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Along with the fast development of wireless technologies, smart devices have become an integral part of our daily life.
Authentication is one of the most common and effective methods for these smart devices to prevent unauthorized access.
Moreover, smart devices tend to have limited computing power, and they may possess sensitive data. In this paper, we
investigate performing graph operations in a privacy-preserving manner, which can be used for anonymous authentication for
smart devices. We propose two protocols that allow two parties to jointly compute the intersection and union of their private
graphs. Our protocols utilize homomorphic encryption to prevent information leakage during the process, and we provide
security proofs of the protocols in the semihonest setting. At last, we implement and evaluate the efficiency of our protocols
through experiments on real-world graph data.

1. Introduction

With the rapid development of IoT technology, we are sur-
rounded by various types of smart devices in our daily life,
such as sensors, wearable devices, and smart vehicles [1].
Authentication is one of the most important mechanisms
to provide security protection for these smart devices [2],
and authentication for light-weighted devices has become a
hot research topic in the past years [3, 4].

In recent years, researchers have proposed several mobile
authentication schemes based on graph data structure and
graph algorithms [5–7]. Graph data and graph processing
are well studied for the last decades [8, 9], since they can help
to solve many practical problems in different application
areas, such as web data processing [10], data mining [11],
social networking [12], biological networking [13], and com-
munication networking [14].

1.1. Motivation. In this paper, we consider the problem of
computing graph operations between two parties while pre-
venting information leakage, which has great potential in
smart device authentication. For example, when the mobile
devices communicate with cloud servers, they need to first
jointly perform identity authentication for security protec-

tion. Since the mobile devices may contain sensitive informa-
tion of the users and the cloud servers cannot be fully trusted
in general, the privacy leakage problem for mobile authenti-
cation has become a security threat [15]. In order to protect
the privacies of the mobile devices, the devices can model
their identities and properties as graph-structured data, and
the cloud servers can model their authentication policies as
graph-structured data as well. After that, the identity authen-
tication process can be converted into performing graph
operations in a privacy-preserving manner.

1.2. Our Contributions.We study the problem of performing
graph intersection and union while protecting the privacies
of the input graphs. Suppose that for two parties, Alice and
Bob, each has a private graph, denoted as GA and GB, respec-
tively. Alice wishes to learn the intersection and union of
these two graphs. In other words, Alice wishes to learn GI
=GA

T
GB and GU = GA

S
GB. In addition, both Alice and

Bob do not wish to reveal any information about their graphs
to the other party. The contributions of this paper can be
summarized as below:

(i) We present two graph operation protocols between
two parties, a server and a client. The first protocol
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allows the server and the client to jointly compute
the intersection of their input graphs, and the second
protocol computes the union of the input graphs.
Our constructions first use the Paillier cryptosystem
and oblivious polynomial evaluation to compute the
intersection and the union of the vertices. After that,
we use the homomorphic property of the Paillier
cryptosystem to compute the edge intersection and
union

(ii) We provide the security models of the protocols, and
we prove that the protocols are secure in the semi-
honest setting. Furthermore, we analyze the infor-
mation leakage and propose methods to minimize
the leakages

(iii) We discuss the efficiencies of the protocols in terms
of computation costs and communication costs. At
last, we implement our constructions and perform
experiments on real-world graph data

An earlier version of this paper was presented at the 22nd
Australasian Conference on Information Security and Pri-
vacy, 2017 [16]. The previous work presented a private graph
intersection protocol with rough analysis. This paper extends
the previous work by presenting a private graph union proto-
col with detailed analysis and experimental results.

2. Related Work

There are many different approaches to construct authenti-
cation schemes for smart devices. Among them, graph-
based authentication schemes are widely used in IoT [5, 17,
18]. In 2002, Micali and Rivest [19] first introduced the tran-
sitive signature based on graph theory, which provides an
unforgeable signature for undirected graphs. After that, var-
ious graph-based signature and authentication schemes were
proposed [5–7]. In 2017, Chuang et al. [5] proposed an
authentication system in Internet of Things based on multi-
graph zero-knowledge. The system provides suitable security
protection for IoT authentication services. The proposed
multigraph zero-knowledge procedure is faster than tradi-
tional zero-knowledge methods and ECC-based solutions.
The experiment results indicate that the system is light-
weighted and highly adaptive. Lin et al. [6] proposed a tran-
sitively graph authentication scheme for blockchain-based
identity management systems in 2018. The system is used
to bind a digital identity object to its real-world entity, there-
fore achieving identity authentication. The system is con-
structed based on transitively closed undirected graphs and
vertex signatures. According to the evaluation results, the
system is efficient, even when the graph dynamically adds
or deletes vertices and edges. In 2019, Shao et al. [7] proposed
a multifactor authentication scheme using a fuzzy graph
domination model. The scheme is adaptive choosing one or
multiple privacy-preserving identities to authenticate the
users. The authors designed a weighted vertex-edge dominat-
ing set to solve the weighted domination problem on fuzzy
graphs. Compared to existing solutions, the scheme is more
efficient for solving instances with moderate orders.

In this work, we consider the problem of performing
graph intersection and union in the privacy-preserving man-
ner and proposed two secure multiparty computation proto-
cols. Secure Multiparty computation (MPC) has been
extensively studied over the past decades. Generally speaking,
MPC allows multiple participants to jointly perform certain
computations without losing the privacy of their input data,
even when some players cheat during the process. MPC
was first formally introduced by Yao in 1982 [20] and
extended by Goldreich et al. [21]. Their works convert certain
computation problems into a combinatorial circuit, then the
parties perform computations over the gates in the circuit.
After that, a large number of MPC protocols have been pro-
posed to solve various problems, such as privacy-preserving
set operations [22] and private information retrieval [23].

3. Preliminary

In this section, we present the preliminaries related to our
proposed protocols. First, we present the relevant notations
that we used in this paper in Table 1.

3.1. Additive Homomorphic Encryption. Homomorphic
encryption schemes allow the users to perform certain com-
putation operations on the ciphertext space, such as addition
and multiplication. In our private graph operation protocols,
we utilize an additive homomorphic encryption scheme
called the Paillier cryptosystem, proposed by Paillier in
1999 [24]. The Paillier cryptosystem contains three algo-
rithms, described as follows:

ðpk, skÞ← KeyGenð1kÞ is the key generation algorithm.
The input is a security parameter k. The outputs are a public
key pk and a secret key sk. The public key contains a large
number N which specifies the message space, the ciphertext
space, and the random space to be ℤN , ℤ∗

N2 , and ℤ∗
N ,

respectively.
t⊕ ← Encðpk, t ; rÞ is the encryption algorithm. The input

is the public key pk, a plaintext t ∈ℤN , and a random number
r ∈ℤ∗

N . The output is the ciphertext t
⊕ ∈ℤ∗

N2 . For simplicity,
we use the notion t⊕ = EncðtÞ.

t←Decðsk, t⊕Þ is the decryption algorithm. The input is
the secret key sk and a ciphertext t⊕ ∈ℤ∗

N2 . The output is the
plaintext t ∈ℤN . For simplicity, we use the notion t = Decð
t⊕Þ.

The Paillier cryptosystem has the following properties:

3.1.1. Correctness. For any key pairs ðpk, skÞ←KeyGenð1kÞ
and any plaintext t ∈ℤN , DecðEncðtÞÞ = t always holds.

3.1.2. IND-CPA Security. Two ciphertexts t⊕0 and t
⊕
1 are indis-

tinguishable for probabilistic polynomial-time adversaries
that only have access to the public parameters.

3.1.3. Homomorphic Property. For any two plaintexts t0, t1
∈ℤN , there exists an operation ⊕ in the ciphertext space,
such that DecðEncðt0Þ ⊕ Encðt1ÞÞ = t0 + t1. Furthermore,
there exists another operation ⊗ in the ciphertext space,
such that DecðEncðt0Þ ⊗ t1Þ = t0 · t1.
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3.2. Private Set Intersection. Private Set Intersection (PSI) is a
cryptographic protocol that allows two parties, each holding
a private set, to jointly compute the intersection of their sets
without leaking any additional information. The first secure
two-party private set intersection protocol is introduced by
Freedman, Nissim, and Pinkas (FNP) in 2004 [25]. The pro-
tocol utilizes homomorphic encryption and oblivious poly-
nomial evaluation to ensure each party learns no
information about the other party’s private input during
the computation. Later, several other protocols have been
proposed with different features and security levels [26–28].

3.3. Graph Representation. In our protocol, we represent a
graph as G = ðV , EÞ, where V is the vertex collection and E
is the edge collection. We represent the vertex collection as
a sorted set with ascending order, V = fv1, v2,⋯, vzg, where
z is the number of vertices in G, vi ∈ℤ, and vi < vi+1 for 1 ≤
i ≤ z − 1. We represent the edge collection as an adjacency
matrix,

E =
e1,1 ⋯ e1,z

⋮ ⋱ ⋮

ez,1 ⋯ ez,z

0
BB@

1
CCA, ð1Þ

where ei,j is the adjacency relation between the vertices vi and
vj, and ei,j ∈ f0, 1g. If vertices vi and vj are adjacent, i.e., there
is at least one edge that connects them, ei,j = 1; otherwise,
ei,j = 0. Note that E is a square matrix with z rows and z col-
umns. For an undirected graph, E is a symmetric matrix,
since the edges are two-way.

For example, we represent the directed graph illustrated
in Figure 1 as G = ðV , EÞ, where V = f1, 5, 23,50,74g and

E =

0 1 0 1 0
0 1 0 0 0
1 0 0 0 1
0 0 0 0 1
0 0 1 1 1

0
BBBBBBBB@

1
CCCCCCCCA
: ð2Þ

4. Definitions and Security Models

4.1. Protocol Definitions. We formally describe the private
graph intersection (PGI) protocol and the private graph
union (PGU) protocol. The protocols involve two partici-
pants, a server and a client, denoted as S and C, respectively.
Each of the participants holds a private graph, which is
intended to be kept secret from the other participant.

We denote the graphs of the server and client as GS =
ðVS, ESÞ and GC = ðVC , ECÞ, respectively, where V and E
are the sets of vertices and edges of the graphs. The intersec-
tion of GS and GC is defined as GI =GS

T
GC = ðVI , EIÞ,

where VI =VS
T

VC and EI = ES
T

EC . The union of GS
and GC is defined as GU =GS

S
GC = ðVU , EUÞ, where

VU =VS
S

VC and EU = ES
S

EC .
PGI and PGU allow the participants to jointly compute

GI and GU , respectively, in a privacy-preserving manner. At
the end of the protocols, only the server learns the result.
The formal definitions of PGI and PGU are described as
follows:

Definition 1 (private graph intersection protocol). If both
participants are honest, for any GS = ðVS, ESÞ and any GC =
ðVC , ECÞ, the private graph intersection protocol computes
GI =GS

T
GC . At the end of the protocol, only S learns GI .

Definition 2 (private graph union protocol). If both partici-
pants are honest, for any GS = ðVS, ESÞ and any GC = ðVC ,
ECÞ, the private graph union protocol computes GU =GS

S
GC . At the end of the protocol, only S learns GU .

4.2. Security Models.When considering privacy protecting in
authentication, the term privacy may have different defini-
tions and properties, such as user identity and untraceability
[29, 30]. In this work, the privacies of the server and the client
refer to any information about their graphs. Therefore, any
information about the vertices and edges of the graphs is con-
sidered as private, such as the number of vertices, the number
of edges, the values of the vertices, and whether two vertices
are connected by an edge.

The security goals of both PGI and PGU protocols are
protecting the privacies of both the server and the client dur-
ing the computation. In other words, both the server and the

Table 1: Table of notations.

Symbol Description

PGI Private graph intersection protocol

PGU Private graph union protocol

S, C The server, the client

GS, GC The server’s graph, the client’s graph

GI The intersection of GSand GC

GU The union of GS and GC

VS, VC , VI , VU The vertices of GS, GC , GI , and GU

ES, EC , EI , EU The edges of GS, GC , GI , and GU

m, n, p, q The number of vertices in GS, GC , GI , and GU

1

5

74

23

50

Figure 1: Example graph.
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client should learn no information about the graph of the
other party.

We use the semihonest security model for both PGI and
PGU, which means both the server and the client perform
the protocols faithfully, but they may try to learn any infor-
mation about the graph of the other participant. The security
models are adopted from the work of [31–33].

While achieving no information leakage is the ideal goal,
our protocols leak partial information during the process.
The information leakages for PGI are defined as leakage
functions L1 and L2, and the information leakages for
PGU are defined as L3 and L4. The detailed information
about the leakage functions are as follows:L1 is the number
of vertices in GC , L2 is the vertex intersection VI and the
number of vertices in GS, L3 is the number of vertices in
GC and the number of common vertices between GS and
GC , and L4 is the vertex union VU and the number of verti-
ces in GS.

The formal definitions of security models are described as
follows:

Definition 3 (PGI security). A semihonest server learns noth-
ing about the client’s graph, beyond what can be deduced
fromGI and the leakage functionL1, and a semihonest client
learns nothing about the server’s graph, beyond the leakage
function L2.

Definition 4 (PGU security). A semihonest server learns
nothing about the client’s graph, beyond what can be
deduced from GU and the leakage function L3, and a semi-
honest client learns nothing about the server’s graph, beyond
the leakage function L4.

5. Protocol Construction

In this section, we propose the constructions of PGI and
PGU. The graphs of the server and the client are represented
as GS = ðVS, ESÞ and GC = ðVC , ECÞ, respectively, where
VS = fs1, s2,⋯, smg, VC = fc1, c2,⋯, cng,

ES =
s1,1 ⋯ s1,m

⋮ ⋱ ⋮

sm,1 ⋯ sm,m

0
BB@

1
CCA, EC =

c1,1 ⋯ c1,n

⋮ ⋱ ⋮

cn,1 ⋯ cn,n

0
BB@

1
CCA:

ð3Þ

5.1. PGI Construction. We use the FNP protocol [25] as a
building block for computing the vertex intersection. The
private graph intersection protocol is described below:

Input: S and C hold the graphs GS = ðVS, ESÞ and GC =
ðVC , ECÞ, respectively.

Output: S learns GI = ðVI , EIÞ.
Protocol:

Step 1. S runs the key generation algorithm of the Paillier
cryptosystem, ðpk, skÞ← KeyGenð1kÞ, and obtains the public
key and the secret key. Then, S publishes pk.

Step 2.

(a) S constructs a polynomial PðxÞ = ðx − s1Þðx − s2Þ⋯
ðx − smÞ =∑m

u=0αux
u, such that all the roots of PðxÞ

are exactly the elements in VS. In other words, PðxÞ
= 0 if and only if x ∈ VS

(b) S encrypts each αi, for 0 ≤ i ≤m, under the Paillier
cryptosystem, and sends the set of ciphertexts α⊕ =
fα⊕i g0≤i≤m to C

Step 3.

(a) By using the homomorphic properties of the Paillier
cryptosystem, C evaluates the polynomial P using
each element in VC as input. In other words, C com-
putes EncðPðciÞÞ, for 1 ≤ i ≤ n

(b) For each polynomial evaluation, C chooses a random
value r and computes β⊕

i = EncðrPðciÞ + ciÞ. Then, C
sends β⊕ = fβ⊕

i g1≤i≤n to S

Step 4. S decrypts all the ciphertexts received and compares
the decrypted values with his vertex set VS. If a decrypted
value βi = Decðβ⊕

i Þ has a corresponding element in VS, it is
an element of the intersection of VS and VC . In other words,
if βi ∈ VS, βi ∈ VI . After decrypting all the received cipher-
texts, the server obtains VI .

Step 5.

(a) S uses VI to construct an adjacency matrix A of size
p × p, where p is the number of the vertex in VI :

A =
a1,1 ⋯ a1,p

⋮ ⋱ ⋮

ap,1 ⋯ ap,p

0
BB@

1
CCA: ð4Þ

A has the property that, for each vertex pair vx ∈ VI and
vy ∈ VI , if an edge exists in GS between vertices vx and vy ,
ax,y = 1; otherwise, ax,y = 0.

(b) S encrypts each element in A under the Paillier
cryptosystem and obtains an encrypted matrix A⊕ =
EncðAÞ

(c) S sends A⊕ and VI to C

Step 6.

(a) By using VI , C constructs an adjacency matrix B
using the same method in the last step:
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B =
b1,1 ⋯ b1,p

⋮ ⋱ ⋮

bp,1 ⋯ bp,p

0
BB@

1
CCA ð5Þ

(b) C computes

E⊕
I = A⊕ ⊗ B =

a⊕1,1 ⋯ a⊕1,p

⋮ ⋱ ⋮

a⊕p,1 ⋯ a⊕p,p

0
BBB@

1
CCCA ⊗

b1,1 ⋯ b1,p

⋮ ⋱ ⋮

bp,1 ⋯ bp,p

0
BBB@

1
CCCA

=

a⊕1,1 ⊗ b1,1 ⋯ a⊕1,p ⊗ b1,p

⋮ ⋱ ⋮

a⊕p,1 ⊗ bp,1 ⋯ a⊕p,p ⊗ bp,p

0
BBB@

1
CCCA

ð6Þ

(c) C sends E⊕
I to S

Step 7. S decrypts each element in E⊕
I and obtains EI =

DecðE⊕
I Þ. At last, S obtains GI = ðVI , EIÞ.

5.2. PGU Construction. The private graph union protocol is
described below:

Input: S and C hold the graphs GS = ðVS, ESÞ and GC =
ðVC , ECÞ, respectively.

Output: S learns GU = ðVU , EUÞ.
Protocol:

Step 1. Same as Step 1 of PGI.

Step 2. Same as Step 2 of PGI.

Step 3.

(a) By using the homomorphic properties of the Paillier
cryptosystem, C evaluates the polynomial P using
each element in VC as input. In other words, C com-
putes EncðPðciÞÞ, for 1 ≤ i ≤ n

(b) For each polynomial evaluation, C choose a random
value r and computes β⊕

i = EncðPðciÞÞ ⊗ r. Then, C
sends the set of all resulting ciphertexts β⊕ =
fβ⊕

i g1≤i≤n to S

Step 4. S decrypts each ciphertext received as βi = Decðβ⊕
i Þ

and checks the decrypted value. If βi = 0, S computes γ⊕i =
Encð0Þ; otherwise, S computes γ⊕i = Encð1Þ. Then, S sends
γ⊕ = fγ⊕i g1≤i≤n to C.

Step 5. After receiving γ⊕, C computes δ⊕i = ci ⊗ γ⊕i , for 1 ≤ i
≤ n. Then, C sends δ⊕ = fδ⊕i g1≤i≤n to S.

Step 6.

(a) S decryptes each value in δ⊕ and checks if the
decrypted value δi = Decðδ⊕i Þ is zero

(b) By combining the server’s vertex set VS and the set of
nonzero decrypted values fδigδi≠0, S obtains VU . VU

is then sorted in ascending order and is represented
as VU = fu1, u2,⋯, uqg

Step 7.

(a) S uses VU to construct an adjacency matrix A of size
q × q, where q is the number of vertex in VU :

A =
a1,1 ⋯ a1,q

⋮ ⋱ ⋮

aq,1 ⋯ aq,q

0
BB@

1
CCA: ð7Þ

A has the property that, for each vertex pair ux ∈ VU and
uy ∈ VU , if an edge exists in GS between vertices ux and uy ,
ax,y = 1; otherwise, ax,y = 0

(b) S encrypts each element in A under the Paillier
cryptosystem and sends the encrypted matrix A⊕

and VU to C

Step 8.

(a) C uses VU to construct an adjacency matrix B in the
same manner as S in the last step:

B =
b1,1 ⋯ b1,q

⋮ ⋱ ⋮

bq,1 ⋯ bq,q

0
BB@

1
CCA ð8Þ

(b) C encrypts each element in B using the Paillier
cryptosystem and obtains B⊕

(c) C generates a matrix R with q × q random values:

R =
r1,1 ⋯ r1,q

⋮ ⋱ ⋮

rq,1 ⋯ rq,q

0
BB@

1
CCA ð9Þ

(d) C computes:

E⊕
U = A⊕ ⊕ B⊕� �

⊗ R =

a⊕1,1 ⊕ b⊕1,1
� �

⊗ r1,1 ⋯ a⊕1,q ⊕ b⊕1,q
� �

⊗ r1,q

⋮ ⋱ ⋮

a⊕q,1 ⊕ b⊕q,1
� �

⊗ rq,1 ⋯ a⊕q,q ⊕ b⊕q,q
� �

⊗ rq,q

0
BBBBB@

1
CCCCCA

=

e⊕1,1 ⋯ e⊕1,q

⋮ ⋱ ⋮

e⊕q,1 ⋯ e⊕q,q

0
BBB@

1
CCCA

ð10Þ
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(e) C cends E⊕
U to S

Step 9. S decrypts the matrix E⊕
U . For each decrypted element

ei,j, if ei,j ≠ 0, set ei,j = 1. At last, S obtains EU .

6. Analysis

6.1. Security Analysis. In this section, we prove the correct-
ness and security of both PGI and PGU. When analyzing
the security of the proposed protocols, we assume both the
server and the client evaluate the protocols faithfully, but
they may try to obtain as much information about the graph
of the other party as possible. The security analysis for the
protocols is divided into two cases, where one of the server
and the client acts as the adversary in each case. Then, we
prove the zero-knowledge properties of the server and the cli-
ent in each case, using the methods and techniques intro-
duced in [15, 34].

Lemma 5 (PGI correctness). If both participants are honest,
for any GS = ðVS, ESÞ and any GC = ðVC , ECÞ, the private
graph intersection protocol computes GI = ðVI , EIÞ =GS

T
GC.

Proof. The correctness of PGI is ensured by the correctness of
the FNP protocol and the homomorphic property of the Pail-
lier cryptosystem.

During Steps 2 to 4 of the protocol, the client and the
server jointly perform a FNP protocol using their vertex col-
lections as inputs. At the end of Step 4, the server learns the
vertex intersection VI , and the client receives VI from the
server in Step 5.

In Steps 5 and 6, the server and the client construct two
adjacency matrices by using VI , denoted as A and B, respec-
tively. Note that A and B contain the adjacency relations
between the vertices in VI for graphs GS and GC , respectively.
In other words, if an edge exists between two vertices in VI , it
leads to a value of 1 in the corresponding position of the con-
structed adjacency matrix; otherwise, it leads to a value of 0
instead. Therefore, the dot product of A and B will produce
an adjacency matrix that represents the edge intersection. If
an edge exists in both A and B, i.e., it is a common edge
between GS and GC , the dot product of its adjacency relations
will result a value of 1. If an edge only exists in one of GS and
GC , or the edge does not exist at all, the dot product will result
in a value of 0.

In Step 6, the client receives the encryption ofA under the
Paillier cryptosystem from the server. If the Paillier crypto-
system has the homomorphic property, i.e., it supports mul-
tiplication between a ciphertext and a constant, the client can
homomorphically compute the dot product of the A⊕ and B,
and the result is the encryption of the edge intersection.
Finally, in Step 7, the server obtains the edge intersection
after decryption.

As a result, if the FNP protocol is correct and the
Paillier cryptosystem has the homomorphic property, the
private graph intersection protocol computes GI = ðVI , EIÞ
=GS

T
GC .

Lemma 6 (PGI server zero-knowledge). A semihonest server
learns nothing about the client’s graph, beyond what can be
deduced from GI and the leakage function L1.

Proof. The proof of PGI server zero-knowledge is trivial.
During PGI, there are two parts where the server receives
information about the client’s graph. The first part is during
the FNP protocol in Step 3, and the second part is at the end
of Step 6.

For the first part, in Step 3, the server receives a set of
ciphertexts from the client. The server can learn the number
of vertices in the client’s graph by counting the number of
ciphertexts, which is the predefined leakage function L1.
By decrypting the ciphertexts, the server obtains a set of
values. If a value exists in VS, it is a common vertex between
GS and GC , which is a part of the final result of the protocol.
Otherwise, if the value does not exist in VS, it will be a ran-
dom value, which has no relation to the client’s graph.

For the second part, the server receives E⊕
I from the client,

which is the ciphertext of the edge intersection. Upon
decryption, the server only learns the edge intersection. As
a result, the PGI server zero-knowledge holds.

Lemma 7 (PGI client zero-knowledge). A semihonest client
learns nothing about the server’s graph, beyond the leakage
function L2.

Proof. There are two parts where the client receives infor-
mation about the server’s graph. The first part is during
the FNP protocol in Step 2, and the second part is at
the end of Step 5.

For the first part, the client receives a set of encrypted
coefficients α⊕ of the polynomial P from the server. The client
can learn the number of vertices of the server’s graph by
counting the number of encrypted coefficients received,
which is a part of the predefined leakage function L2.

For the second part, the client receives an encrypted
matrix A⊕ and the vertex intersection VI . Since VI is also a
part of the predefined leakage function L2, we need to show
that A⊕ does not reveal any information about the server’s
graph. According to the protocol construction, A⊕ contains
the encryptions of adjacency relations between the vertices in
VI for the server’s graph. Therefore, if the client cannot distin-
guish between the cases where the server has different input
graphs, given the knowledge of A⊕ and VI , the PGI client
zero-knowledge holds. Consider the following experiment:

EXPA 1k
� �

,

G0,G1ð Þ←A ,
b← $ 0, 1f g,

pk, skð Þ← Step 1 1k
� �

,

α⊕ ← Step 2 Gb, pkð Þ,
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β⊕ ← Step 3 α⊕,GC

� �
,

VI ← Step 4 β⊕, sk
� �

,

A⊕ ← Step 5 Gb, VI , pkð Þ,

b̂←A α⊕, VI , A⊕� �
if b̂ = b, output 1,

otherwise, output 0: ð11Þ

In the above experiment, A is a probabilistic polynomial-
time adversarial client with a private graph GC = ðEC , VCÞ.
The adversary first chooses two graphs, denoted as G0 = ð
V0, E0Þ and G1 = ðV1, E1Þ, respectively. The two graphs have
the property that V0

T
VC =V1

T
VC and ∣V0 ∣ = ∣V1∣. A

then sends the graphs to the server. The server randomly picks
a bit b = f0, 1g, and chooses Gb as the private graph. After
that, the server andA jointly perform the private graph inter-
section protocol from Steps 1 to 5.

At the end of Step 5, A needs to output a bit b̂, using the
information he recevied during the protocol. If b̂ = b, the
experiment outputs 1; otherwise, it outputs 0. The advantage
of the above experiment for A is defined as AdvA = jPr ½EX
PAð1kÞ = 1� − 1/2j.

During PGI, the information thatA receives contains α⊕,
VI , and A⊕. α⊕ contains a set of ciphertexts under the Paillier
cryptosystem, VI is the vertex intersection, and A⊕ is an
encrypted adjacency matrix under the Paillier cryptosystem.

Due to the condition V0
T

VC =V1
T

VC , the vertex
intersection VI gives no useful information since VI will be
the same for both G0 and G1. Since the Paillier cryptosystem
is IND-CPA secure and A cannot decrypt the ciphertexts
without the private key, α⊕ and A⊕ cannot help A to distin-
guish which graph the server has chosen. As a result, if the
Paillier cryptosystem is IND-CPA secure, the advantage of
the above experiment for A is negligible, i.e., AdvA = jPr ½
EXPAð1kÞ = 1� − 1/2j = ε, where ε is negligible.

At last, we construct a simulator SimS to simulate the
view of the client in the ideal model. SimS is given the knowl-
edge of the vertex intersection VI and the vertex numberm of
the server’s graph. In the above experiment, SimS sends a set
of m + 1 random values to the client in Step 2 and sends VI
and a matrix with p × p random values to the client in Step
5. Since the client cannot distinguish between the ciphertexts
under the Paillier cryptosystem and random values, the view
of the client in the ideal model is computationally indistin-
guishable from the view in the real model, i.e., Viewreal

C ½Sð
GSÞ, C� ≈Viewideal

C ½SimSðVI ,mÞ, C�. As a result, the PGI cli-
ent zero-knowledge holds.

Lemma 8 (PGU correctness). If both participants are honest,
for any GS = ðVS, ESÞ and any GC = ðVC , ECÞ, the private
graph union protocol computes GU = ðVU , EUÞ =GS

S
GC .

Proof. The correctness of PGU is ensured by the homomor-
phic property of the Paillier cryptosystem. Steps 2– of PGU

compute the vertex union, and Steps 7–9 compute the edge
union.

In order to compute the vertex union between GS and GC,
the server needs to obtain the vertices inGC that are not inGS.

In Step 2, the server constructs a polynomial, such that all
the roots are exactly the vertices in GS. After that, the client
homomorphically evaluates the polynomial using all the ver-
tices in GC , and each polynomial evaluation is homomorphi-
cally multiplied by a random value. Therefore, the common
vertices between GS and GC will result in encryptions of zero,
and other vertices will result in encryptions of random
values. In Step 4, the server decrypts all the polynomial eval-
uations. If the decryption is zero, the server generates an
encryption of 0; otherwise, the server generates an encryption
of 1. In the next step, the client homomorphically multiplies
the received encryptions with the vertices in VC . For an
encryption of 0, i.e., the vertex is a common vertex, the client
will result in an encryption of 0; for an encryption of 1, i.e.,
the vertex is not a common vertex, the client will result in
an encryption of the vertex. As a result, in Step 6, the server
learns the set of vertices that only exists in GC . By combing
the above set and VS, the server obtains the vertex union
VU .

In order to compute the edge union, the server needs to
obtain an adjacency matrix, such that if an edge does not
exist in either GS and GC , it will have a corresponding value
of 0 in the matrix; otherwise, it will have a corresponding
value of 1.

In Steps 7 and 8, each of the server and the client con-
structs an adjacency matrix using the vertex union and his
own graph and encrypts each element under the Paillier
cryptosystem. The client then homomorphically adds the
encrypted values at the same locations in the two matrices.
There are three circumstances for the addition results. If an
edge does not exist in either of the graphs, the addition will
result in an encryption of 0; if an edge only exists in one of
the graphs, the addition will result in an encryption of 1; if
an edge exists in both of the graphs, the addition will result
in an encryption of 2. Then, the client homomorphically
multiplies each result by a random value. Therefore, for the
edges that do not exist in either of the graphs, the final result
will still be an encryption of 0; for the edges that only exist in
one of the graphs and the edges that exist in both of the
graphs, the final result will be encryptions of random values.
Finally, in Step 9, the server decrypts the encrypted matrix
and replaces all the nonzero values to 1, which is the edge
union of GS and GC .

As a result, if the Paillier cryptosystem has the homomor-
phic property, the private graph union protocol computes
GU = ðVU , EUÞ =GS

S
GC .

Lemma 9 (PGU server zero-knowledge). A semihonest server
learns nothing about the client’s graph, beyond what can be
deduced from GU and the leakage function L3.

Proof. There are three parts where the server receives infor-
mation from the client, which are Steps 3, 5, and 8.
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In Step 3, the server receives a set of ciphertexts, β⊕, from
the client. Each vertex in VC has a corresponding ciphertext
in β⊕. If a vertex in VC also exists in VS, i.e., it is a common
vertex in both graphs, it will result in an encryption of 0; oth-
erwise, it will result in an encryption of a random value. By
counting the number of ciphertexts in β⊕, the server can
learn the number of vertices in the client’s graph, and by
decrypting and counting the number of 0 s, the server can
learn the number of common vertices. The above informa-
tion is defined as leakage function L3.

In Step 5, the server receives another set of ciphertexts, γ⊕

, from the client. Similar as above, each vertex in VC has a
corresponding ciphertext in γ⊕. If a vertex exists in both VS
and VC , it will result in an encryption of 0; otherwise, it will
result in an encryption of the vertex itself. Therefore, upon
decryption, the server learns of the vertices in VC that do
not exist in VS, which are a part of the vertex union.

In Step 8, the server receives an encrypted matrix, E⊕
U ,

from the client. Each element of the matrix represents the
adjacency relation between two vertices in the graph union.
If an edge exists in at least one of the input graphs, the corre-
sponding adjacency value will be a random number; if an
edge does not exist in either of the input graphs, it will result
in an adjacency value of 0. By decrypting the matrix and
replacing the random values to 1, the server obtains the edge
union. As a result, the PGU server zero-knowledge holds.

Lemma 10 (PGU client zero-knowledge). A semihonest client
learns nothing about the server’s graph, beyond what can be
deduced from VU and the leakage function L4.

Proof. There are three parts where the client receives infor-
mation from the server, which are Steps 2, 4, and 7. In Step
2, the client receives a set α⊕ that contains m + 1 ciphertexts
under the Paillier cryptosystem, which are encryptions of
the coefficients of the server’s polynomial. The client can
learn the vertex number of the server’s graph by counting
the ciphertexts in α⊕, which is the leakage function L4. In
Step 4, the client receives another set of ciphertexts γ⊕, which
contains n encryptions of 1 s and 0 s. In Step 7, the client
receives an encrypted matrix of size q × q, which contains
encryptions of 1 s and 0 s. In order to prove that the above
information does not reveal anything about the server’s
graph beyond what can be deduced from VU and the leakage
function L4, consider the following experiment:

EXPA 1k
� �

,

G0,G1ð Þ←A ,
b← $ 0, 1f g,

pk, skð Þ← Step 1 1k
� �

,

α⊕ ← Step 2 Gb, pkð Þ,
β⊕ ← Step 3 α⊕,GC

� �
,

γ⊕ ← Step 4 β⊕, pk, sk
� �

,

δ⊕ ← Step 5 γ⊕,GC

� �
,

VU ← Step 6 δ⊕, sk,Gb

� �
,

A⊕ ← Step 7 Gb, VU , pkð Þ,

b̂←A α⊕, γ⊕, A⊕, VU

� �
,if b̂ = b, output 1,

otherwise, output 0: ð12Þ

In the above experiment,A is a probabilistic polynomial-
time adversarial client with a private graph GC = ðEC , VCÞ.
The adversary first chooses two graphs, denoted as G0 = ð
V0, E0Þ and G1 = ðV1, E1Þ, respectively. The two graphs have
the property that V0

S
VC =V1

S
VC and ∣V0 ∣ = ∣V1∣. A

then sends the graphs to the server. The server randomly
picks a bit b = f0, 1g and chooses Gb as the private graph.
After that, the server andA jointly perform the private graph
union protocol from Steps 1 to 7.

At the end of Step 7, A needs to output a bit b̂, using the
information he received during the protocol. If b̂ = b, the
experiment outputs 1; otherwise, it outputs 0. The advantage
of the above experiment for A is defined as AdvA = jPr ½EX
PAð1kÞ = 1� − 1/2j.

During PGU, the information that A receives contains
α⊕, γ⊕, A⊕, and VU . α

⊕ and γ⊕ are both sets of ciphertexts
under the Paillier cryptosystem. Since G0 and G1 satisfied
the condition ∣V0 ∣ = ∣V1∣, the numbers of ciphertexts in α⊕

will be the same for both G0 and G1. A
⊕ is a matrix filled with

q × q ciphertexts. Since the Paillier cryptosystem is IND-CPA
secure and A cannot decrypt the ciphertexts without the
private key, α⊕, γ⊕, and A⊕ cannot help A to distinguish
which graph the server has chosen. Furthermore, since
G0 and G1 satisfied the condition V0

S
VC =V1

S
VC ,

VU will be the same for both G0 and G1. As a result, if
the Paillier cryptosystem is IND-CPA secure, the advan-
tage of the above experiment for A is negligible, i.e., Ad
vA = jPr ½EXPAð1kÞ = 1� − 1/2j = ε, where ε is negligible.

At last, we construct a simulator SimS to simulate the
view of the client in the ideal model. SimS is given the knowl-
edge of the vertex union VU and the vertex number m of the
server’s graph. In the ideal model, SimS genereates a set of
m + 1 random values in Step 2, a set of n random values in
Step 4, and a matrix of size q × q filled with random values
in Step 7. Since the Paillier cryptosystem is IND-CPA secure,
the client cannot distinguish the ciphertexts and random
values. Therefore, the view of the client in the ideal model
is computationally indistinguishable from the view in the real
model, i.e., Viewreal

C ½SðGSÞ, C� ≈Viewideal
C ½SimSðVU ,mÞ, C�.

As a result, the PGU client zero-knowledge holds.

6.2. Efficiency Analysis. In this section, we analyze the effi-
ciencies of PGI and PGU in terms of communication cost
and computation cost. The communication cost is measured
in terms of the amount of ciphertexts that has been trans-
ferred between the server and the client, and the computation
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cost is measured in terms of modular exponentiations and
multiplications.

We denote m as the number of vertices in GS, n as the
number of vertices in GC , p as the number of vertices in the
intersection of GS and GC , and q as the number of vertices
in the union of GS and GC .

6.2.1. PGI Communication Cost. The construction of PGI is
simple and only requires Oð1Þ rounds of communication.
In Step 2, the server sends m + 1 ciphertexts to the client. In
Step 3, the client sends n ciphertexts to the server. In Step
5, the server sends p2 ciphertexts to the client. At last, in Step
6, the client sends p2 ciphertexts to the server. As a result, the
total communication cost of our protocol is Oðm + n + p2Þ
ciphertexts.

6.2.2. PGI Server Computation Cost. In Step 2, constructing
the polynomial requires Oðm2Þ modular multiplication, and
encrypting the coefficients requires OðmÞ modular exponen-
tiations. In Step 4, decrypting the received ciphertexts
requires OðnÞ modular exponentiations. In Step 5, encrypt-
ing each element in A requires Oðp2Þ modular exponentia-
tions. In Step 7, decrypting each element in E⊕

I requires
Oðp2Þ exponentiations. As a result, the total computation
cost for the server is Oðm + n + p2Þ modular exponentiations
and Oðm2Þ modular multiplications.

6.2.3. PGI Client Computation Cost. In Step 3, obliviously
evaluating the polynomial requires OðmnÞ modular expo-
nentiations. In Step 6, computing E⊕

I requires Oðp2Þmodular
exponentiations. As a result, the total computation cost for
the client is Oðmn + p2Þ modular exponentiations.

6.2.4. PGU Communication Cost. The construction of PGU
also only requires Oð1Þ rounds of communication. During
Steps 2–5, the server sendsm + 1 + n ciphertexts to the client,
and the client sends 2n ciphertexts to the server. During Steps
7 and 8, the server sends q2 ciphertexts to the client, and the
client sends q2 ciphertexts to the server. As a result, the total
communication cost is Oðm + n + q2Þ ciphertexts.
6.2.5. PGU Server Computation Cost. In Step 2, constructing
the polynomial requires Oðm2Þ modular multiplication, and
encrypting the coefficients requires OðmÞ modular exponen-
tiations. In Step 4, decrypting n ciphertexts requires OðnÞ
modular exponentiations, and encrypting n ciphertexts
requires OðnÞ modular exponentiations. In Step 6, decrypt-
ing n ciphertexts requires OðnÞ modular exponentiations.
In Step 7, encrypting each element in A requires Oðq2Þmod-
ular exponentiations. In Step 9, decrypting each element in
E⊕
U requires Oðq2Þ modular exponentiations. As a result, the

total computation cost for the server is Oðm + n + q2Þmodu-
lar exponentiations and Oðm2Þ modular multiplications.

6.2.6. PGU Client Computation Cost. In Step 3, obliviously
evaluating the polynomial requires OðmnÞ modular expo-
nentiations. Computing n homomorphic multiplication
requires OðnÞ modular exponentiations. In Step 5, comput-
ing n homomorphic multiplication requires OðnÞ modular

exponentiations. In Step 8, encrypting the each element in
B requires Oðq2Þ modular exponentiations. Computing q2

homomorphic addition and multiplication requires Oðq2Þ
modular exponentiations and Oðq2Þ modular multiplication.
As a result, the total computation cost for the client is Oðm
n + q2Þ modular exponentiations and Oðq2Þ modular
multiplications.

6.3. Leakage Analysis

6.3.1. PGI Leakage. As stated before, the proposed PGI leaks
certain information about the private graphs, which is mod-
eled as the leakage functions L1 and L2. There are several
techniques that can be used to reduce the amount of informa-
tion leakage; however, it cannot be completely avoided.

In Step 2, the server constructs a polynomial P, such that
all the roots of PðxÞ are exactly the elements in VS. After that,
the server sends the encryptions of the coefficients of P to the
client. In order to prevent the client from learning the exact
vertex number of the server’s graph, the server first randomly
constructs an irreducible polynomial RðxÞ with degree d. The
server then computes P′ðxÞ = PðxÞRðxÞ and uses P′ðxÞ
instead of PðxÞ in Step 2. The polynomial P′ðxÞ has the same
property as PðxÞ; therefore, it will not affect the result of the
protocol. As a result, by counting the number of ciphertexts
received, the client can only learn the upper bound of the ver-
tex number of the server’s graph, i.e., m + d.

In order to hide the exact vertex number of the client’s
graph, the client can randomly generate a set of h values from
the message space of the Paillier cryptosystem in Step 3. After
that, the client encrypts the random values and sends the
encrypted random set to the server along with β⊕. Since the
message space of the Paillier cryptosystem is large enough,
the probability that a random value equals to an element in
VS can be assumed as negligible. Therefore, the random
values will not affect the result of the protocol, since they
are not in the vertex intersection. As a result, by counting
the number ciphertexts received in Step 3, the server can only
learn the upper bound of the vertex number of the client’s
graph, i.e., n + h.

6.3.2. PGU Leakage. Similar as PGI, PGU also leaks partial
information about the input graphs during the process,
which is modeled as L3 and L4.

In Step 2, the server can utilize the same technique, as
introduced above, to hide the exact vertex number of his
graph, and the client can only learn the upper bound instead,
i.e., m + d.

In Step 3, in order to hide the exact vertex number of the
client’s graph, the client generates k encryptions of zero and
sends the ciphertexts along with β⊕. An encryption of zero
in Step 3 indicates that a vertex in the client’s graph also
exists in the server’s graph. In later steps, extra encryptions
of zero will not affect the final result, since the vertex union
between the two input graphs will remain the same. As a
result, the server can only learn the upper bound of the vertex
number of the client’s graph, i.e., n + k, and the upper bound
of the common vertex number, i.e., p + k.

9Wireless Communications and Mobile Computing



In addition, we consider the case where the server sends a
graph with small size to the client in Step 2. If the server’s
graph is small enough, i.e., only 1 vertex and no edge, the
union of the graphs will be almost the graph of the client.
To prevent the server from learning the client’s graph in such
a method, there are two points where the client can choose to
end the protocol.

The first point is at Step 3. If the client receives a very
small polynomial, the client can choose to end the protocol,
and at this point, the server has not learned anything yet.
However, if the server uses the technique stated above, the
polynomial that the client receives will not give the exact size
of the server’s graph. In this case, the client can check if the
vertex union received in Step 8 is almost the same as his ver-
tex set VC . If VU ≈VC , it means either the server has a very
small graph or the vertices in both graphs are highly overlap-
ping. At this point, the client can choose to end the protocol;
however, the server has already learned the vertex set of the
client.

7. Experiments

In order to evaluate the performances of the proposed PGI
and PGU protocols, we implement the protocols and per-
form experiments over the Enron email dataset. All the
experiments were conducted on two PCs with Intel Core
i7-2600 4.2GHz CPU, 16GB RAM, andWindows 10 operat-

ing system. (Due to the COVID-19 crisis, we cannot access
the lab in the university at the moment, which contains the
environment and equipment to perform the experiments
on real mobile devices. As a result, the experiments are per-
formed on a PC in this paper, and we will improve the exper-
iments on mobile devices in later works.). The protocols are
implemented in Python 3.6, and we used the phe library for
the Paillier cryptosystem with a 1024-bit key length.

7.1. Dataset. The Enron email dataset is publicly available
from the Stanford SNAP website (https://snap.stanford.edu/
data/). The dataset contains email communications of
around half a million emails. In order to convert the dataset
to a graph, the senders and the receivers of the emails are rep-
resented as vertices, and if vertex i sends at least one email to
vertex j, there exists an undirected edge between i and j. The
resulting graph has 36,692 vertices and 183,831 edges. In
addition, each vertex of the graph is represented as a unique
integer.

7.2. Evaluation of PGI. When evaluating the performance of
PGI, we randomly generate two subgraphs from the Enron
email graph dataset and assign them to the server and the cli-
ent, respectively. For each experiment, we setm and n to have
the same value, and they increase from 1,000 to 10,000. Fur-
thermore, the graphs of the server and the client are gener-
ated following the rule that 5% of the vertices are the same
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Figure 2: Evaluation of private graph intersection protocol.
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between the two graphs. Figure 2(a) shows the computation
time for the server and the client.

As analyzed before, the computation costs for the server
and the client are Oðm + n + p2Þ and Oðmn + p2Þ, respec-
tively, where p is the number of vertices in the intersection
of GS and GC . Therefore, the most dominant part of the com-
putation costs for both the server and the client is most likely
to be the number of common vertices between GS and GC . As
shown in Figure 2(a), the computation time for both the
server and the client grows quadratically as the number of

common vertices increases. The detailed computation time
for each step is shown in Table 2.

As shown in Table 2, the most time-consuming parts of
PGI are Steps 5 and 6. In Step 5, the server performs p2 Pail-
lier encryptions, and in Step 6, the client performs p2 homo-
morphic multiplications. Since the computations for both
Steps 5 and 6 are highly parallelizable, the computation time
can be greatly reduced if cluster computing is deployed.

The communication costs of PGI for both the server and
the client are shown in Figure 2(b). As analyzed before, the
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Figure 3: Evaluation of private graph union protocol.

Table 2: The computation time for each step of private graph intersection protocol.

m/n p Step 2 time (s) Step 3 time (s) Step 4 time (s) Step 5 time (s) Step 6 time (s) Step 7 time (s)

1,000 50 2.07 3.26 1.05 4.72 1.04 1.22

2,000 100 3.58 6.17 1.90 20.26 5.01 2.94

3,000 150 4.90 9.79 2.12 48.16 16.57 6.15

4,000 200 6.57 15.96 2.64 95.95 38.40 10.49

5,000 250 7.93 24.42 3.38 164.47 62.32 14.35

6,000 300 8.68 32.85 3.74 225.50 108.21 20.23

7,000 350 10.07 46.65 4.70 336.07 165.52 26.87

8,000 400 11.14 65.60 5.54 449.29 262.08 36.90

9,000 450 13.35 96.32 6.63 654.43 382.28 46.88

10,000 500 15.48 130.69 8.19 832.97 493.01 58.28
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total communication cost is Oðm + n + p2Þ. As a result, the
communication costs have a quadratic growth in the figure.
In addition, the communication costs are nearly the same
for both the server and the client, and the overall communi-
cation cost for PGI is practical for the experimental dataset.

7.3. Evaluation of PGU.When evaluating the performance of
PGU, we first randomly generate a subgraph from the Enron
email graph dataset as the graph union GU . Then, we ran-
domly choose two subgraphs of GU and assign them to the
server and the client, respectively. The numbers of the verti-
ces in the subgraphs are 60% of the vertex number in GU ;
therefore, both m and n will have the same value. For each
experiment, the number of vertices in GU increases from 50
to 500. Figure 3(a) shows the computation time for the server
and the client, and the detailed computation time for each
step is shown in Table 3.

As analyzed before, the computation costs for PGU are
Oðm + n + q2Þ and Oðmn + q2Þ for the server and the client,
respectively, where q is the number of vertices in the union
of GS and GC . Therefore, similar as PGI, the most dominant
part of the computation costs for both the server and the cli-
ent is most likely to be the number of vertices in GU .

As shown in Table 3, most of the computation time is
spent in Steps 7 and 8. In Step 7, the server performs q2 Pail-
lier encryptions, and in Step 8, the client performs q2 Paillier
encryptions and q2 homomorphic additions and multiplica-
tions. Similar as before, the above computations are highly
parallelizable, and cluster computing will greatly optimize
the computation time.

As shown in Figure 3(b), the communication cost of PGU
is similar to PGI, and the communication costs for both the
server and the client have a quadratic growth as the number
of vertices in GU increases. For our experimental dataset, the
overall communication cost for the PGU protocol is also
practical.

8. Conclusion

In this work, we proposed two privacy-preserving graph
operation protocols between two parties, which can be used
for secure authentication for smart devices. The first proto-
col, PGI, allows a server and a client to jointly compute the

intersection between their private graphs, while the second
protocol, PGU, computes the union of the graphs. The proto-
cols first use polynomial representation and oblivious poly-
nomial evaluation to compute the intersection and union of
the vertices. The intersection and union of the edges are then
computed by using an additive homomorphic cryptosystem.

We proved that the proposed protocols are secure in the
semihonest security model. In other words, a semihonest cli-
ent learns nothing about the server’s graph and a semihonest
server learns nothing about the client’s graph. We analyzed
the leakages during the protocols for both the server and
the client and modeled the leakages as leakage functions. At
last, we implemented the constructions of the protocols and
evaluated the efficiencies over real-word graph data.
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