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symptom. The symptom generally starts in few days or
weeks. Most importantly, the lethal parasites can stay alive
more than a year in a person’s body without showing any
symptoms. Therefore, a late treatment can cause complica-
tions and even death. Hence, many lives can be saved
through early malaria detection. Almost 50% of the popula-
tion in the world is in danger from malaria. There are more
than 200 million malaria cases and 400,000 deaths reported
every year due to malaria. In practice, to identify malaria,
microscopists inspect blood (thick and thin) smears for
disease diagnosis and calculate parasitemia. Microscopy
examination is used as one of the prime standards for the
diagnosis of malaria [1, 2] to identify the existence of
parasites in a blood drop from thick blood smears. However,
thin blood smears are used for distinguishing the species of
parasite and the development of malaria stages. Examination
through a microscope is commonly used since it is cheap but
time-consuming. The examination accuracy relies on the
quality of blood smear and a skilled person who is expert in
the classi�cation and examination of uninfected and parasit-
ized blood cells.

Traditional approaches for malaria detection are very
time-consuming, may produce inaccurate reports due to
human errors, and are laborious for extensive diagnoses. This
motivates us to propose an automatic detection of malaria
applying deep learning techniques and using a mobile
application that leads to early diagnosis which is fast, easy,
and e�ective.

Several ideas exist to detect malaria parasites in micro-
scopic images using convolutional neural networks (CNNs),
some pretrained variants of CNN [4–8], and recurrent neural
network (RNN) [9]. Moreover, authors in [10, 11] proposed
approaches that consider unsupervised machine learning

algorithms applying stacked autoencoders for learning the
features automatically from the infected and uninfected cell
images. Liang et al. [12] proposed a deep learning model
for infected malaria cell classi�cation from red blood smears.
The model consists of 16-layer convolutional neural network
which outperforms transfer learning-based models that use
pretrained AlexNet [13].

Jane and Carpenter [14] proposed an object detection-
based model using a convolutional neural network, named
as Faster R-CNN. The model is �rst pretrained on ImageNet
[15] and then �ne-tuned on their dataset. Bibin et al. [16]
recommended another model using deep relative attributes
(DRA) [17]. Authors use CNN for epilepsy seizure detection
[18]. Razzak and Naz [19] have proposed an automated
process that considers the tasks of both segmentation and
classi�cation of malaria parasites. Their segmentation net-
work consists of a Deep Aware CNN [20], and the classi�ca-
tion network employs an extreme learning machine- (ELM-)
based approach [21].

Since we are aiming to develop a mobile-based e�ective
solution for malaria detection, we look forward to coming
up with a CNN-based deep learning model which is expected
to be simpler and computationally e�cient in contrast to
most of the state-of-the art approaches discussed before that
require longer training time. In particular, we make the
following contributions: (a) design and evaluation of a
base CNN model with standard or no learning schedule
and very less trainable parameters to classify parasitized
and uninfected cell images, (b) the use of a SGD optimizer
with cyclical learning rate schedule along with an auto-
matic learning rate �nder in addition to commonly
applied regularization techniques in improving the model
performance, and (c) deployment of our best performing

Figure 1: Malaria world map of estimated risk (2018 update) [3].
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model to a mobile application to facilitate simpler and faster
malaria detection.

The rest of the paper is organized as follows. Related
Work reviews the state-of-the-art techniques used in malaria
classi�cation. Materials and Methods provides detailed
description of our model, its con�guration, dataset used,
and performance evaluation metrics. Results and Discussion
presents the performance results obtained for our base and
improved models and provides state-of-the-art comparison.
Finally, Conclusions concludes the paper and outlines some
potential future work.

2. Related Work

There has been a signi�cant amount of research during the
last decades using computing algorithms for cost-e�ective
solutions to support interoperable healthcare [22] in reduc-
ing diseases. For instance, Neto et al. [23] proposed a simula-
tor for simulating events of epidemiology in real time.
Kaewkamnerd et al. [24] proposed an image analysis system
consisting of �ve phases for malaria detection and classi�ca-
tion. Anggraini et al. [25] developed an application applying
image segmentation techniques for separating blood cells’
background. Furthermore, Rajaraman et al. [4] implemented
feature extractors using pretrained CNN-based deep learning
models for uninfected and parasitized blood cell classi�cation
to facilitate disease identi�cation. The research used experi-
mental approach to identify the optimal model layers using
the underlying data. The CNN model has two fully connected
dense layers and three convolutional layers. The performance
is measured to extract features using VGG-16, AlexNet,
Xception, DenseNet-121, and ResNet-50 from the uninfected
and parasitized blood cells. In contrast to [4], only CNN-
based malaria classi�ers are also proposed by Gopakumar
et al. [26] and Liang et al. [12].

MOMALA [27] is a smartphone and microscope-based
application developed to detect malaria quickly at a low cost.
The MOMALA app can detect the existence of malaria para-
sites on a regular blood-smeared slide. A phone camera is
attached to the microscope’s ocular to take the photographs
of the blood smear and then analyzes it. At present, the
application highly depends on microscopes that are heavy,
bulky, and not easily transportable.

The researchers in [28] developed a mobile app that takes
photos of blood samples to detect malaria immediately.
Using a cell phone app, we can analyze blood samples
without involving microscope technicians. The app needs
to clamp a smartphone on to a microscope’s eyepiece, and
the application analyzes the images of the blood sample and
creates a red circle on malaria parasites. A lab worker later
reviews the case. Extraction of meaningful features is the
heart of success for any machine learning method. Most of
the computer-used diagnosis tools that use machine learning
models for image analysis are based on manual-engineered
features for making decision [29–31]. The process also needs
computer vision expertise in order to analyze the variability
on the images in size, color, background, angle, and position
of interests. Deep learning techniques can be applied with
considerable success for overcoming the challenges that pre-

vail in a hand-engineered feature extraction process [32].
Models in deep learning apply a series of sequential layers
with nonlinear processing hidden units that can �nd out
hierarchical feature relations within the raw image data.
The features (low-level) that are abstracted from higher-
level features assist in functions of nonlinear decision-
making, learning complexity, result in end-to-end extraction
of features, and classi�cation [33]. Moreover, deep learning
models show better performance compared to kernel-based
algorithms such as Support Vector Machines (SVMs), in
large volume of data and computational resources, building
them to be greatly scalable [34].

A somewhat related pool of work in cognitive computing
domain has presented similar contribution. Zhang et al. [35]
proposed a protection mechanism for authentication and
access control using an interactive robot while controlling
private data access stored in cloud. In a subsequent e�ort
[36], they introduced a novel paradigm of cognitive IoT using
technologies of cognitive computing. A group of researchers
[37] also proposed a module, called Mech-RL, for developing
an agent-based literature consultant and a new channel of a
meta-path learning method. Furthermore, similar to our
battery-operated mobile-based application for malaria
detection that can easily be deployed to edge and IoT
devices, there is a handful of research [38–41] aiming at
developing frameworks on mobile edge to deliver various
related services such as secure in-home IoT therapy, content
recommendations [42] [43], and position-based services for
network amenities [44].

To summarize, the related work mentioned in the litera-
ture largely used di�erent pretrained CNN variants such as
AlexNet, VGG-16, ResNet-50, Xception, DenseNet-121,
and customized CNN models as well for malaria detection
in blood smear images and obtained relatively better results
than using a custom CNN architecture. However, the
downside is that these results are obtained through feature
extraction and subsequent training that required long time
in some cases [4] a little over 24 hours. In addition, size
and complexity of these models make them a bit unrealistic
to be used with battery-operated mobile devices. In contrast,
we built a simpler and computationally e�cient CNN model
with considerably less trainable parameters (discussed in
Model Con�guration section), yet producing comparable or
better results keeping in mind our model to be deployed on
battery-operated edge and IoT devices such as a smart mobile
phone. Moreover, techniques in the literature mostly use de
facto SGD optimizer with various learning rate schedules
including the adaptive learning rates which su�er from the
problem of saddle point or local minima. In contrast, we have
used a SGD optimizer with cyclical learning rate schedule
along with an automatic optimal learning rate �nder which
results in faster model convergence with fewer experiments
and hyperparameter updates. Finally, most of the state-of-
the-art models use image augmentation to increase model
generalizability at the expense of longer training time. On
the other hand, our model without using data augmentation
demonstrates faster convergence and generalizability to
unseen data through proper hyperparameter optimization
such as learning rate, regularization through batch
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normalization, and moderate dropouts in convolutional and
dense layers.

Among the studied malaria detection models in the liter-
ature, the models proposed in [4, 12, 16, 26] based on custom
CNN and its pretrained variants seem to be closest to our
model. Hence, we performed a state-of-the-art comparison
with these models to demonstrate the feasibility of using
our model in a mobile-based system especially in remote
disaster survival areas.

3. Materials and Methods

3.1. Deep Learning for Malaria Detection. Deep learning
techniques are now widely used for image classi�cation, video
recognition, and medical image analysis. A convolutional
neural network (CNN), a type of deep neural networks, is
mainly considered for research in computer vision �eld. The
deep architecture of CNN is its main power. The convolu-
tional layer in the CNN works as an automatic feature extrac-
tor that extracts hidden and important features. Extracted
features are passed to a fully connected neural network which
performs classi�cation images by maximizing the probability
scores. A general CNN model is shown in Figure 2.

3.2. Dataset and Computational Resources. We have used a
publicly available malaria dataset from NIH (National Insti-
tute of Health) website originally used by a group of
researchers, Rajaraman et al. [4], for the detection of malaria
parasites in blood smear images. There are 27,558 segmented
cell images in the dataset with the same number of normal

and parasitized instances. Parasitized cell images contain
Plasmodium while normal cells are free of Plasmodium but
can contain other staining artifacts and impurities. The data
was collected by Chittagong Medical College Hospital in
Bangladesh by photographing slides of Giemsa-stained thin
blood smear from 200 patients where three-fourth of them
were P. falciparum-infected. The manual annotation and
deidenti�cation of these collected images were performed by
an expert at Mahidol-Oxford Tropical Medicine Research
Unit, Thailand, and later approved and archived by Institu-
tional Review Board, National Library of Medicine.

The images in the dataset are not of equal sizes. The min-
imum and maximum image resolution is 46 × 46 and 385 ×
395 pixels, respectively, with 3 color channels (RGB). We
plan to resize the images to 224 × 224 which is the standard
input image size of the majority of the pretrained CNN
models for faster model convergence. Figure 3 shows some
sample images from both normal and parasitized categories.
The infected cells seem to contain some red globular
structures whereas healthy cells do not seem to contain such
structures in them. The proposed deep learning model will be
used to identify these patterns in cell images to e�ectively
detect malaria parasites in a patient.

Moreover, we performed data scaling which is a crucial
preprocessing task for training and evaluating deep learning
models. Data from input images without scaling often
hampers a steady learning process. Normalization is one
of the most common data scaling techniques which rescales
the original data points in the images to a range between 0
and 1. The values of data points in the original 8-bit RGB
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Figure 2: A general CNN model.
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Figure 3: Sample images from NIH dataset: (a) uninfected and (b) parasitized.
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color images range from 0 to 255. Therefore, using Equa-
tion (1), we rescale our input image data as follows:

z =
x −min xð Þ

max xð Þ −min xð Þ =
x
255

: ð1Þ

We split the data (as shown in Table 1) into (training
and validation) sets randomly with the percentage of 80%
and 20%, respectively. There are 22,046 images in the
training set and 5512 images in the validation set having
an equal number of images from both classes.

The proposed CNN model is trained and evaluated using
Google Colab [45] which is a cloud-based Jupyter notebook
environment available for free access. Colab provides a pre-
con�gured system for training and evaluating deep learning
applications and o�ers access to high-performance graphical
processing units (GPUs) without any cost. Presently, it o�ers
a single 16GB NVIDIA Tesla P100 GPU with CUDA
enabled, and all the necessary packages are preinstalled
which includes Python 3 with Keras 2.2.5 API and Tensor-
Flow 1.15.0 at the backend. In addition, we have used
Android Studio 3.6.1 for developing the android malaria
detection app for model deployment.

4. Model Configuration and Evaluation Metrics

4.1. Model Configuration. The proposed CNN model has four
convolutional blocks and two fully connected dense layers.
Figure 4 shows the proposed CNN model. Each convolu-
tional block consists of convolution, max pooling, batch
normalization, and dropout layers. The �rst convolutional
layer uses 32 �lters of size 7 × 7 to learn larger features, and
then, the �lter size decreases by 2 and �lter count is doubled
in each subsequent convolutional layer except for the last
layer. The default striding of 1 pixel is used in convolution
operations in all layers. The model input consists of
segmented cell images of 224 × 224 × 3-pixel resolution. In
addition, each convolutional layer uses a valid padding to
reduce the output feature map dimension in proportionate
to the �lter size used. We have used nonlinear activation
function called ReLU (Recti�ed Linear Units) in all hidden
layers to introduce nonlinearity into the output of each
neuron to help the model learn complex mathematical func-
tions to better identify target classes. It removes the vanishing
gradient problem and aids in faster model training and
convergence [46]. Max pooling layers have a 2 × 2-pixel
pooling window and 2-pixel stride, added after convolutional
layers to down sample the feature map by summarizing the
most activated existence of a feature. This means that the
pooling operation reduces the size of the feature map with a
factor of two. To tackle the over�tting problem and to ensure
more stability of the network, we have added a batch normal-

ization layer to be applied to pooled output. Normalization
is applied on the previous activation layer by subtracting
the batch mean and then dividing by standard deviation
of the batch [47]. The dropout regularization (with a
dropout ratio of 0.15) used in each convolutional block
reduces over�tting and improves network generalization
error by randomly dropping out nodes during model
training [34]. A global average pooling (GAP) layer is
considered right after the last block of convolution as a
better replacement of �attening to reduce over�tting by
minimizing the size of model parameters. The GAP layer
reduces spatial dimensions of a 3-dimensional tensor having
size h ×w × d to 1 × 1 × d tensor by simply taking the
average of all hw pixel values of each h ×w feature map to
single number [48]. The output from the GAP layer followed
by a dropout is passed to the �rst (fully connected) dense
layer having 1000 neurons. The �rst dense layer output is
then fed to a dropout and then passed to the second dense
layer with two neurons and a Softmax classi�er. Overall,
our proposed CNN model has relatively smaller size
(409 K) of trainable parameters compared to most of the
pretrained transfer learning models used in the literature
[4] for malaria detection or solving similar computer vision
problems. This simplicity of network structure will be the
�rst step while dealing with over�tting problem.

We consider a stochastic gradient descent (SGD) opti-
mizer with momentum for training and optimizing the model
in order to minimize binary cross-entropic loss also known as
log-loss. We have optimized our custom model by tuning the
learning rate. Learning rate is one of the most dominating
hyperparameters in a neural network con�guration. We used
an automatic optimal learning rate �nder in combination with
cyclical learning rate (CLR) technique �rst introduced by
Smith [49] which allows the learning rate to oscillate cyclically
between a minimum and a maximum learning rate bound.
The use of CLR results in faster model convergence with fewer
experiments and hyperparameter updates.

4.2. Cyclical Learning Rates. The widely used learning rate
schedule technique monotonically decreases learning rate
after each epoch to allow the model to descend to a point of
low loss. However, with this technique, the model will still
be sensitive to initial choice of learning rate and the
technique does not guarantee that it will land to a low loss
area while decreasing the learning rate. Rather, the model
may be con�ned to either saddle points or local minima. To
better address these problems, cyclical learning rates (CLR)
enable oscillation of learning rates between upper and lower
bounds which in turn provide additional freedom in
choosing initial learning rate and get rid of saddle points
and local minima. There are three variations of the CLR
based on how the oscillation of learning rate takes place:
triangular, triangular2, and exp_range. The triangular policy
works by starting o� from a base learning rate and increasing
the rate to a maximum value in half cycle and then decreasing
back to the initial rate thus completing the full cycle. This
whole process is repeated until the model training is �nished.
The triangular2 also called triangular schedule with �xed
decay is similar to the previous one except that it cuts the

Table 1: Training and validation data sets.

Set Count PercentParasitized Normal
Training 11023 11023 80%
Validation 2756 2756 20%

5Wireless Communications and Mobile Computing



upper bound of learning rate to half after every cycle. This
lowering of maximum learning rate over time results in
increased stability of model training. Finally, exp_range
policy also called triangular schedule with exponential decay
uses an exponential decay as the name suggests to cut down
the upper bound which gives more �ne-tuned control in
decreasing the max learning rate over time. We have used
Brad Kenstler’s implementation of CLR using Keras for our
model training [50].

4.3. Automatic Learning Rate Finder. Since CLR works based
on a lower and upper bound of learning rate, Smith [49] also
provides an automatic learning rate �nder algorithm to �nd
optimal learning rates. Various steps for obtaining the mini-
mum and maximum values of learning rates in Figure 5. For
model training, a very small (1e − 10) value and a very large
(1e + 1) value for lower and upper bounds of learning rates
are set by the algorithm. An exponential increase of learning
rate after every batch update is adopted as training pro-
gresses, and at the same time, loss is also recorded. When
the learning rate reaches the upper bound after a speci�c

number of training epochs, we plot a curve showing loss
and learning rate. At this point, we identify two di�erent
values for learning rates. The loss starts decreasing after the
�rst learning rate, and the loss starts to increase from the
second value of learning rate. These two values refer to the
lower and upper bounds of learning rate which are used in
CLR technique. Figure 6 demonstrates how the loss changes
with respect to various learning rates using this automatic
learning rate �nder. It is apparent from the plot that loss does
not change until the learning rate hits approximately 1e − 6.
This indicates that our model does not start learning owing
to a very low initial learning rate. Loss starts to decrease soon
after the learning rate reaches approximately 1e − 5 which
implies that the learning rate is large enough to enable the
model to start learning. From this point, the loss keeps
decreasing sharply implying that the model is learning
quickly. Soon after the learning rate reaches to approximately
1e − 1, the loss starts to increase again. As such, the loss has
exploded almost immediately due to the large increase in
learning rate (close to 1e + 1). Hence, we select 1e − 5 and 1
e − 1 as our minimum and maximum learning rates, respec-
tively, which will be used in the CLR technique for our model
training. Finally, our model con�gurations including hyper-
parameters are summarized in Table 2.

4.4. Evaluation Metrics. We have used accuracy, precision,
recall, F1-score, speci�city, Matthews correlation coe�cient
(MCC), and Area Under Curve (AUC) to evaluate the perfor-
mance of our models. Since in our dataset the number of
samples from each target class is equal, we consider accuracy
as our primary metric. Accuracy refers to the proportion of
correct predictions over all predictions made by the model.
In addition, we calculated precision, recall or sensitivity,
speci�city, and F1-score from the confusion matrix which
contains False Positives (FP), True Positives (TP), False
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Figure 4: The custom CNN model.
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Negatives (FN), and True Negatives (TN). Furthermore,
precision and recall for each target class are calculated from
a classi�cation report. Precision measures the proportion of
patients that are identi�ed as infected really carry malaria
parasites. Recall or sensitivity measures of the proportion of
patients that are infected are diagnosed by the model as
having malaria parasites. Speci�city is the opposite of recall
which measures the proportion of patients that are not
infected and diagnosed by the model as not carrying any
malaria parasites. F1-score is calculated as a single metric
from the harmonic mean of precision and recall. MCC is
computed from all four values of confusion matrix and
represents the correlation coe�cient between the true and
predicted classes [51]. The higher the coe�cient value, the
better is the prediction. Equation (2) is used to calculate
MCC for a binary classi�cation problem. When all the
predictions of the classi�er are correct (i.e., FP = FN = 0),
MCC becomes 1 implying the perfect positive correlation.
On the contrary, if the predictions are always incorrect (i.e.,
TP = TN = 0), MCC becomes -1.

MCC = TP × TN − FP × FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp
: ð2Þ

We have used binary cross entropy or log-loss, and the
target is to minimize it which is equivalent to maximize the
classi�cation accuracy. The log-loss function is expressed
with the following equation:

Loss = 1
N
〠
N

i=1
yi:log p yið Þð Þ + 1 − yið Þ:log 1 − p yið Þð Þ, ð3Þ

where y represents the target class (0 for normal cell images
and 1 for parasitized cell images) and pðyÞ is the probability
of prediction of the sample being parasitized for all N images.
For each parasitized image (y = 1), log ðpðyÞÞ is added to the
loss that is the log probability of its being parasitized. On the
contrary, log ð1 − pðyÞÞ is added to the loss implying that the
log probability of its being normal for each uninfected image
(y = 0).

5. Results and Discussion

We have adopted the following approach in order to assess
the performance of the proposed CNN model for the classi�-
cation of uninfected and parasitized cell images. We took
learning rate as one of the key hyperparameters to tune our
custom CNN model for optimum classi�cation performance.
The learning rate hyperparameter is used to control the speed
of learning of a deep learning model. Using a rightly
constructed learning rate, a model can learn to best map
input to desired output with the available resources (i.e., the
number of nodes in each layer and the total number of layers)
with the number of epochs passing in the training data. The
SGD algorithm has long been the de facto optimizer to train
deep neural networks. Moreover, some of its extensions
based on adaptive learning rates have been popular for quite
some time now such as Adam, RMSProp, and Adagrad.
However, lately, the concept of cyclical learning rates
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Figure 6: Model loss for various learning rates to identify optimal lower and upper bounds on learning rate.

Table 2: Model con�guration summary including
hyperparameters.

Parameter Value/type
Epochs 50
Batch size 32
Optimizer SGD with momentum 0.9
Learning rates Min 1e − 5, max 1e − 1
Loss function Categorical cross entropy
Input shape 224 × 224

Pooling Max 2 × 2 (convolutional layers),
GlobalAverage (�atten layer)

Activation ReLU (convolutional layers),
Softmax (�nal dense layer)

Dropout rate 0.15
Trainable parameters 409,146
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(CLR), originally proposed by Smith [49], attracted
researchers’ attention in improving deep learning model
performance. In this paper, we looked at how SGD with this
cyclical learning schedule holds up to the other optimizers.
To this end, we built a baseline model with standard SGD
and then gradually tried to improve the model’s performance
with CLR technique applied to SGD.

5.1. Base Model. As mentioned in the previous section, our
base model represents the custom model as described before
with a standard SGD optimizer. We have considered SGD
with 0.9 momentum, 1e − 1 as an initial learning rate, and
standard decay of initial_learning_rate/no_of_epochs. We
saved the best model weights (i.e., the lowest validation loss)
during training by using Keras’s ModelCheckpoint library
and callback function. We trained the model for 50 epochs.
Resulted training and validation loss are shown in Figure 7
as well as accuracy over the number of epochs.

We can see that our base model does not converge well
and a signi�cant di�erence between the training and valida-

tion results both for loss and accuracy. In addition, a lot of
�uctuation is observed in the values of loss and accuracy as
the training progresses towards the end. This indicates that
our base model is not trained well and might be over�tting
to training data. Consequently, the model might not general-
ize well on unseen test data. This could be potentially attrib-
uted to the choice of learning schedule in the base model even
though we have used dropout and batch normalization
techniques to avoid over�tting. We aim to overcome these
drawbacks by using CLR schedule with the SGD optimizer.

Performance metrics of our base model is shown in
Table 3. We have received a base accuracy of 96.46% with
high precision and recall towards classifying the infected
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Figure 7: Loss (training and validation) and accuracy of the base model.

Table 3: Performance metrics for the base model.

Acc AUC Precision Recall F1-score MCC
0.9646 0.9552 0.97 0.96 0.96 0.9135
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and normal cells which is reasonable. By investigating the
confusion matrix as shown in Figure 8, we can see that the
count for False Negatives (FN) is 150 which is pretty high
for a disease identi�cation problem. FN indicates that the
model declares a malaria patient to be healthy whereas the
patient is parasitized. This will severely hamper the patient
treatment and may result in death. Our goal is to reduce this
number with the proposed improved model. A reduced
number of FN will ensure that our model is e�ective in
identifying parasitized cell images.

5.2. Improved Model with CLR. In our improved model, we
used the same base model architecture with the exception
that we used cyclical learning rates schedule instead of a

standard one. As mentioned before, there are three variations
of CLR implementation based on the policy of changing the
upper bound learning rate, namely, triangular, triangular2,
and exp_range. We have experimented with the �rst two
variants to observe the model performance. Figure 9 shows
the learning rate plot and how the learning rates oscillate
between the lower and upper bounds.

More speci�cally, the initial learning rate of 1e − 5
increases to the maximum value of 1e − 1 in a half cycle
and then decreases back to 1e − 5 in the other half cycle thus
completing the full cycle. By using this triangular policy, we
have obtained improved model accuracy of 97.12% as shown
in Table 4 (compared to 95.25% in base model) with higher
precision and recall towards classifying the infected and

2500

2000

1500

1000

500

45

150

2,746

2,571

Confusion matrix

Uninfected

Uninfected

Parasitized

Parasitized

Tr
ue

 la
bl

e

Predicted label
Accuracy = 0.9646 Misclass = 0.0354

Figure 8: Confusion matrix for the base model.

0.10

0.08

0.06

0.04

0.02

0.00

Le
ar

ni
ng

 ra
te

0 5000 10000 15000 20000 25000 30000 35000
Training iterations

Cyclical learning rate (CLR)

Figure 9: Cyclical learning rate changes using “triangular” policy. Lower and upper bounds on learning rates were calculated using an
automatic learning rate �nder.

9Wireless Communications and Mobile Computing



normal cells. Thus, by combining cyclical learning rates with
the automatic learning rate �nder (discussed earlier), we are
successful in obtaining a highly accuracy model.

By looking at the training history (plotted in Figure 10),
we found that the gap between training and validation loss
as well as accuracy reduces signi�cantly indicating a faster
and better model convergence. In addition, we observed a
“wave” characteristic of our training and validation accura-
cy/loss curve signifying the fact that the learning rate
oscillates between lower and upper bounds.

We train and evaluate our model again with “triangular2”
CLR policy and found out further improvement in model
accuracy which is 97.30%. Figure 11 visualizes how learning
rate is adapted in a cyclic manner and, after each fully cycle,
the upper bound learning rate is reduced to half and this
continues till the end of model training. Compared to the �rst
triangular CLR policy, the training and validation curves
with loss and accuracy (as plotted in Figure 12) show less
�uctuation and more stability. In principle, a stabilized train-
ing is less prone to the risk of over�tting.

Table 5 shows the confusion matrix for our improved
model with triangular2 CLR schedule. As mentioned earlier,
our target is to reduce the FN count to make our model
robust. We can see the FN count decreased to 112 compared
to the base model (with FN count of 150) which makes our
improved model e�ective in identifying parasitized cell
images. This reduced count of FN is very critical because
we do not expect that our model will misidentify someone
as healthy while in reality the patient is carrying the malaria
parasite. This will severely hamper the patient’s line of
treatment and even endanger life of the patient. At the same
time, FP count also decreased (to 37) compared to the base
model (45). A lower value FP is also expected from our model
since this will prevent the patient from further undergoing
unnecessary laboratory tests and treatment and will reduce
�nancial burden on the health provider.

5.3. Mobile-Based Model Deployment. We have deployed our
best improved model to a mobile application to facilitate a
simple and fast detection of malaria parasite in blood cell
images. We have used Google’s TensorFlow Lite [52] which
brings deep learning capability directly into mobile devices
by running deep learning models locally. TensorFlow Lite
framework supports hardware acceleration and brings low-
latency inference performance to mobile devices by signi�-
cantly improving model loading times. Figure 13 shows
di�erent steps of our model deployment process. Our best

trained Tensor�ow model is converted to a TensorFlow Lite
(.tflite) model using the TFLite Converter. We have used
the TFLite Converter from a Python API which simpli�es
the model conversion as part of a model deployment
pipeline. Our converted .tflite mode size is about 22 MB.
Once the converted (.tflite) model is deployed on the android
mobile device, cell images are loaded from a cloud or device’s
local storage for potential malaria detection. The user opens a
cell image, and the deployed model provides the prediction
label. Snapshots of a few sample image predictions are
displayed in Figure 14.

6. Discussion

From the performance results obtained in the previous
section, we observed that the proposed custom model with
CLR-triangular2 con�guration produces an optimal solution
with faster convergence. This was achieved by selecting a
superior combination of convolutional and dense layers in
the custom CNN architecture with proper hyperparameter
optimization such as learning rate, regularization through
batch normalization, and moderate dropouts in convolu-
tional and dense layers. The use of cyclical learning rate
schedule with an automatic learning rate �nder lowered the
e�ect of model being over�t to training data and faster
convergence to a better solution.

Our base model with no or standard learning rate sched-
ule did not converge well and showed high variance in the
values of loss and accuracy during the model training indicat-
ing a tendency to over�t to training data. We have addressed
this problem by using cyclical learning rate schedule in our
SGD optimizer along with implicit regularization techniques
using batch normalization and dropouts. The use of two
di�erent variations of cyclical learning rate implementation,
namely, triangular with no decay (triangular) and triangular
with �xed decay (trianglular2), progressively improves the
performance of the base model with respect to model
accuracy, AUC, sensitivity (recall), and MCC. Our best
improved model yields a performance accuracy of 97.30%
compared to the base model’s accuracy of 95.57%. A notice-
able increase in the value of MCC (94.17% from the base
model’s MCC of 91.35%) indicates that the predicted label
and the true label are strongly correlated and our improved
model is competent in classifying parasitized and uninfected
cell images. An increased value of AUC (97.04%) represents a
high degree of separability of our improved model meaning
that it can better distinguish between cell images with malaria
disease and no disease. In addition, a high recall value of 97%
indicates model sensitivity in predicting infected cells with
malaria. Furthermore, the number of false negative (FN)
cases signi�cantly (almost half) decreased in our best
improved model compared to the base model which indicates
the success of our model in reducing the risk of identifying a
malaria patient as healthy which is detrimental to a patient’s
line of treatment. It is worth mentioning here that our model
did not consider using data augmentation to arti�cially
increase the size of the training dataset largely owing to the
fact that our dataset contains a decent number (27,558) of
segmented cell images with the same number of normal

Table 4: Performance metrics for the improved model with CLR
schedule.

Model Base CLR-triangular CLR-triangular2
Accuracy 0.9646 0.9712 0.9730
AUC 0.9552 0.9656 0.9704
Precision 0.97 0.97 0.97
Recall 0.96 0.97 0.97
F1-score 0.96 0.97 0.97
MCC 0.9135 0.9400 0.9417
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and parasitized instances well enough to train a deep learning
model without signi�cantly running into over�tting prob-
lem. Hence, we trained our model without arti�cially aug-
menting our dataset and yet obtained better or comparable
performance to the techniques in the literature in identifying
a malaria patient.

Table 6 provides a comparison of performance metrics
between our best improved model and the results of state-
of-the-art approaches. We noticed that the proposed
improved model is better than the customized model and
other CNN models (pretrained) such as VGG-16 and
ResNet-50 presented in [4] with respect to accuracy, preci-

sion, sensitivity, and MCC towards classifying healthy and
infected cells with malaria. On the contrary, our proposed
custom model achieved a relatively lower value for AUC as
compared to ResNet-50 and VGG-16 but demonstrated
similar AUC performance as the customized model proposed
in [4]. Our model took about 97 min to train as compared to
the training time (24 hours) of all the models proposed in [4].
We believe that this performance improvement is worth
given the fact that our model is smaller in size having a
relatively less number of trainable parameters and demon-
strated very less training time using the SGD optimizer with
a cyclical learning rate schedule.

Table 5: Confusion matrix for the improved model with triangular2 CLR schedule.

Model TP TN FN FP
Base 2746 2571 150 45
CLR-triangular 2752 2601 120 39
CLR-triangular2 2754 2609 112 37
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Figure 13: Process �ow diagram showing di�erent steps of model deployment in a mobile device.

Figure 14: Snapshots of the mobile app displaying predictions on actual cell images.
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In contrast to the pretrained models presented in [4], the
CNN-based classi�er proposed by Gopakumar et al. [26]
demonstrated slightly better results in classifying parasitized
and uninfected cells in terms of accuracy (97.70%), precision
(98.5%), and recall (97.1%) but showed a very low MCC
(73.1%) value which is considered a very informative consol-
idated score for evaluating a binary classi�er’s performance
representing the correlation between the predicted and true
classes [51]. Liang et al. [12] have also proposed a technique
for image analysis using a CNN for malaria detection. They
have achieved similar accuracy (97.3%) as our improved
model with a slight increase in precision (97.7%) and slightly
degraded sensitivity (96.9%) as compared to our improved
model. Finally, malaria parasite detection using a deep belief
network done by Bibin et al. [16] did not demonstrate
promising results as compared to other studies in the litera-
ture including our improved model. Based on the preceding
discussion, our model is greatly speci�c with a large MCC
value and performs pretty better than the majority of the
pretrained and custom CNN models under study.

7. Conclusions and Future Work

The paper �rst evaluated a custom CNN-based end-to-end
deep learning model to improve malaria detection on thin-
blood smear images. We showed that the use of cyclical
learning rate schedule with an automatic learning rate �nder
in addition to the use of a commonly applied regularization
technique such as batch normalization and dropouts
produces promising results in malaria classi�cation. Our best
model achieves an accuracy of 97.30% in classifying parasit-
ized and uninfected cell images with a high degree of preci-
sion and sensitivity. The model also yields a high value of
MCC (94.17%) compared to all other existing models under
study indicating a strong correlation between predicted and
true labels. We also observed that the proposed improved
model showed better performance compared to the custom-
ized and other CNN models (pretrained such as VGG-16 and
ResNet-50) [4] with respect to accuracy, precision, sensitiv-
ity, and MCC towards classifying healthy and infected cells
with malaria. We deployed our best performing model into
an android-based mobile application to facilitate simpler
and faster malaria detection. Thus, we believe that the results
obtained from this work will bene�t towards developing

valuable mobile-based solutions so that reliability of the
treatment and lack of medical expertise can be solved. As
an immediate extension of this work, we will consider using
image augmentation on the training data with the hope to
further alleviate over�tting problem and di�erent adaptive
variants of the SGD optimizer to observe their impact on
the performance results. In the future, we also plan to achieve
better prediction by using ensemble methods through model
stacking.

Data Availability
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