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The root privilege escalation attack is extremely destructive to the security of the Android system. SEAndroid implements
mandatory access control to the system through the SELinux security policy at the kernel mode, making the general root
privilege escalation attacks unenforceable. However, malicious attackers can exploit the Linux kernel vulnerability of privilege
escalation to modify the SELinux security labels of the process arbitrarily to obtain the desired permissions and undermine
system security. Therefore, investigating the protection method of the security labels in the SELinux kernel is urgent. And the
impact on the existing security configuration of the system must also be reduced. This paper proposes an optimization scheme
of the SELinux mechanism based on security label randomization to solve the aforementioned problem. At the system runtime,
the system randomizes the mapping of the security labels inside and outside the kernel to protect the privileged security labels of
the system from illegal obtainment and tampering by attackers. This method is transparent to users; therefore, users do not need
to modify the existing system security configuration. A tamper-proof detection method of SELinux security label is also
proposed to further improve the security of the method. It detects and corrects the malicious tampering behaviors of the
security label in the critical process of the system timely. The above methods are implemented in the Linux system, and the
effectiveness of security defense is proven through theoretical analysis and experimental verification. Numerous experiments
show that the effect of this method on system performance is less than 1%, and the success probability of root privilege
escalation attack is less than 10−9.

1. Introduction

With the widespread application of the Android system, an
increasing amount of sensitive information is processed by
the system, and additional attention is provided to the system
security [1, 2]. Numerous forms of attacks against the
Android system exist; among which, the root privilege esca-
lation attack enables the attacker to have “supreme” permis-
sion in the system and arbitrarily processes the system
resource, causing remarkable damage to the system [3].
SEAndroid mechanism based on SELinux can effectively pre-
vent attackers from gaining root privilege. Although multiple
levels of security measures are currently implemented in
Android, including app permission and middleware MAC
(Mandatory Access Control), SEAndroid achieves the stron-
gest defense effect of access control on the kernel level. It
divides the privileges of the system into different “types”

and specifies the security permissions to the legitimate pro-
cesses. Thus, even if the attacker modifies the owner of a pro-
cess as root, the process still cannot bypass the security
checks of SELinux, by which the root privilege escalation is
effectively prevented.

However, through the buffer overflow vulnerability-
based attack method proposed in this paper, the security label
of the targeted process could be maliciously modified into
arbitrary value. The security label is one of the key factors
of the SELinux mechanism, and all security decisions are
made on the basis of the security labels of subjects (processes)
and objects (files). If the privileged security labels have been
achieved, the permission checks are successfully bypassed
and then the root privilege is also escalated. Therefore, pro-
tecting the confidentiality and integrity of the security labels
of SELinux is a key problem in the effective protection of
the system resources and upper-level applications.
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Solving this problem faces several challenges. First, since
the configuration policy of Linux is open to all users, the
specified values of privileged security labels must be pro-
tected from illegal acquisition and use by attackers. And the
integrity of security labels must be timely detected and the
right values must be recovered as soon as possible when the
attack succeeds. Second, SELinux and SEAndroid have
large-scale security configuration rules [4], which are all con-
figured on the basis of security labels of the system subjects
and objects. The protection of security labels of SELinux
should not affect the existing security policy configuration,
that is to say, the protection should be transparent to users.
Moreover, the performance must be considered while
improving security. The MAC detection of SELinux, which
is implemented in the LSM framework, checks every system
call and other system operations. Thus, implementing the
lightweight protection mechanism is necessary.

To address these challenges, this paper proposes a
dynamic security policy named SLR-SELinux to achieve the
confidentiality and integrity protection of security labels.
This method divides each SELinux security label into two
parts: out-of-kernel and in-kernel ones. The out-of-kernel
label is used in the configuration of access control rules,
which is consistent with the existing system security pol-
icy configuration. The in-kernel label participates in the
access control decisions at the kernel level. The corre-
sponding relationship between the two labels is a random
mapping, which makes attackers hardly obtain the speci-
fied target labels. A tamper-resistant detection mechanism
of security labels at the kernel level is also proposed to
improve the recoverability of security policy. The integrity
check of the process security labels is deployed on the
key execution path of the system. Therefore, the illegal
modification of the security labels can be timely detected
and recovered.

The major contributions of this paper are summarized as
follows.

(1) An attack method of tampering SELinux security
label is proposed based on the Linux kernel privilege
escalation vulnerability. Experiments have proven
the effectiveness of this method, and the privileges
of the root are successfully obtained

(2) A SLR-SELinux security policy model is proposed
based on the security label randomization mapping
between the labels inside and outside the kernel.
The framework is designed at the Linux kernel. And
a fined-grained randomization strategy named full-
randomization strategy is proposed, in which the
random seed is achieved based on SRAM PUF (Phys-
ical Unclonable Function), and the random alloca-
tion of security labels is accelerated by the Bloom
filter technique

(3) A tamper-proof checking method is proposed for the
integrity protection of security labels in the kernel.
The integrity detection is deployed on the key access
path of the system, and the tampered labels could be
recovered as soon as possible

(4) The above technologies are evaluated on the proto-
type system, and the effects are proved through theo-
retical proof and numerous experiments

The paper is organized as follows. Section 2 presents a
review of related literature. Section 3 discusses the root
exploitation method for tampering the security labels of
SELinux. Section 4 introduces a system model of enhanced
SELinux with randomized security labels. Section 5 indicates
the tamper-proof checking method on security labels in the
kernel. Section 6 presents the theoretical analysis of the secu-
rity effect of the current research. Section 7 introduces the
experimental evaluation. Section 8 provides the conclusion
and suggestions for future studies.

2. Related Work

The system security problem in Android has received consid-
erable attention in both academic and industrial fields due to
its open-source feature and wide application. The architec-
ture of the Android software stack can be divided into the
Linux kernel, the Android middleware, and the application
levels from the bottom-up. Security researches at the middle-
ware level mainly focus on the security issues introduced by
the Android local library, the operating environment, and
the application architecture [5]. For various applications of
the Android system, the permission of the applications is
mainly implemented through the permission system [6],
complying with the “least privilege principle” authorization
management. The system permissions are divided into three
different kinds: owner, root, and application. However, the
security of the middleware level only solves the security prob-
lems of a certain level of the Android system, and the permis-
sion system has problems of coarse granularity of security
management [7, 8] and overprivileged [9]. These security
mechanisms mainly improve the system security through
the development of the Android middleware level, and any
security control implemented through middleware ulti-
mately depends on the control of the kernel level. If an
attacker directly attacks the system kernel, then the upper-
level security mechanism can be bypassed.

Researchers proposed to introduce SELinux into the
Android to solve this problem; SELinux strengthened
the security of the underlying Android operating system
[10, 11]. SELinux, a Linux security enhancement module
proposed by NSA, provides the Linux system with MAC
based on the type enforcement security policy. This policy
is known for its fine-grained access control and strong
security policy. The SEAndroid security module has been
introduced since Android 4.3. With the advancement of
SEAndroid security policy research, an increasing number
of Android functions are protected by SEAndroid. There-
fore, SEAndroid security research has also received consid-
erable attention. Currently, the study on SEAndroid
security can be divided into the analysis [12, 13], genera-
tion, and refinement [14, 15] of the security policy.

Many security problems are not unique to the Android
system but are inherited from the underlying Linux system
because the Android system is an extension of the Linux
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system. Therefore, the system security of the underlying
SELinux mechanism is crucial to the security of the entire
system. SELinux has been researched for years. Most of the
studies focused on the policy configuration security of
SELinux, such as SELinux policy analysis and verification
[16–19], policy comparison [20], policy visualization [21],
and policy information flow integrity measurement [22, 23].
However, we found that the attackers could use the privi-
lege escalation vulnerability of the system to bypass the
SELinux mechanism. Therefore, this paper focuses on the
security enhancement of the SELinux mechanism. Through
the randomization and integrity checking of security labels,
the security permissions of a process cannot be maliciously
tampered, and meanwhile, there is no influence on the
existing configuration of system security policy.

3. Threat Model and Attack Method

3.1. Threat Model. The typical procedure of penetration
attack to the computer system could be divided into three
steps: (1) remotely web attack to achieve the permission as
an ordinary user, (2) root escalation attack to achieve the per-
mission as the root, and (3) accessing and destruction on the
system resources. With the protection of SELinux, even if the
attacker succeeds in step 2, the promotion of continued
attacks in step 3 will be prevented.

As shown in Figure 1, for a process of which the uid is
502, if the attacker only modifies the user ID and group ID
of the process, the ultimate privileged control over the system
cannot be obtained (e.g., modifying the password of the
root), even though the user identification of the process has
also been elevated to the root. Thus, the security label is the
key point in SELinux. However, if the security label of the
process is modified to the privileged one, the corresponding
permission over the system can only be obtained by the
attacker and then the password of the root can be modified.

This paper is focused on defensing the root privilege esca-
lation attack on SELinux in the above threat model. An
empirical attack evidence is implemented firstly, providing
the basis of the follow-up research.

3.2. Root Privilege Escalation Attack on SELinux. SELinux is a
MAC module built on the LSM framework [24]. The Linux

kernel queries SELinux before each system call to determine
whether the process is authorized to perform the requested
operation. With SELinux, the management of privileges is
completely different from that of the standard Linux system.
The privileges of a process depend on its security context
instead of the user labels. Therefore, the privileges are con-
fined even if the attacker escalates the user identity to the root
user. Thus, the SELinux can reduce the threats of privilege
escalation attacks.

The security labels of a process are saved in the process
credentials in the Linux kernel. The structure of process cre-
dentials is named as cred. The main information concerned
with the process permissions in cred includes user/group ID
and the set of capabilities. If SELinux is enabled, then the
structure also includes the security label, which represents
the security attributes in the process.

Figure 2 shows that the total kernel space size of a process
is 8KB, and the structure of the thread descriptor, which is
named as thread_info, shares the same memory region with
the kernel stack of the process. thread_info is stored at the
bottom of the shared memory region. A pointer task, which
indicates the process descriptor task_struct, is found in
thread_info. Moreover, task_struct includes pointers cred
and real_cred, indicating the cred structure. All the user and
group IDs are saved in the cred structure. If SELinux is
enabled, then the pointer security indicates the structure
task_security_struct, which includes sids associated with the
process.

One of the typical methods used to escalate the privileges
of the process is modifying the user/group IDs to 0 (uid of
root) saved in the cred. The procedure comprises the follow-
ing three steps.

Step 1. Obtain the memory address of cred.

The base address of the shared memory region of kernel
stack and thread_info is 8KB aligned. Therefore, we can
obtain the address of thread_info by resetting the lower 13
binary bits of the address of any variable in the kernel stack.
Then, the address of task_structwith the pointer task can also
be acquired.

We also obtain the address of cred based on the features
of task_struct. In the task_struct, the pointer real_cred is

Root escalation

Attacker UID : 502
EUID : 0
SUID : 502

UID : 0
EUID : 0
SUID : 0

Process with vulnerability Malicious shell with root UID

System privileged program 
without SELinux protection

Web attack

System privileged program 
with SELinux protectionEscalate to:

ystem_u:system_r:kernel_t:s0

Default:
user_u:user_r:user_t:s0

Figure 1: The root privilege escalation attack on SELinux.
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similar to cred. According to this feature, we can locate the
address of cred and real_cred by searching two similar
pointers in task_struct. After finding two similar 64 binary
bits in task_struct and the value of the identified 64 binary
bits is in the range of kernel space addresses, then we can
regard these bits as the correct address of cred.

Step 2. Obtain the copy of cred and modify the data on pro-
cess privileges.

First, we must create a data structure with a similar layout
to cred. Then, we copy the data in cred into the new created
data structure and modify the data in it, including the user
and group IDs.

We must also modify sid and osid in the task_security_
struct for SELinux. By changing the values of sid and osid to
1, we can modify the security context of the process to sys-
tem_u:system_r:kernel_t:s0, which is unconfined in SELinux.

Step 3. Cover the original data in cred with the modified data
in the copy of cred.

After modification, the values of all user and group IDs in
the copy are 0, and the osid and sid are 1 in the task_security_
struct. The user identification of the process is elevated from
normal user to the root when the original data in cred are
covered with those in the copy, and the security context of
the process is also modified.

As shown in Figure 1, a user whose uid is 502 finally
obtains the privileged label system_u:system_r:kernel_t:s0
and performs the system management successfully in our
experiment.

4. Security Label Randomization of SELinux

In the kernel space, the traditional allocation of in-kernel
security label (sid) is sequential starting at 1, and the map-
ping between out-of-kernel security labels (security contexts)
and in-kernel security labels (sids) is fixed in all SELinux dis-
tributions. Thus, the attackers can easily predict the sid for
the necessary security context. We propose a randomized
allocation of sids to solve this problem and enhance the
uncertainty of relations between sids and security contexts.
Therefore, the attackers cannot accurately predict the sid of

the specific security context, which increases the difficulty
of kernel privilege escalation attacks.

4.1. Definitions of SLR-SELinux Policy. A SELinux policy
comprises two parts. The first part is label mapping, which
assigns security labels to concrete subjects (or objects) in
the operating system. Traditionally, subject and object labels
are, respectively, called domain and type. The second part
involves a set of rules that define which domain of subjects
can access which class and type of objects with a set of per-
missions. The definition of the SELinux policy is defined as
follows:

Definition 1. (SELinux policy). A policy is P = ðLs, Lo,M, S,
O, RÞ, where Ls and Lo are the set of security labels of subjects
and objects, respectively; M : LS ∪ LO → S ∪O is a mapping
that assigns security labels to concrete subjects S and objects
O; and R = fr j<ls, lo > → fallowed operationsgg is the set of
policy allowed rules.

In SLR-SELinux, a random mapping of the security label
is introduced into the policy. This mapping divides a security
label into two parts according to its usage space: out-of-kernel
and in-kernel labels. The out-of-kernel security label, which
has a fixed representation and is saved in the file system, is
used for the policy configuration in the application level. By
contrast, the in-kernel label, which has a dynamically gener-
ated representation on the boot time, is used for the access
control decision in the kernel space. The random mapping
function is defined as follows:

Definition 2. (random mapping of security labels). A map-
ping is F : LS ∪ LO → LS ′ ∪ LO ′, where Ls, Lo are the set of
out-of-kernel labels of subjects and objects, respectively; Ls ′,
Lo ′ are the set of in-kernel security labels of subjects and
objects, respectively. The mapping assigns a random in-
kernel label to each out-of-kernel label arbitrarily.

The definition of SLR-SELinux is as follows:

Definition 3. (SLR-SELinux policy). A policy is P’ = ðLs, Lo,
Ls

’, Lo’,M,M’, S,O, R, R’, FÞ, where Ls, Lo are the set of out-
of-kernel labels of subjects and objects; M : LS ∪ LO → S ∪O

task

thread_info
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real_cred
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security
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Figure 2: The structure of process credentials.
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is a mapping that assigns out-of-kernel security labels to con-
crete subjects S and objects O, R = fr ∣ <ls, lo>→ fallowed
operationsg} is the set of allowed policy rules defined by
out-of-kernel security labels; F is the random mapping
between the out-of-kernel and in-kernel security labels; M′ :
LS ′ ∪ LO ′ → S ∪O is the mapping that assigns in-kernel secu-
rity labels to concrete subjects S and objects O; R’ = fr’ ∣ <ls ′,
lo ′ >→ fallowed operationsgg is the set of policies used by
access control decision in kernel space.

The in-kernel labels corresponding to one out-of-kernel
label will be different in every system booting because the
mapping between the two types of labels is a random func-
tion. This difference complicates the speculation of the right
representation of the security label inside the kernel by the
attacker.

4.2. Framework Design. Figure 3 shows the SLR-SELinux
framework with the randomized allocation on security labels.

Security configuration in user space includes the defini-
tion of security contexts and access control rules. The config-
uration is loaded into policydb in kernel space during the
system booting process. The subjects and objects in kernel
must be labeled with the specified sids according to the secu-
rity configuration before they are accessed or used for the
first time. Therefore, a module named as convert module is
added into SLR-SELinux, to allocate random sid for the secu-
rity contexts.

When a kernel object requests a security context, SLR-
SELinux first determines the security context according to
the security context definition and checks the sidtab (sid table
containing registered security contexts indexed by the allo-
cated sids) to determine whether the security context has
been registered. If the security context exists in the sidtab,
then the sid can be directly obtained. Otherwise, the convert
module allocates a random sid for the security context via
randomization module.

The randomization module is responsible for generating
a random value and returning it to the convert module. The
convert module then checks whether the sid to be allocated
conflicts with all the already allocated sids. If conflicting, then

another random value will be required until there is no
conflict.

A function, generate_random_sid(), is designed in the
randomization module to generate a random sid. Since the
sid is descripted as an integer in the Linux kernel, the maxi-
mum possible value is 232. Therefore, Mersenne Twister
(MT19937-32) [25] is used in this function to generate a ran-
dom number. As a kind of pseudorandom number generator,
MT19937-32 is well-known for a remarkably long cycle
period of 219937-1. MT19937 has the characteristics of
623 distributed to 32-bit accuracy. The performance of
MT19937 on K-distributed to v-bit accuracy reached the the-
oretical maximum of the evaluation standard considering
that b19937/32c = 623. Moreover, the speed of MT19937-32
in generating random numbers is generally faster than that
of other pseudorandom generating algorithms because its
primary operations are bit or, bit and, and shift.

The key factor affecting the random sequence is the ran-
dom seed. The same random seed will create the same ran-
dom sequence, so the random seed must ensure the
randomness and confidentiality [26]. The random seed is
obtained based on SRAM PUF. SRAM PUF is a technology
in which SRAM is evaluated by a stimulus (challenge), which
provides a noisy response based on the manufacturing pro-
cess variations of the SRAM. The noisy response can only
be obtained during the normal operation of SRAM. Thus,
the noisy response can be turned into stable data, which
can serve as random seeds with high confidentiality, by using
fuzzy extractors. However, the extracted seed will always be
the same one. To solve this problem, the system time of the
first calling in the randomization module is obtained and
made the xor operation with PUF data to act as the random
seed.

4.3. Full-Randomization Strategy. Different randomization
grains of security labels will affect the security and perfor-
mance of the operating system differently. To achieve the
greatest defense effect, the full-randomization strategy is pro-
posed. Each sid is allocated randomly by separately calling
the function generate_random_sid(). The main problem to
be solved in this strategy is the conflict of the sid to be

System 
access

User space security configuration
Security 
context 

definition
Access 

control rules

Randomization 
module

Convert 
module

Security 
administrator

Access 
control rules

Security 
contexts 

definition

Kernel space
security configuration

Kernel 
object 

manage-
ment

Access 
control
decision

PolicyDB

Figure 3: Framework design of SLR-SELinux.
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allocated with the already allocated ones. Conflict checks
must be conducted for every sid to be allocated.

SLR-SELinux first checks whether the security context is
registered into the sidtab before sid allocation. If not regis-
tered, then a new sid must be allocated. The convert module
needs to check whether the random value generated by gen-
erate_random_sid() is conflicted with the already allocated
sids. If conflicted, then another new sid needs to be allocated.

We use Bloom filter [27] to check the conflict and facili-
tate an efficient insertion. As shown in Figure 4, the Bloom
filter comprises three parts: the original space (in the random
number generator space, size 232-1), the hash function hðxÞ,
and an all-zero bit array (taking the 4096 size as an example).
First, every bit in the bitTab is set to 0 (Figure 4(a)). Then, a
random value of 49999 is obtained and hð49999Þ = 243.
Because bitTab[243] is 0, the module will set bitTab[243] to
1 and return 49999 as a sid (Figure 4(b)). Another process
requires the allocation of a sid (assuming it is 3, hð3Þ = 243).
But bitTab[243] is 1 (Figure 4(c)). Thus, the module will
refuse the random value 3 and require another random value
(e.g., 248655). Finally, a random value of “248655” is gener-
ated. Since hð248655Þ = 1 and bitTab [1] is 0, the random
value “248655” is returned as a new sid and bitTab [1] is set
to 1(Figure 4(d)).

The random sid generation increases the uncertainty in
the corresponding relationship between the sid and security
context. However, the sid may be an arbitrary value between
1 and 232-2; that is, the probability of successfully guessing
the sid is only 1/(232-2). It is proven that SELinux will firstly
examine whether the sid is already defined before the access
control rules check. If the sid is undefined, the process with
this sid will be crashed. However, only crashing the user’s
process is not enough to defense the brute force attack. So,

we add an alert mechanism into the system to notify the
administrator about this situation. Moreover, not only the
undefined sids will trigger the alert. If the process’s sid found
that its owner should be the object of the system, such as file
or socket, the alert is also triggered.

5. Tamper-Proof Checking on Security Label

5.1. Definition of Method. The randomization of security
labels mainly protects the confidentiality of the privileged
security labels so that the attackers could not obtain the
desired targeted security attributes. However, once the secu-
rity label has already been modified by attackers, it is urgent
to detect the tamper behavior and recover the sid to the legal
one as soon as possible. A method of tamper-proof checking
on the security label is proposed in this paper.

In the method, a mapping table called pid_sid_table and a
set of checking hooks are defined in the operating system ker-
nel, as shown in Figure 5.

The pid_sid_table records the valid security label of each
process running in the system. The table entry is saved in the
form of <pid, sid>, indicating that sid is the valid security
label of the process with pid.

The checking hooks are inserted in the kernel on the key
procedure of the process management and accessing behav-
iors. When the process is created, the item of <pid, sid> is
inserted into the mapping table as a new node; when the pro-
cess is revoked, the node is deleted; when the security label of
the process is changed through legal operations, the node is
updated.

When the process accesses the resource of the system, the
validity of the security label of this parent process is checked.
If the label is inconsistent with the one in the mapping table,

1 2 ...3 ... 232 -2... 2486555000049999

h(x)

0 0 ... 1 ... 0
1 ... 243 ...0 4095

bitTab

(a)

1 2 ...3 ... 232 -2... 2486555000049999

h(x)

h(49999) = 243

0 0 ... 1 ... 0
0 1 ... 243 ... 4095

bitTab

(b)

1 2 ...3 ... 232 -2... 2486555000049999

h(x)

h(3) = 243

0 0 ... 1 ... 0
0 1 ... 243 ... 4095

bitTab

(c)

1 2 ...3 ... 232 -2... 2486555000049999

h(x)

h(248655) = 1

0 1 ... 1 ... 0
0 1 ... 243 ... 4095

bitTab

(d)

Figure 4: Bloom filter principle.
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the security label of the process will be recovered to the valid
value. When the execve operation is performed, the label of
the parent process will be checked firstly and then the par-
ent’s valid sid will be set as the default label of the child pro-
cess. For the possible performance overhead, the calling of
checking hooks should be carefully chosen according to the
real scenario.

5.2. Implementation in Linux. Based on the analysis of the
process lifecycle in Linux kernel, the management functions
of pid_sid_table are added at the following important time
points.

(1) selinux_pst_insert(). Insert a node into the pid_sid_
table table. All processes in the Linux system are cre-
ated by the function do_fork(). And when a process
executes a new program, the permission credentials
cred of the current process will be modified through
the function commit_creds(). Hence, we choose to
call the function selinux_pst_insert() during the pro-
cessing of these two functions.

(2) selinux_pst_remove(). Delete a node from the pid_
sid_table table. Process revocation is conducted
through the function do_exit (). Thus, the function
selinux_pst_remove () is called during the processing
of this function.

(3) selinux_pst_check(). Check whether the sid of the
current process has been illegally modified, by detect-
ing whether the security label of the process is consis-
tent with the sid stored in the pid_sid_table. If
illegally modified, the security label will be recovered.
Tamper-proof detection must be performed before
the system executes the new program. Hence, the
detection is deployed when the process commits the
changes to the cred of the current process. This pro-
cedure is also completed in the function commit_
creds().

The calling relationships of corresponding functions at
different kernel levels are shown in Figure 6.

6. Security Analysis

6.1. Security Proof

Theorem 4. (equivalence with SELinux). The configuration of
access control rules in SLR-SELinux is equivalent with the
rules in SELinux, so the defense effect of SELinux could be also
achieved in SLR-SELinux.

Proof. Because of the one-to-one mapping feature of the ran-
dom mapping function F,∀l ∈ LS ∪ LO in PSELinux, ∃l′ ∈ LS ′
∪ LO ′ in PSLR−SELinux, then ∀r = <ls, lo>→ fallowed
operationsg ∈ R in PSELinux, ∃r′ = <ls ′, lo ′>→ fallowed
operationsg ∈ R′ in PSLR−SELinux and vice versa. Therefore,
PSELinux ⟺ PSLR−SELinux. SLR-SELinux could achieve the
same effect on access control as SELinux.

Theorem 5. (recoverability of policy). The security policy
could be recovered to the valid status after being maliciously
modified by the attacker.

Proof. For a process pi, there is a table entry <pi, li> in the
pid_sid_table, where li is the valid value of the security label
owned by pi. When the attack succeeds, the security label of
pi will be maliciously modified to the invalid value of li ′.
Once an operation oj ∈Oc is made by pi, where Oc is the
set of checked operations, the checking hook function of oj
will be called. Then, it will be found that the current security
label li′≠ li, the tampering is discovered, and the security label
will be recovered to li. The policy is returned to the valid status.

Therefore, SLR-SELinux could complete the function of
mandatory access control and separation among security
domains as same as SELinux, and thus, the attack about
authority escalation, such as that malicious application
accesses unauthorized data, could be defended. For example,
even if an attack on the web service is completed successfully,
the victim process can only access the system resource per-
mitted by SLR-SELinux and the destruction effect will be lim-
ited to the minimum range. Not only that, SLR-SELinux’s
random allocation on security labels could defend the root
privilege escalation based on buffer overflow vulnerability
and the defense effect will be analyzed in the next section.
Even if the label is modified to the targeted value by coinci-
dence, the tamper-proof checking scheme will discover and
recover it as soon as possible.

Linux kernel

pid_sid_table Checking hooksCreate

...
Access

Exit

...

Process lifecycle 

pid sid

pid sid

pid sid

……

Figure 5: The method of tamper-proof checking on security label.
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do_fork()
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do_exit()
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Figure 6: Modification of kernel functions.
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6.2. Defence Effect Analysis. Since the in-kernel security label
(sid) is randomly allocated in the proposed scheme, the root
privilege escalation attack succeeds only if the correct sid of
the targeted security label is guessed out. To achieve this goal,
the attacker could exploit the brute force attack, that is to say,
the attacker guesses a different sid value one time and then
tampers the victim process with that value, trying to pass
the permission check of SELinux.

To defend the guessing attack, an alert mechanism is
added to the system. In the implementation of permission
check hooks, it is examined firstly whether the sid has been
registered in the sidtab of SELinux. If the sid is not registered
in the sidtab, which means it is an invalid value, then the alert
will be triggered and the system will be restarted. Once the
system restarts, all sids will be reallocated and the mapping
between in-kernel and out-of-kernel labels will be changed.
If the guessed sid has been registered in the sidtab by coinci-
dence, then the attacker can repeat this attack behavior. If the
attacker identifies the targeted sid without triggering the sys-
tem alert, the attack successes.

To evaluate the defense effect, the selected evaluation
index is the probability of attack success P. P is defined as
the probability that the attacker exploits the brute force
attack successfully to obtain the right sid without triggering
the system alert. With the full-randomization strategy, P is
mainly related to the following three factors: (1) the value
space of sid s, (2) the number of registered sids k, and (3)
the attempt times of the attacker n. s is the range of possible
values of sid. k is the number of legally allocated sids in the
sidtab. n is the times the attacker has tried without triggering
the alert. Apparently, n ≤ k. Otherwise, the alert must be
triggered.

Therefore, the probability of attack success in full-
randomization strategy is shown as follows.

P = 1
s
+ k − 1

s
× 1
s − 1 + k − 1

s
× k − 2

s − 1 × 1
s − 2 +⋯+ k − 1

s

× k − 2
s − 1 ×⋯ × k − n − 1ð Þ

s − n − 2ð Þ × 1
s − n − 1ð Þ ,

ð1Þ

P < 1
s
+ k

s
× 1
s − 1 + k

s
× k

s
× 1
s − 2 +⋯+ k

s
× k

s
×⋯ × k

s

× 1
s − n − 1ð Þ ,

ð2Þ

P < 1
s − n

× 1 + k
s
+ k

s

� �2
+⋯+ k

s

� �n−1
 !

≈
s

s − kð Þ s − nð Þ :

ð3Þ

In Figure 7, n is fixed to 214, and P rapidly declines when s
ascends, because it is more difficult to guess the sid in a larger
value space. And with the same s, P increases slightly when
the number of sids k is getting larger, because it is more dif-
ficult to trigger alert when there are more valid sids in the
sidtab.

In Figure 8, s is fixed to 216, and P increases slowly with
the attempt times n ascends. It is shown that P almost main-
tains the same order of magnitude, indicating the fine defense
effect.

As shown in Figure 9, P increases as the value of k gets
closer to s. The reason is that when the number of sids in
the sidtab is close to the value space of sid, the attacker has
a greater chance to suppress the alert and could try more
values about the targeted sid. Therefore, the proportion of k
in s should be as small as possible. Then, the attacker has little
chance to attack successfully. Fortunately, P declines quickly
with the less proportion of k in s. When the proportion is
smaller than 97%, P will be less than 10-9.

In reality, the number of security types in SELinux-
Policy(2:2.20140421-9) is about 212 (4096) and the value
space of sid is 232. Assuming that the factor k is 4096 (i.e.,
4096 sids have been allocated) and the factor s is 232, the secu-
rity of the full-randomization strategy is shown in Table 1.

Clearly, the maximum of the attempt times for the
attacker is 4096 because the alert must be triggered if the
attacker tries more times. The results show the probability
of attack success is low and stable. The value of P is under
10−9, indicating the system is safe enough.
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Figure 7: Probability of attack success vs. value space of sid.
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6.3. Comparison with Others. The defense methods of root
privilege escalation attack could be divided into three catego-
ries, the separation of privilege and the memory protection in
user space and in kernel space. The separation of privilege
scheme, such as SELinux, is based on the fine-grained control
on the root privilege. SLR-SELinux is also designed in this
manner.

The memory protection methods are based on prevent-
ing the execution control flow of the process from jumping
into the malicious code injected in the user space. The typical
schemes of memory protection in user mode includes com-
piling protection (StackGuard [28], StackShield [29]), data
execution protection (NX [30], ExecShield [31]), and
Address Space Layout Randomization (ASLR) [32]. These
schemes could only prevent the hijacking of execution flow
in user mode and have little defense effect on the exploit
of buffer overflow vulnerability in kernel mode. The
hardware-based protection methods, including SMAP and
SMEP [33] of Intel CPU, prevents the process in kernel-
mode from executing the section of data and code in the user
space. But attackers could also inject the malicious data into
the kernel space. The KASLR, which deploys ASLR in the
kernel space, is implemented by the GRSecurity project. But
it cannot defense the attack method proposed in this paper,
for the relative address is used in our attack. Other academic
achievements, such as kRazor [34] and randomization of
structures in kernel [35], are limited to large-scale promotion
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Figure 8: Probability of attack success vs. attempt times.
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Table 1: Probability of attack success in the current SELinux policy.

Attempt times P in full-randomization strategy (x10−9)
1 0.2328

2 0.2328

4 0.2328

8 0.2328

16 0.2328

32 0.2328

64 0.2328

128 0.2328

256 0.2328

512 0.2328

1024 0.2328

2048 0.2328

4096 0.2328

Table 2: Boot time test.

Original SELinux SLR-SELinux

Average time (seconds) 23.66 24.20

Proportion 100% 101.61%
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application for the compatibility with the commercial distri-
bution of Linux.

7. Experiment and Evaluation

We implemented SLR-SELinux based on CentOS 6.2 and
performed tests for security protection effect and system per-
formance. The experiments are conducted on 64 bits of Cen-
tOS 6.2 (kernel version 2.6.32, processor model of Intel(R)
Core(TM) i3-4130 CPU @ 3.40GHz). The SELinux security
policy used is the targeted policy.

7.1. Defense Effect Test. We use the vulnerability CVE
2013-2094 on the CentOS 6.2 to test the defense effect.
The vulnerability CVE-2013-2094 [32] is in the function
“perf_swevent_init” from the file kernel/events/core.c. The vul-
nerability comes from the incorrect usage of integer data,
which can be utilized to gain root authority by local attackers.

When the system runs without the security label random-
ization method, the security context of the attack process is
user_u:user_r:user_t:s0, which has a lower permission in the
system. Then, root privilege escalation attacks can be per-
formed on this low-privileged security context by editing
security labels to “1,” which is the sid of the security context
system_u:system_r:kernel_t:s0. However, with the security
label randomization method, the attack process crashes.
The reason is that when the attacker edits osid and sid to
“1,” this security label has no corresponding valid security
context in the sidtab. Thus, the process cannot return to the
user space from kernel space normally, thus leading to a crash.

After improving the tamper-proof detection in SELinux,
when the attack process maliciously modifies its security label
using root privilege escalation attacks, the tampered security
label of the process is detected and recovered. Thus, the
attackers cannot break through the security protection of SELi-
nux for the system through kernel privilege escalation attacks.

7.2. System Performance Tests. The system performance tests
include boot time and runtime performance tests. The influ-

ences of randomized strategies on the system performance
are within acceptable limits because SLR-SELinux allocates
sids for the security labels only when they are used for the
first time.

7.2.1. Boot Time Test. We measured the boot time of the
implemented original SELinux and SLR-SELinux. Each item
was measured 100 times, and then, the average boot time was
obtained.

As shown in Table 2, in contrast with the original SELinux,
the boot times after implementation of SLR-SELinux only
increase by 1.61%. This finding indicates that the randomized
strategy in SLR-SELinux has limited influence on the boot
time.

7.2.2. Runtime Performance Test.We tested the runtime per-
formance of the system with UnixBench 5.1.3. Table 3 shows
that the results of each test item of UnixBench are near to
each other for the three situations: original SELinux,
SLR-SELinux with full-randomization, and SLR-SELinux
with tamper-proof checking.

Figure 10 intuitively shows the result of the system per-
formance test by UnixBench 5.1.3. The tests were repeated
100 times for every item in the table. The system

Table 3: System performance test for Linux (UnixBench).

No. Test items Origin SELinux
SLR-SELinux with
full-randomization

SLR-SELinux with
tamper-proof checking

1 Dhrystone 2 using register variables 8377.5 8378.2 8377.9

2 Double-precision whetstone 2745.1 2745.5 2746.1

3 Excel throughput 4042.7 4004.2 3553.2

4 File Copy 1024 bufsize 2000 maxblocks 2755.4 2794.4 2800.5

5 File copy 256 bufsize 500 maxblocks 1655.6 1664.7 1680.7

6 File Copy 4096 bufsize 8000 maxblocks 5755.8 5856.3 5833.3

7 Pipe throughput 3437.0 3409.5 3429.9

8 Pipe-based context switching 3076.5 3055.1 3065.6

9 Process creation 4574.8 4577.5 3899.3

10 Shell scripts (1 concurrent) 4549.5 4510.8 3944.8

11 Shell scripts (8 concurrent) 4341.2 4320.1 3951.9

12 System call overhead 4366.5 4350.3 4336.1

System benchmark index score 3837.0 3835.7 3535.4
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Origin SELinux
Full-randomization strategy
Tamper-proof checking

Figure 10: System performance test for Linux (UnixBench).
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benchmark scores provided by UnixBench indicate that
full-randomization strategy only have minimal impact on
the overall system performance within 1%. For test items
of Excel throughput, process creation, and shell scripts,
the system performance with tamper-proof checking
scheme is diminished due to the frequent creating and can-
celing processes. Therefore, the user can consider whether
the method is used to achieve strong enough protection
according to the real requirement.

8. Conclusions

In this paper, a random allocation method of security labels
named SLR-SELinux is proposed to enhance the defense
capability of SELinux against root privilege escalation
attacks. With the randomized strategies, the values of secu-
rity labels are different after each system reboot. Therefore,
the attackers cannot predict the sid for the specific security
context accurately, thus increasing the difficulty of root priv-
ilege escalation attacks. A tamper-proof detection method of
security label is also proposed to further improve the security
protection, with which the integrity of the security label is
measured in the critical execution path of the system, and
the malicious tampering behaviors are detected and cor-
rected timely. The theoretical analysis and experiments show
that the method can achieve good defense effect and system
performance. We will focus on improving the performance
of the tamper-proof detection mechanism in future research.
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