∉B

Y
x∈Φi

1
1 + θ Pj/Pk

� �
R0/∣x ∣ð Þα� �b

ðA:2Þ

The notationMb,R0
is used to denote that the bth moment

conditioned on R0 and the event that the typical user
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connects to the k-th tier, which occurs with the probability
given in (6). Then, the bth moment of the open tiers can be
expressed as

Mopen
b, kð Þ = ER0,Φi∣i∈ 1⋯Kf g

Y
Φi∣i∈B,i≠k

exp −πλi
Pi

Pk

� �δ

R0
2

 !2
4 Y

x∈Φk ,x≠x0
1

1 + θ R0/ xj jð Þαð Þb
Y

i∈B,i≠k

Y
x∈Φi

1
1 + θ Pi/Pkð Þ R0/ xj jð Þαð Þb

Y
i∉B

Y
x∈Φi

1
1 + θ Pi/Pkð Þ R0/∣x ∣ð Þαð Þb

#

að Þ
=

ER0

Y
Φi∣i∈B,i≠k

exp −πλi
Pi

Pk

� �δ

R0
2

 !
:exp

2
4

� −2πλk
ð∞
R0

1 − 1
1 + θ R0/∣x ∣ð Þαð Þb

 !
xdx

 !
:

Y
i∈B,i≠k

exp −2πλi
ð∞
ri

1 − 1
1 + θ Pi/Pkð Þ R0/ xj jð Þαð Þb

 !
xdx

 !
:

Y
j∉B

exp −λj

ð
R2

1 − 1
1 + θ Pj/Pk

� �
R0/ xj jð Þα� �b

 !
dx

 !

bð Þ
=

ð∞
0
2πλkrke−πλkrk

2 exp 〠
i∈B,i≠k

− πλi
Pi

Pk

� �δ

rk
2

 !
:exp

� −2πλk
ð∞
rk

1 − 1
1 + θ R0/ xj jð Þαð Þb

 !
xdx

 !
:
Y

i∈B,i≠k
exp

� −2πλi
ð∞
ri

1 − 1
1 + θ Pi/Pkð Þ rk/ xj jð Þαð Þb

 !
xdx

 !
:
Y
j∉B

exp

� −λj

ð
R2

1 − 1
1 + θ Pj/Pk

� �
R0/ xj jð Þα� �b

 !
dx

 !

cð Þ
=

ð∞
0
e
−z 1+ 〠

i∈B,i≠k
λi/λkð Þ Pi/Pkð Þδ

 !
:exp

� −2z
ð1
0

1 − 1
1 + θuαð Þb

 !
u−3du

 !
:
Y
i∈B

exp

� −2z λi
λk

ðrk/ri
0

1 − 1
1 + θ Pi/Pkð Þuαð Þb

 !
u−3du

 !
:
Y
j∉B

exp

� −z
λj

λk

Pi

Pk

� �δ

θδ
πδ

sin πδð ÞΓb,δ

 !
dz

dð Þ
=

ð∞
0
e−z:exp −z

ð∞
1

1 − 1
1 + θv−α/2ð Þb

 !
dv

 !
:exp

� −z 〠
i∈B,i≠k

λi
λk

Pi

Pk

� �δð∞
1

1 − 1
1 + θt−α/2ð Þb

 !
dt

 ! !
:exp

� 〠
j∉B

− zθδ
λj

λk

� �
Pj

Pk

� �δ πδ

sin πδð ÞΓb,δ

! !
dz

eð Þ
=

ð∞
0

exp −zFb,δ,θð Þ:exp −z 〠
i∈B,i≠k

λi
λk

Pi

Pk

� �δ

Fb,δ,θ

 !
:exp

� −zθδ〠
j∉B

λj

λk

� �
Pj

Pk

� �δ πδ

sin πδð ÞΓb,δ

 !
dz

= 1
∑Φi∣i∈B

λi/λkð Þ Pi/Pkð ÞδFb,δ,θ +∑Φ j∣ j∉B
λj/λk
� �

Pj/Pk

� �δθδ πδ/sin πδð Þð ÞΓb,δ
:

ðA:3Þ

In the above derivation, (a) is by the probability generat-
ing functional (PGFL) of the PPP and the polar coordinate,
and (b) is by using the probability density function of R0. In
step (c), we use the variable substitution πλkrk

2 = z, and rk/∣
x ∣ = u in the exp ð−2πλk

Ð∞
rk
ð1 − 1/ð1 + θðR0/jxjÞαÞbÞxdxÞ

term and the
Q

i∈B,i≠k exp ð−2πλi
Ð∞
ri
ð1 − 1/ð1 + θðPi/PkÞ

ðrk/jxjÞαÞbÞxdxÞ term and use

ð
R2

1 − 1
1 + θ1 xj j−α
� �b

 !
dx = πθ1

δ πδ

sin πδð Þ
Γ b + δð Þ

Γ bð ÞΓ 1 + δð Þ ,

ðA:4Þ

in the
Q

j∉B exp ð−λj

Ð
R2ð1 − 1/ð1 + θðPj/PkÞðR0/jxjÞαÞbÞdxÞ

term, where θ1 = ðPj/PkÞrαkθ. (A.4) can be obtained from
[2, 15]. The step (d) is by using the variable substitution
uα = v−α/2, and ðPj/PkÞuα = t−α/2; and step (e) holds for

2F1 ðb,−δ ; 1 − δ;−θÞ ≡ 1 +
Ð∞
1 ð1 − 1/ð1 + θt−α/2ÞbÞdt. Thus,

Mopen
b,ðkÞ is derived.

B. Proof of Theorem 3

Assume the jth (j ∉ B) tier is the closed tier, the CSP of the
typical user is expressed as

Pclosed
s, kð Þ = ℙ

Pjh0dj
−α

∑x∈Φ j ,x≠x0Pkhx xj j−α +∑i≠j∑x∈Φi
Pihx xj j−α > θ∣

[
Φi

 !
:

ðB:1Þ

By averaging over the fading, we get the conditional bth
moment as

Mclosed
b, jð Þ = E

Y
x∈Φ j,x≠x0

1
1 + θ dj/ xj j� �α� �bY

j≠i

Y
Φi

1
1 + θ Pi/Pj

� �
dj/ xj j� �α� �b

0
@

1
A
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að Þ
=

exp −λj

ð
R2

1 − 1
1 + θ dj/ xj j� �α� �b

 !
dx

 !
:
Y
i≠j

exp

� −λi
ð
R2

1 − 1
1 + θ Pi/Pj

� �
dj/ xj j� �α� �b

 !
dx

 !

bð Þ
=

exp −πλ jθ
δd2j

πδ

sin πδð Þ
Γ b + δð Þ

Γ bð Þ:Γ 1 + δð Þ
� �

:
Y
i≠j

exp

� −πλi
Pj

Pk

� �δ

θδd2j
πδ

sin πδð Þ
Γ b + δð Þ

Γ bð Þ:Γ 1 + δð Þ

 !

= exp −π〠
K

i=1
λi

Pi

Pj

 !δ

θδd2j
πδ

sin πδð ÞΓb,δ

0
@

1
A,

ðB:2Þ

where ðaÞ is by the PGFL of the PPP, and (b) holds for
equation (A.4).

C. Proof of Theorem 7

Due to the displacement theorem, the stochastic equivalence
model has been used in [19, 20]. Here, we make use of the
stochastic equivalence to simplify the het-hybrid network as
an equivalent two-tier network. One tier is the service-tier
ΦS (all open tiers), and the other is the interference-tier ΦI
(all closed tiers). For a link of the open tier k, the service den-
sity can be equivalent to λS =∑j∈BλjðPj/PkÞδ, and the density

of interference is equivalent to λI =∑j∉BλjðPj/PkÞδ. Assume
the number of nodes in the service tier is n1, the number of
nodes in the interference tier is n2, and the serving node is
x0 with distance R0, the interference node is xi, the CSP can
be given by

Popen
s, kð Þ =ℙ

Pkh0R0
−α

∑xi∈Φk ,i≠0Pkhx xij j−α +∑j≠k∑xi∈Φ j
Pjhx xij j−α > θ∣

[
Φi

 !

=
Y
j∈B

Y
xi∈Φ j ,xi≠x0

1
1 + θ Pj/Pk

� �
R0/ xij jð Þα

Y
j∉B

Y
xi∈Φ j

1
1 + θ Pj/Pk

� �
R0/ xij jð Þα

að Þ
=

Y
ΦS,xi≠x0

1
1 + θ R0/∣xi ∣ð Þα

Y
ΦI

1
1 + θ R0/ xij jð Þα

≥
1

1/n1ð Þ∑n1
i=1 1 + θ R0/ xij jð Þαð Þ� �n1 1/n2ð Þ∑n2

1 1 + θ R0/ xij jð Þαð Þ� �n2
= 1

1 + θ 1/n1ð Þ∑n1
i=1 R0/ xij jð Þα

� �n1
1 + θ 1/n2ð Þ∑n2

i=1 R0/ xij jð Þð Þα� �n2 ,
ðC:1Þ

where ðaÞ holds for the equivalent network; the “≥” holds for
the relation between the geometric mean and the arithmetic
mean, as [20], Lemma 5.

For a target reliability ν,

1
ν
≤ 1 + 1

n1
θ〠

n1

i=1

R0
xij j

� �α
 !n1

1 + 1
n2

θ〠
n2

i=1

R0
xij j

� �α
 !n2

bð Þ
≈

1 + 1
n1

θ
2

α − 2

� �n1

� 1 + 1
n2

θ
Γ 1 + α/2ð Þð Þ

λSπð Þα/2
λIπð Þα/2Γ n2 − α/2ð Þð Þ

Γ n2ð Þ

 !n2

≤ 1 + 1
n1

θ
2

α − 2

� �n1
1 + 1

n2
θ

λIð Þα/2
λSð Þα/2

Γ 1 + α

2
� � !n2

≈ lim
n1→∞
n2→∞

1 + 1
n1

θ
2

α − 2

� �n1
1 + 1

n2
θ

λI
λS

� �α/2
Γ 1 + α

2
� � !n2

cð Þ
=

exp θ
2

α − 2 + λI
λS

� �α/2
 

Γ 1 + α

2
� � !

, ðC:2Þ

where (b) holds for the R0/∣xi∣ in Lemma 5 and Lemma 6,
and r0 is taken a mean value by the probability density
functionf r0ðrÞ = 2πλre−πλr2 in open tiers. The last “=” (c) is

derived from the lim
n→∞

ð1 + ðx/nÞÞn = ex. The equation (17) is

thus derived.

D. Proof of Theorem 9

We also start from the CSP for the closed user. Similar as the
open tiers, the service density is the kth tier density itself
λS = λj, and density of interference from other tiers is λI =
∑i≠jλiðPi/PkÞδ. Assume the link distance is fixed as dj, the
CSP is

Pclosed
s, jð Þ = ℙ Pjh0dj

−α/〠
xi∈Φ j ,i≠0

Pjhx xij j−α
�
+〠

j≠k
〠

xi∈Φk
Pkhx xij j−α > θ∣

[
Φi

�
=
Y

xi∈Φ j ,xi≠x0
1/1 + θ dj/∣xi ∣

� �α� �Y
j≠k

Y
xi∈Φ j

� 1/1 + θ Pk/Pj

� �
dj/∣xi ∣
� �α� �

að Þ/ =ð Þ
Y

Φ j,xi≠x0

� 1/1 + θ dj/∣xi ∣
� �α� �Y

ΦI

1/1 + θ dj/∣xi ∣
� �α� �

≥ 1/ 1/n1ð Þ〠n1
i=1 1 + θ dj/∣xi ∣

� �α� �� �n1
� 1/n2ð Þ〠n2

1 1 + θ dj/∣xi ∣
� �α� �� �n2 ,

ðD:1Þ

where (a) holds for the interference nodes as an equiva-
lent tier with density λI , and the “≥” holds for the relation
between the geometric mean and the arithmetic mean, as
[20], Lemma 5. Therefore,
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1
ν
≤ 1 + 1

n1
θ〠

n1

i=1

dj

xij j
� �α

 !n1

1 + 1
n2

θ〠
n2

i=1

dj

xij j
� �α

 !n2

bð Þ
≈

1 +
dj

α

n1
θ

λSπð Þα/2Γ n1 − α/2ð Þð Þ
Γ n1ð Þ

 !n1

� 1 +
dj

α

n2
θ

λIπð Þα/2Γ n2 − α/2ð Þð Þ
Γ n2ð Þ

 !n2

≤ 1 +
dj

α

n1
θ λSπð Þα/2

� �n1

1 +
dj

α

n2
θ λIπð Þα/2

� �n2

≈ lim
n1→∞
n2→∞

1 +
dj

α

n1
θ λSπð Þα/2

� �n1

1 +
dj

α

n2
θ λIπð Þα/2

� �n2

cð Þ
=

exp θdj
α λSπð Þα/2 + λIπð Þα/2
� �� �

, ðD:2Þ

where (b) stems from Lemma 6, and (c) holds for lim
n→∞

ð1 + ðx/nÞÞn = ex. Equation (18) is thus derived.
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