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In order to improve the detection and recognition ability of 3D echocardiography, a method of 3D echocardiography detection
based on depth learning is proposed. The information conduction model of three-dimensional echocardiography is constructed.
The edge pixel feature matching method is used to extract the key information of echocardiography, and the information
compensation method is used to repair the missing area of three-dimensional echocardiography information. The feature
decomposition and information fusion of 3D ultrasonic imaging are carried out by using five stage wavelet decomposition
method, and the feature reconstruction and adaptive template matching of 3D echocardiography are processed by depth
learning algorithm, modeling and detecting the rationality of three-dimensional echocardiography. The simulation results show
that this method has better detection performance; the accuracy of detection and recognition is high, which is more reasonable
in the application of 3D echocardiography repair and detection recognition.

1. Introduction

With the development of ultrasound technology and the
advent of real-time three-dimensional echocardiography,
the defects of two-dimensional echocardiography and static
and dynamic three-dimensional echocardiography are over-
came, and the operation is simple and the imaging is fast.
By collecting the actual ventricular data, it can accurately
measure the actual volume of the heart and calculate the car-
diac function parameters. It is reported that RT3DE can be
used in in vitro models and animal experiments to measure
ventricular volume and has a significant correlation with
magnetic resonance imaging (MRI) [1], so it has been widely
used in clinic. At the same time, CT imaging technology is
also developing continuously. MSCT imaging technology
can reconstruct the scanned data, calculate the ventricular
volume size according to the diastolic and systolic images,
and calculate the cardiac function parameters according to
the relevant data [2].

Traditionally, the parameters of left ventricular function
are analyzed by multislice spiral CT and real-time three-
dimensional echocardiography. It is found that both of the
twomethods could accurately measure the parameters of car-
diac function, and the parameters of LVEF and LVMM are
compared between the two groups. The difference is not sta-
tistically significant (P > 0:05). It is believed that multislice
spiral CT is accurate and reliable in evaluating left ventricular
function and is highly correlated with echocardiography [3].
The parameters of left ventricular function are measured by
real-time three-dimensional echocardiography and multi-
slice spiral CT scanning. Multislice spiral CT and real-time
three-dimensional echocardiography can accurately evaluate
left ventricular function, but multislice spiral CT can be used
to examine coronary angiography and understand the lesions
of coronary artery and vein. Therefore, it is necessary to
study an effective three-dimensional echocardiographic
detection method and apply it to clinical practice, combined
with multislice spiral CT to examine the coronary artery, and
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to understand the coronary artery at the same time, so as to
evaluate the value of multislice spiral CT (MSCT) and real-
time three-dimensional echocardiography (RT3DE) in mea-
suring left ventricular function [4–6].

In this paper, a three-dimensional echocardiographic
detection method based on depth learning is proposed. The
information conduction model of three-dimensional echo-
cardiography is constructed. The edge pixel feature matching
method is used to extract the key information of echocardi-
ography, and the information compensation method is used
to repair the missing area of three-dimensional echocardiog-
raphy information. The feature decomposition and informa-
tion fusion of 3D ultrasonic imaging are carried out by using
the 5-stage wavelet decomposition method, and the feature
reconstruction and adaptive template matching of 3D echo-
cardiography are processed by depth learning algorithm,
modeling and detecting the rationality of three-dimensional
echocardiography.

2. Information Conduction Model and Image
Preprocessing in Three-
Dimensional Echocardiography

2.1. Three-Dimensional Echocardiographic Information
Conduction Model. By constructing the information conduc-
tion model of three-dimensional echocardiography, the
information collection and feature extraction of three-
dimensional echocardiography are carried out. In the collec-
tion of three-dimensional echocardiography, it is necessary
to use ultrasound beam scanning three-dimensional echocar-
diography. The reflected ultrasonic wave is reflected to the
output port of the ultrasonic wave, and the pixel features
are arranged in different order and the three-dimensional
ultrasonic imaging is obtained [7]. In the information recon-
struction of three-dimensional echocardiography, the size of
the modeling feature region is 16 ∗ 16. The three-
dimensional echocardiography of eachM ∗N is divided into
ððM/16Þ + 1Þ ∗ ððN/16Þ + 1Þ rectangular blocks, as shown in
Figure 1.

The most similar matching block is selected to recon-
struct the 3D feature of the image to be repaired, and the
information conduction pixel set of the interior of each sub-
block is obtained. By using the similarity between the dark
primary color blocks and the blocks to be repaired in three-
dimensional echocardiography, the points on the boundary
are determined, and the priority characteristics of informa-
tion conduction are matched. Gradient smoothing is needed
for the relative elements of adjacent blocks in three-
dimensional ultrasound imaging. The affine invariant
moment feature extraction is carried out with the affine
invariant kernel function of 3 ∗ 3. The affine invariant
moment has the rotation translation and the scale invariance
[8]. Therefore, the feature mining can be carried out through
the template matching of the image, and the image process-
ing template can be determined by the template size. The tex-
ture structure information of three-dimensional
echocardiography is Gðx, y ; tÞ, and the intuitionistic fuzzy
set of texture subspace of three-dimensional echocardiogra-

phy is defined as conduction function:

p x, tð Þ = lim
Δx→0

σ
u − u + Δuð Þ

Δx

� �
= −σ

∂u x, tð Þ
∂x

: ð1Þ

Assume that the edge information of the three-
dimensional echocardiography along the gradient direction
is shown as follows:

Gx x, y ; tð Þ = ∂u x, y ; tð Þ
∂x

: ð2Þ

The traversal characteristics of the sharp changes of
image features in the scene are obtained, and the information
flow density vector of 3D echocardiographic texture struc-
ture is obtained as follows:

p x, y ; tð Þ = −σ∇u x, y ; tð Þ = −σG x, y ; tð Þ
= −σ Gx x, y ; tð Þi +Gy x, y ; tð Þj� �

,
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Here, i, j are unit direction vectors, based on the visual
significance of a target in the detection recognition process,
a three-dimensional echocardiography structure texture
information conduction model is constructed, the rare
degree in the whole scene is obtained [9], and the global rare
degree of the three-dimensional echocardiography is
obtained by adopting zero uniform traversal. Based on the
analysis, the state equation of the three-dimensional echocar-
diography texture information conduction model is
described as follows:

f x1, x2ð Þ = r1x1 1 − x1
N1

− σ1
x2
N2

� �
= 0,
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= 0:
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>>>:
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Here, r1 and r2 are the local and global salient feature sets,
and σ1 represents the mean value of the image features. Based
on the above 3D echocardiographic information conduction
model, a 3D echocardiographic information conduction
model is constructed. The information collection and feature
analysis of three-dimensional echocardiography are realized,
which provides an accurate data basis for three-dimensional
echocardiography modeling [10].

Figure 1: Three-dimensional echocardiographic rectangular
segments.
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2.2. Priority Determination of Three-Dimensional
Echocardiography Reconstruction. In the information con-
duction model, edge pixel feature matching method and 3D
echocardiography are used to determine the priority of
information missing region repair. The subspace structure
model of three-dimensional echocardiography is designed
to calculate the priority coefficient of the block to be
reconstructed and update the edge pixel of the three-
dimensional echocardiography [11]. The multidimensional
search method of subspace feature information is adopted.
The information points of three-dimensional echocardiog-
raphy are searched by gray scale until there are no edge
pixels. The mean value of feature is used as pheromone
in subspace structure block, and the global rare degree fea-
ture of three-dimensional ultrasonic imaging is decom-
posed. The iterative equation of characteristic
decomposition is described as follows:

u n+1ð Þ x, yð Þ = u nð Þ x, yð Þ + δu nð Þ
1 x, yð Þ, ð5Þ

u nð Þ
1 x, yð Þ =MΔsu

nð Þ x, yð Þ +NΔtu
nð Þ x, y ; dð Þ: ð6Þ

The size of the 3D echocardiography to be recon-
structed is assumed to be m × n, and the size of the char-
acteristic scale block Ψp is s × s. By means of edge pixel
feature matching, the depth learning algorithm is used to
determine the priority of unknown pixel points in 3D
echocardiography. The priority sort of pixels meets

P xT − Kj j < λχσffiffiffiffi
N

p
� �

≈
2ffiffiffiffiffiffi
2π

p
ðλχ
0
e− 1/2ð Þt2dt = 1 − χ: ð7Þ

Here, xT is the mean value of the local contrast win-
dow of the 3D echocardiography, χ is the significance
weight, and H is the global rare degree coefficient.

3. Three-Dimensional Echocardiography
Detection Algorithm

3.1. Characteristic Decomposition and Information Fusion of
Three-Dimensional Echocardiography. On the basis of con-
structing the information conduction model and determin-
ing the priority of the reconstruction of three-dimensional
echocardiography, the reasonable modeling design of three-
dimensional echocardiography is carried out. In this paper,
a three-dimensional echocardiographic rationality modeling
method based on depth learning is proposed [12]. The char-
acteristic decomposition and information fusion of 3D ultra-
sonic imaging are carried out by using the 5-stage wavelet
decomposition method. The structure similar features of
3D echocardiographic detection and recognition image are
obtained by the 5-stage wavelet decomposition of 3D echo-
cardiography:

ws X, Yð Þ =
2 ∑N

i=1cx,icy,i
			 			 + K

∑N
i=1 cx,i
		 		2 +∑N

i=1 cy,i
		 		2 + K

: ð8Þ

The results of feature decomposition and information
fusion are expressed as follows:

l X, Yð Þ = 2uxuy + C1
u2x + u2y + C1

, ð9Þ

c X, Yð Þ = 2σxσy + C2
σ2
x + σ2

y + C2
, ð10Þ

s X, Yð Þ = σxy + C3
σxσy + C3

: ð11Þ

Here, σxyis the edge information covariance and C1, C2,
and C3 are the global rarity constants. The feature recon-
struction and adaptive template matching of 3D echocardi-
ography are processed by depth learning algorithm [13].

3.2. 3D Echocardiography Reconstruction and Detection
Recognition. On the basis of the characteristic decomposition
and information fusion of three-dimensional ultrasound
imaging using the five-stage wavelet decomposition method,
the depth learning is carried out to realize the rational model-
ing of three-dimensional echocardiography, and the depth
learning algorithm is adopted [14]. The parameters of
WSSIM are calculated for the wavelet structure similarity of
two or 3D echocardiography:

WSSIM = l X, Yð Þ½ �α c X, Yð Þ½ �β ws X, Yð Þ½ �γ: ð12Þ

After the multiscale decomposition of the global rarity,
the two-directional subband energies in the information con-
duction model of the detection and recognition imaging are
obtained as follows:

EHLi
=〠

j
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j
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,
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j


 �2
:

ð13Þ

By using the depth learning algorithm, the three-
dimensional echocardiography is firstly convolution with
the Gauss kernel function of different scales [15], and the
reconstruction output of the three-dimensional echocardiog-
raphy is obtained as follows [16, 17]:

ωHLi
=

EHLi

EHLi
+ ELHi

+ EHHi

, ð14Þ
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=
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EHLi
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, ð15Þ
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=

EHHi

EHLi
+ ELHi

+ EHHi

: ð16Þ

The probability of each pixel variance in the whole image
is calculated. The depth learning algorithm is used to mea-
sure the salience of the feature points of three-dimensional
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echocardiography [18, 19]. The structural similarity features
of the image are calculated in the high frequency subband of
wavelet [20]:

WSSIMHi
= ωHLi

⋅WSSIMHLi
+ ωLHi

⋅WSSIMLHi

+ ωHHi
⋅WSSIMHHi

:
ð17Þ

The wavelet structure similarity of three-dimensional
echocardiography is calculated, which is described as
FWSSIMI:

FWSSIM X, Yð Þ = ωLL ⋅WSSIMLL +∑5
i=1 ωHi

⋅WSSIMHi

� 
ωLL +∑5

i=1ωHi

:

ð18Þ

On the basis of above processing, the 3D echocardio-
graphic modeling and detection recognition are realized [21].

4. Simulation Experiment and Result Analysis

In order to verify the effectiveness of this algorithm, different
types of three-dimensional echocardiography are used to
reconstruct the simulation. The test platform is Pentium
(R) 4 CPU 3.00GHz, 1GB memory in windows XP system.
MATLAB simulation software is used to design the algo-
rithm. Firstly, the information transmission model of three-
dimensional echocardiography is constructed, and the infor-
mation characteristic sampling and information fusion of
three-dimensional ultrasonic imaging are realized. Accord-
ing to the simulation environment and parameter setting,
3D echocardiography is performed, and the imaging results
are shown in Figure 2.

(a) Sample A (b) Sample B

Figure 2: Three-dimensional echocardiographic results.
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Figure 3: Comparison of 3D echocardiographic detection performance.
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According to the analysis (Figure 2), the result of three-
dimensional echocardiography using this method is better,
the characteristic fusion degree is higher, and the peak
signal-to-noise ratio is higher. The accuracy of three-
dimensional echocardiography is tested by different
methods, and the comparison of detection performance is
obtained as shown in Figure 3.

The analysis of Figure 3 shows that the accuracy of three-
dimensional echocardiography using this method is better.

The weighted low frequency coefficient is ωLL = 3:78 of
3D ultrasonic wavelet decomposition, and the high frequency
coefficients of echocardiography are as follows: ωH1

= 1:00,
ωH2

= 3:75, ωH2
= 7:20, ωH4

= 3:48, and ωH5
= 3:21. Search

step size N = 4; 3D echocardiographic image sample block
matching template is 9 × 9. The size of the windows is 3 ∗

3:5 ∗ 5:9 ∗ 9:17 ∗ 17. Changes of indicators in the same
environment on cardiogram images is shown in Figure 4.

The characteristic decomposition and information fusion
of 3D ultrasonic imaging are carried out by using the 5-stage
wavelet decomposition method. The structure similar fea-
tures of 3D echocardiographic detection and recognition
image are obtained by the 5-stage wavelet decomposition of
3D echocardiography. Cardiogram detection indicators in
different detection environments are shown in Figure 5.

The feature decomposition and information fusion of 3D
ultrasonic imaging are carried out by using the five-stage wave-
let decomposition method, and the feature reconstruction and
adaptive template matching of 3D echocardiography are proc-
essed by a depth learning algorithm, modeling and detecting
the rationality of three-dimensional echocardiography.
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Figure 4: Changes of indicators in the same environment on cardiogram images.
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Figure 5: Cardiogram detection indicators in different detection environments.
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5. Conclusions

In this paper, a method of 3D echocardiography detection
based on depth learning is proposed. The information con-
duction model of three-dimensional echocardiography is
constructed. The edge pixel feature matching method is used
to extract the key information of echocardiography, and the
information compensation method is used to repair the miss-
ing area of three-dimensional echocardiography informa-
tion. The feature decomposition and information fusion of
3D ultrasonic imaging are carried out by using the five-
stage wavelet decomposition method, and the feature recon-
struction and adaptive template matching of 3D echocardi-
ography are processed by a depth learning algorithm,
modeling and detecting the rationality of three-dimensional
echocardiography. The simulation results show that this
method has better detection performance, and the accuracy
of detection and recognition is high, which is more reason-
able in the application of 3D echocardiography repair and
detection recognition. This method has good application
value in the detection and clinical application of
echocardiography.
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