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Intrusion detection system (IDS) is a second line of the security mechanism for the wireless sensor network (WSN), and it has a
great influence on confidentiality, integrity, and availability. However, many existing IDS only detect single attack or multiple
known attacks. In this paper, a novel intrusion detection algorithm based on change rates of multiple attributes (CRMA) is
proposed, which can detect multiple attacks including known and unknown types simultaneously. The change rates of multiple
attributes for sensor nodes usually reflect the running states of WSN over a period of time. First, the Observed Change Rate of
attributes at different times is obtained by observing multiple attributes of different sensor nodes. Then, the convex optimization
is alternately used to obtain the Normal Change Rate and corresponding weights by minimizing the distance between the
Observed Change Rate and the Normal Change Rate of each attribute. Finally, the WSN is considered to be attacked when the
weighted deviation of the Observed Change Rate and Normal Change Rate is beyond the corresponding threshold.
Experimental results show that the CRMA can detect multiple attacks including known and unknown types simultaneously and
has a fast convergence rate. The average true positive rates (TPR) of CRMA are high, and the average false positive rates (FPR)
of CRMA are low. The detection performance of CRMA is superior to that of the ARMA and NeTMids algorithms.

1. Introduction

Due to the characteristics of flexibility, low cost, wireless
communication, and self-organization ability, the wireless
sensor network (WSN) plays an important role in healthcare
[1, 2], the military [3], industry [4], and many other fields, for
instance, traffic monitoring, smart home system, medical
facilities, and so on [5, 6]. However, the WSN is vulnerable
to be attacked because sensor nodes are usually deployed in
the unmanned environment. Therefore, the security issue is
the main challenge to construct a robust and reliable WSN
[7].

Researchers have paid attention to encryption, decryp-
tion, identification, authentication, key management, and
secure routing of the WSN. But such security measures can-
not provide a wide range of protection against a variety of
attacks and threats in the WSN. The intrusion detection sys-
tem (IDS) is one possible solution to address a wide range of
security attacks in the WSN [8]. The main tasks of an ID are

to detect intruders trying to disrupt the WSN network [9, 10]
and to monitor the security of WSN and identify vulnerabil-
ity to guarantee the accurate network performance [11–13].

The key intrusion detection technology of the WSN has
attracted a lot of attention in recent years. Misuse detection
does very well in detecting known attacks, but it works badly
in detecting attacks which are unknown or undefined [14].
Mehmood et al. proposed a knowledge-based context-aware
approach for handling the intrusions generated by malicious
nodes [15]. Ghosal and Halder proposed a survey on energy
efficient intrusion detection in wireless sensor networks [16].
A hybrid anomaly detection method for misdirection and
black hole attacks employing the K-medoid customized clus-
tering technique is proposed in [17].

A lot of existing intrusion detection schemes of the WSN
detects some known attacks. Hu et al. detect selective for-
warding attacks in WSN by monitoring the loss rate of the
packet and construct a trusted mechanism [18]. Motamedi
and Yazdani use UAV to detect black hole attacks in WSN
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[19]. Gara et al. proposed a mobile WSN intrusion detection
system based on IPv6, which specifically detects selective for-
warding attacks in the network [20]. Many papers present
IDS for WSN which only detect one kind of attack, such as
the DoS attack [21, 22], selective forwarding attack [23],
and sinkhole attack [24].

Some intrusion detection algorithms detect attacks by
predicting attributes of network flow, such as using the Auto-
regressive Moving Average (ARMA) or Markov model to
predict traffic. It indicates that an attack occurring in the net-
work when the normal flow value is significantly different
from the predicted flow value [25]. Although the ARMA
intrusion detection algorithm has higher detection accuracy,
it only detects attacks related to the selected flow value, and it
cannot detect multiple attack types at the same time.

Few intrusion detection algorithms can detect multiple
attacks simultaneously. Sajjad et al. proposed IDS based on
the trustworthiness of neighbor nodes. Each node in the
intrusion detection system analyzes the trust level of its
neighbor nodes by analyzing the statistical data in the net-
work and calculates the credibility value, thus determining
the credibility of neighbor nodes. It can detect hello flood
attacks, blocking attacks, and selective forwarding attacks.
The intrusion detection system uses a lightweight intrusion
detection algorithm NeTMids [26]. The NeTMids algorithm
applies a variety of attributes to intrusion detection and anal-
ysis of nodes in the network and can detect multiple attack
types at the same time. However, the accuracy of detection
of NeTMids is not very high.

According to the above circumstances, there are many
problems in IDS for WSN as follows:

(a) The detection accuracy of some intrusion detection
systems is low

(b) Many IDS only detect known attack types and cannot
detect unknown attack types

(c) Many IDS only detect one or two attack types at the
same time and cannot detect multiple attacks
simultaneously

Therefore, we should design or improve the intrusion
detection algorithm for the WSN to improve current intru-
sion detection technology.

Aiming at detecting a variety of internal attacks of the
WSN, a novel change rates of multiple attributes (CRMA)
intrusion detection algorithm is proposed in this paper,
which can detect multiple intrusion attacks including known
and unknown types simultaneously. In CRMA, we obtain the
Observed Change Rate of attributes through observing the
values of different attributes of different nodes over a period
of time. The Normal Change Rates of attributes are calcu-
lated by minimizing the weighted deviation between the
Observed and Normal Change Rates by convex optimization.
The IDS considered to be attacked when the Observed
Change Rate deviates from the Normal Change Rate beyond
the corresponding threshold.

This paper is organized as follows. Section 2 gives the IDS
model and multiple attributes of the WSN. In Section 3, we

describe the CRMA intrusion detection algorithm and dis-
cuss some issues in the algorithm. In Section 4, we offer
experimental analysis and performance evaluation of the
IDS. In the final section, the conclusion is given.

2. IDS Model and Multiple Attributes of WSN

In this section, we introduce the IDS model, attributes of the
WSN, and symbol representations of CRMA.

2.1. IDS Model. The model of the intrusion detection system
designed in this paper is shown in Figure 1. The IDS agents
perform intrusion detection and data transmission. We
assume that the IDS agents are trusted nodes and have suffi-
cient energy. IDS agents interact with sensor nodes and base
stations (BS). IDS agents will perform deep packet inspection
on the ID and attributes of nodes. We assume encrypted traf-
fic by default and IDS agents know the keys of the detected
nodes in advance. The IDS agents can decrypt received data
and perform deep packet inspection.

The deployment principle of IDS agents is to make IDS
agents cover as many nodes as possible and reduce the area
of overlap. IDS agents should be deployed in the monitoring
region and as far as possible to cover the entire WSN.

2.2. Attributes of WSN. The sensor nodes of the WSN have
some characteristic attributes that can be utilized by intru-
sion detection algorithms. In [27], the attributes of the
WSN are divided into two types. One is the audit data in local
detection which includes the packet collision rate, the waiting
time of transmission, the number of neighbors, the energy
consumption rate, and the rate of sensor reading report. Sec-
ond, the audit data based on packets in the network includes
the packet type, RSSI, arrival rate of sensor data, and packet
loss rate.

The WSN attributes may be affected by different types of
attacks. We find that the more attributes you choose, the
more they reflect the WSN situation. However, due to the
limited resources of the WSN, it is necessary to select several
different attributes to participate in the intrusion detection
calculation according to the situation.

2.3. Symbolic Representations. Some symbols which would be
used in the CRMA intrusion detection and the explanations
of what they represent are shown in Table 1.

3. Intrusion Detection Algorithm Based on
Change Rates of Multiple Attributes (CRMA)

The basic idea of the CRMA intrusion detection algorithm is
as follows:

(a) The Observed Change Rate Δvðt,mÞ
n of attributes is

obtained by observing multiple attributes of different
nodes

(b) Convex optimization is alternately used to obtain the

Normal Change Rate of attribute Δvð∗,mÞ
n ði < t < jÞ

and corresponding weights
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(c) When the Observed Change Rate Δvðt,mÞ
n ðt > jÞ devi-

ates from the Normal Change Rate Δvð∗,mÞ
n beyond

the corresponding threshold, the IDS would deter-
mine that the WSN is attacked

3.1. CRMA Framework. The change rates of attributes are
steady or change slowly when the WSN is running normally.
For instance, the reduction of energy will follow a regular
pattern when the sensor node transmits packets at a certain
rate. If the change rates of attributes are abnormal, the net-
work is considered to be under attack. In CRMA, convex
optimization is used to obtain the Normal Change Rates of
attributes and corresponding weights by minimizing the dis-
tance between the Observed Change Rate and the Normal
Change Rate of each attribute.

3.1.1. Observed Change Rate. The ∣vðt,mÞ
n − vðt−1,mÞ

n ∣ is the dif-
ference between themth attribute of nth node between time t
and the previous time t − 1. The range and magnitude of each

attribute may be different. We define the relative change rate

as the Observed Change Rate Δvðt,mÞ
n in CRMA.

Δv t,mð Þ
n =

∣v t,mð Þ
n − v t−1,mð Þ

n ∣

v t−1,mð Þ
n

: ð1Þ

3.1.2. Deviation Function. The Δvð∗,mÞ
n is the Normal Change

Rate of mth attribute of nth node in the period of interval
time i ~ j which can reflect the regular pattern during the sta-

ble operation. In CRMA, the deviation function dðΔvð∗,mÞ
n , Δ

vðt,mÞ
n Þ is the square of the distance between the Δvðt,mÞ

n and

Δvð∗,mÞ
n . The value of the deviation function is small when

the Observed Change Rate is close to the Normal Change
Rate.

d Δv ∗,mð Þ
n , Δv t,mð Þ

n

� �
= Δv ∗,mð Þ

n − Δv t,mð Þ
n

� �2
: ð2Þ

IDS agent

Ordinary node

Connection between
an IDS agent and
Base station

�e IDS agent collects the
data of nodes in its region
and analyzes packet data.

Base station (BS)

�e range covered by IDS

Figure 1: IDS model of WSN.

Table 1: Symbol representations.

Symbol Representation

m The mth attribute of sensor node of WSN. The total number of multiple attributes is M,m ∈ 1,⋯,Mf g.
v t,mð Þ
n The value of mth attribute of nth sensor node at moment t. The total number of nodes is N , n ∈ 1,⋯,Nf g.

v t‐1,mð Þ
n

The value of mth attribute of nth node at moment t − 1. The t − 1 is previous adjacent time of t. The total number of nodes is
N , n ∈ 1,⋯,Nf g.

Δv t,mð Þ
n The “Observed Change Rate” of mth attribute of nth node between time t and t − 1.

Δv ∗,mð Þ
n The “Normal Change Rate” of mth attribute of nth node in the period of interval time i ~ j. The i and j are not adjacent times.

ΔV∗
n

A set of Δv ∗,mð Þ
n . At every interval time i ~ j, the attribute vector comprises a fixed number of Normal Change Rates of all attributes

ΔV∗
n = Δv ∗,mð Þ

n ; n = 1,⋯,N ;m = 1,⋯,M
n o

.

ωt
n The parameter ωt

n is the weight of nth node at time t.

Ωn The weights of nth node in the period of i ~ j. Ωn = ωi
n, ωi+1

n ,⋯, ωj
n

n o
.

D
-value

The difference value of the two adjacent iterations.

ω t,mð Þ
n The weight of mth dimension attribute of nth node at moment t.
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3.1.3. Constraint Function. The corresponding time weight
represents the reliability of the Observed Change Rate in a
certain period of time. The parameter ωt

n is the weight of n
th node at time t. A higher ωt

n indicates that the Observed
Change Rate of the nth node at time t is closer to the Normal
Change Rate. The Ωn is set of ωt

n, Ωn = fωi
n, ωi+1

n ,⋯, ωj
ng,

which is the weights of the nth node in the period time of i
~ j. The constraint function δðΩnÞ specifies the range of time
weights which reflects the distributions of weights at different
times. The constraint function maps the time weights uni-
formly to a particular range which can improve the conver-
gence speed and accuracy of the IDS. We define a
constraint function and a domain S to make ωt

n locate at a
certain numerical range. Different constraint functions may
have different influences on the result. We set the value of δ
ðΩnÞ to be 1 for the sake of simplicity. We choose an expo-
nential function as the constraint function, and the domain
of weights expands into ½0, +∞Þ.

δ Ωnð Þ = 〠
j

t=i
e‐ω

t
n = 1,

S = 0,+∞½ Þ:
ð3Þ

3.1.4. Optimization Problem of CRMA. The intrusion detec-
tion algorithm based on the change rates of multiattributes

is proposed in this paper. The Δvðt,mÞ
n is a known value, and

the Δvð∗,mÞ
n is an unknown value. We construct a convex opti-

mization problem to calculate the Normal Change Rate Δ

vð∗,mÞ
n of attributes by minimizing the weighted deviation
between the Observed Change Rate and the Normal Change
Rate. The objective function is shown as follows:

min
ΔV∗

n ;Ωn
 f ΔV∗

n ,Ωnð Þ = 〠
j

t=i
ωt
n 〠

M

m=1
d Δv ∗,mð Þ

n , Δv t,mð Þ
n

� �
s:t: δ Ωnð Þ = 1

Ωn ∈ S,
ð4Þ

where the ΔV∗
n is a set of Δvð∗,mÞ

n . The attribute vector com-
prises a fixed number of Normal Change Rate of all attributes

ΔV∗
n = fΔvð∗,mÞ

n ∣ n = 1,⋯,N ;m = 1,⋯,Mg. Each node con-
structs some attribute vector which reflects the operation sta-
tus of the network in interval time i ~ j. The ΔV∗

n and Ωn are

unknown vectors that correspond to the set of Δvð∗,mÞ
n and

time weights, respectively. For an optimization problem with
two unknown vectors, to minimize the objective function, a
vector can be fixed and another unknown vector can be
found through multiple iterations until the vector converges.
This iterative approach, referred to as the block coordinate
descent method [28], will gradually reduce the updated value
of the objective function until it reaches the minimum value.
The ΔV∗

n and Ωn can be obtained by following two iterative
convergent procedures.

(1) Weight Update. We determine the Ωn by fixing ΔV∗
n .

With the estimation of the initial the value of ΔV∗
n , we can

obtain Ωn through minimizing the objective function, as fol-
lows:

Ωn ← argmin
Ωn

f ΔV∗
n ,Ωnð Þ

s:t: δ Ωnð Þ = 1

Ωn ∈ S:

ð5Þ

(2) Normal Change Rate Update

We determine the ΔV∗
nðΔV∗

n = fΔvð∗,mÞ
n ; n = 1,⋯,N ;m

= 1,⋯,MgÞ by fixing ΩnðΩn = fωi
n, ωi+1

n ,⋯, ωj
ngÞ. We

obtain the Normal Change Rate minimizing the weighted
deviation between the Observed Change Rate and the Normal
Change Rate based on the Ωn calculated in the step above.

Δv ∗,mð Þ
n ← argmin

Δv ∗,mð Þ
n

〠
j

t=i
ωt
n ⋅ d Δv ∗,mð Þ

n , Δv t,mð Þ
n

� �
: ð6Þ

TheD -value is the difference in the value of the two adja-
cent iterations. When the D -value is less than the threshold,
the iterative process is stopped. During multiple iterations,

the Δvð∗,mÞ
n gradually converges to a fixed value, which is

the Normal Change Rate in time period i ~ j.
There is another CRMA intrusion detection framework.

The objective function is shown as (7). The ωðt,mÞ
n is the

weight of the mth dimension attribute of the nth node at
moment t. The solving process of (7) is similar to (4).
But this form of CRMA intrusion detection assigns
weights to each node at each time of the observation
phase. Calculating the state of each node separately can
improve the accuracy of the IDS. However, it greatly
increases the complexity of the algorithm, and larger space
is needed to store weights, which is a huge burden for
resource-constrained sensor nodes.

min
ΔV∗

n ;Ωn
 f ΔV∗

n ,Ωnð Þ = 〠
j

t=i
〠
M

m=1
ω t,mð Þ
n ⋅ d Δv ∗,mð Þ

n , Δv t,mð Þ
n

� �
s:t: δ Ωnð Þ = 1

Ωn ∈ S:
ð7Þ

The selection of attributes depends on what type of
attack you want to detect. For example, when the WSN
is under a flooding attack, the distribution of the packet
type would be abnormal immediately and the RSSI would
be exceptionally high. In order to detect the flooding
attack successfully, the IDS should involve the attributes
that would be affected in the detection procedure. On
the other hand, if we select multiple attributes properly,
we could detect multiple types of attacks at the same time.
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3.2. Parameter Setting and Performance Analysis of CRMA

3.2.1. Initial Value of the Normal Change Rate. The Normal

Change Rate Δvð∗,mÞ
n is obtained by solving the convex opti-

mization problem by minimizing the weighted distance
between the Observed Change Rate and solving the Normal
Change Rate of each attribute. However, we need to set the

initial value of Δvð∗,mÞ
n at first which is crucial to solving the

convex optimization problem efficiently. In theory, if the

optimization problem is convex, the initial value of Δvð∗,mÞ
n

would not affect the final optimal solution. But good initial
values make the algorithm converge quickly and save com-
puting resources. The selecting principle of the initial value

of Normal Change Rate Δvðinit∗,mÞ
n is that the chosen value

is close to actuality. In CRMA, we use the average method
to set the initial value of the Normal Change Rate.

Δv init∗,mð Þ
n = Δvmn = ∑i

t=iΔv
t,mð Þ
n

j − i + 1
  n = 1,⋯,N ,m = 1,⋯,Mð Þ:

ð8Þ

3.2.2. Threshold Setting. The threshold setting is related to the
accuracy of the intrusion detection. There are two methods

that can be used to set the threshold according to the actual
situation to improve the accuracy of the detection.

(1) In the training phase of the intrusion detection algo-
rithm, the average and standard deviation of each
attribute are calculated by collecting and analyzing
data of each node in the time period i ~ j. The value
of average attribute is as shown in (8). The standard
deviation is calculated as shown in

σmn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

j − i + 1
〠
j

t=i
Δv t,mð Þ

n ‐Δvmn
� �2vuut : ð9Þ

The α is the parameter determined during the experi-

ment. For any t > j,m ∈ ½1,M�, n ∈ ½1,N�, if jΔvðt,mÞ
n −Δvð∗,mÞ

n j
≤ ασm

n , it can be judged that there are no intrusion attacks
in the WSN. Otherwise, it can be judged that the network is
attacked. The corresponding parameters in different environ-
ments of the WSN may be different

(2) If the multiple attributes are independent, the joint
judgment will increase the false negative rate. If the
multiple attributes are related to each other, the joint

end

N

Y

begin

Normal change rate 𝛥v
n
 (⁎, m)

�reshold setting 𝜎
n

unattacked attacked

j

t=i

Weight 𝛺
n
 is updated in current round

s.t. 𝛿(𝛺
n
) = 1, 𝛺

n ∈ S

𝛺
n ← argminf 𝛥V

n

⁎
, 𝛺n

Normal change rate 𝛥V
n

⁎
 is updated in current round

𝛥v
n

 (
⁎

,m) 

𝛺
n

Initial value of normal change rate 𝛥V
n

⁎
init

Observed change rate 𝛥v
n
 (t,m)

Average normal change rate of

multidimensional attributes 𝛥vn
 ⁎

𝛥v
n

 𝛥v
n
 ⁎ ≤ 𝛼𝜎

n

D – value < Threshold ?

– NY

Y

1

1

Figure 2: Flow chart of CRMA intrusion detection algorithm.
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judgment will get a higher true positive rate. The
value of the average attribute is shown in (10). The
standard deviation is shown in (11). The average
Normal Change Rate of multiple attributes of the
node is calculated as shown in (12).

Δvn =
∑j

t=i∑
M
m=1Δv

t,mð Þ
n

j − i + 1ð ÞM , ð10Þ

σn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

j − i + 1ð ÞM〠
j

t=i
〠
M

m=1
Δv t,mð Þ

n − Δvn
� �2vuut , ð11Þ

Δv∗n =
∑M

m=1Δv
∗,mð Þ
n

M
: ð12Þ

Similarly, if jΔvn − Δv∗n j ≤ ασn, it can be judged that there
are no intrusion attacks in the WSN. Otherwise, it can be
judged that there are intrusion attacks in the WSN. The α is
the parameter determined during the experiment

The computational complexity of (11) is much greater
than (9). We can decide which judgment to choose according
to the actual situation.

Based on the above description, the flow chart of the
CRMA intrusion detection algorithm is shown in Figure 2.

(a) The Observed Change Rate Δvðt,mÞ
n of attributes at

different times obtained by observing the values of
different attributes of sensor nodes over a period of
time. We set the initial value of the Normal Change

Rate as Δvðinit∗,mÞ
n

(b) Convex optimization is used to obtain the normal

attribute change rate Δvð∗,mÞ
n by minimizing the

weighted distance between the rate of the Observed
Change Rate and the normal change of each attri-
bute. When the D-value is less than the threshold,
the iterative process of convex optimization is
stopped

(c) The IDS would turn on the alarm when the Observed
Change Rate deviates from the Normal Change Rate
beyond the corresponding threshold. If jΔvn − Δv∗n j
≤ ασn (or jΔvðt,mÞ

n −Δvð∗,mÞ
n j ≤ ασm

n ), it can be judged
that there are no intrusion attacks in the WSN. Oth-
erwise, it can be judged that there are intrusion
attacks in the WSN

3.2.3. Proof of Convexity. Based on the CRMA intrusion
detection algorithm described above, the following theorems
are given.

Theorem 1. The constraint function (3) and the optimization
problem (4) constitute a convex optimization problem when
ΔV∗

n is fixed.

Proof. According to constraint condition (3), the change
domain ofωt

n is ½0, +∞Þwhich is a convex set. So, the domain
of the objective function in (4) is a convex set. When ΔV∗

n is
fixed, the objective function is a linear affine function for ωt

n.
For any 0 ≤ θ ≤ 1, x, y ∈ ½i, j�,

f θx + 1 − θð Þyð Þ = 〠
j

t=i
θxtn + 1 − θð Þytn
� �

〠
M

m=1
d Δv ∗,mð Þ

n , Δv t,mð Þ
n

� �

= θ〠
j

t=i
xtn 〠

M

m=1
d Δv ∗,mð Þ

n , Δv t,mð Þ
n

� �

+ 1 − θð Þ〠
j

t=i
ytn 〠

M

m=1
d Δv ∗,mð Þ

n , Δv t,mð Þ
n

� �
= θf xð Þ + 1 − θð Þf yð Þ:

ð13Þ

It satisfies the definition of a convex function f ðθx + ð1
− θÞyÞ ≤ θf ðxÞ + ð1 − θÞf ðyÞ. Therefore, the objective func-
tion is a convex function. The constraint function (3) and
optimization problem (4) constitute a convex optimization
problem involving equality and inequality constraints, which
can be solved by the convex optimization solution method.
We use the Lagrangian multiplier λ to solve Ωn.

Let φ = −e‐ωt
n , then, ∑ j

t=iφ = 1, S = ½0,+∞Þ.
The optimization problem is converted to

L Ωn, λð Þ = 〠
j

t=i
lnφ 〠

M

m=1
d Δv ∗,mð Þ

n , Δv t,mð Þ
n

� �
+ λ 1 − 〠

j

t=i
φ

 !
:

ð14Þ

Let the partial derivative of φ be 0, and get

λφ = − 〠
M

m=1
d Δv ∗,mð Þ

n , Δv t,mð Þ
n

� �
: ð15Þ

Table 2: Simulation parameters.

Parameter Value

Deployment field 100m × 100m
Number of nodes 30~190
Deployment method Random

Initial energy of node 0.5 J

BS position (50m, 50m)

Eelce 50 nJ/bit

εfs 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

EDA 5 nJ/bit/signal
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Obtained by the constraint ∑j
t=iφ = 1,

λ = −〠
j

t=i
〠
M

m=1
d Δv ∗,mð Þ

n , Δv t,mð Þ
n

� �
: ð16Þ

Combine with φ = e‐ω
t
n and obtain

ωt
n = − ln

∑M
m=1d Δv ∗,mð Þ

n , Δv t,mð Þ
n

� �
∑j

t ′=i∑
M
m=1d Δv ∗,mð Þ

n , Δv
t ′ ,mð Þ

n

� � : ð17Þ

It is obvious that the weight is inversely proportional to
the deviation between the observation and the actuality
which means the weight is greater when the Observed
Change Rate is closer to the Normal Change Rate.

Theorem 2. The change rate (1), deviation function (2), con-
straint function (3), and optimization problem (4) constitute a
convex optimization problem when Ωn is fixed.

Proof. The change rate (1) limits the value range of the prop-
erty change rate to the real number domain R, so the set of

the definition domain of the independent variable Δvðt,mÞ
n of

the deviation function dðΔvð∗,mÞ
n , Δvðt,mÞ

n Þ is a convex set.

Table 3: Characteristics and impacts of simulated attacks.

Simulated
attacks

Characteristics Impacts

Hello
flooding
attacks

The attacker uses a high-power transmitter to broadcast and send
Hello packets every round, so that each node of the network mistakes

the attacker for its neighbor node.

The energy consumption of the attacked node will
increase rapidly. The proportion of Hello packets will
increase significantly, and proportion of other data

packets will decrease.

Selective
forwarding
attacks

The attacked nodes probabilistically forward or drop specific packets.
It has a significant impact on the node with forwarding function.

The proportion of sending and receiving packets of
the forwarding node will change. The forwarding rate

of the node will decrease.

DoS attacks
The attacker interferes with or controls user data, causing refusal of

service on correct data transmission.
The sending rate and forwarding rate of the attacked

node will be significantly reduced.

Sinkhole
attacks

The attacker uses his powerful features to make himself more like a
base station, so it can receive more data.

The number of packages received by the attacked
nodes suddenly increases, and the energy is rapidly

reduced due to collection.

Multiple
attacks

The Hello flooding attacks, Selective forwarding attacks, DoS attacks,
and Sinkhole attacks exist simultaneously.

A combination of the impacts of the above four kinds
of attacks.

30 50 70 90 110 130 150 170 190
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of sensor nodes

Tr
ue

 p
os

iti
ve

 ra
te

Hello flood
Select forward
Multiple attacks

DoS
Sinkhole

Figure 3: True positive rates of CRMA under different attacks.
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Figure 4: False positive rates of CRMA under different attacks.
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Figure 5: True positive rates of CRMA under different percentages of malicious nodes.
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For any 0 ≤ θ ≤ 1, x, y ∈ ½1,M�,

d θΔv x,mð Þ
n + 1 − θð ÞΔv y,mð Þ

n , Δv t,mð Þ
n

� �
> θd Δv x,mð Þ

n , Δv t,mð Þ
n

� �
+ 1 − θð Þd Δv y,mð Þ

n , Δv t,mð Þ
n

� �
:

ð18Þ

Namely,

θΔv x,mð Þ
n + 1 − θð ÞΔv y,mð Þ

n − Δv t,mð Þ
n

h i2
> θ Δv x,mð Þ

n − Δv t,mð Þ
n

h i2
+ 1 − θð Þ Δv y,mð Þ

n − Δv t,mð Þ
n

h i2
:

ð19Þ

We get that

θ θ − 1ð Þ Δv x,mð Þ
n − Δv y,mð Þ

n

� �2
> 0: ð20Þ

Due to 0 ≤ θ ≤ 1, the above formula is obviously wrong.
So, we get that

d θΔv x,mð Þ
n + 1 − θð ÞΔv y,mð Þ

n , Δv t,mð Þ
n

� �
≤ θd Δv x,mð Þ

n , Δv t,mð Þ
n

� �
+ 1 − θð Þd Δv y,mð Þ

n , Δv t,mð Þ
n

� �
:

ð21Þ

According to the definition of the convex function, the
deviation function is a convex function. The constraint func-
tion (3) combined withωt

n is nonnegative, and the objective
function (6) is a nonnegative linear combination of convex
functions. According to the nature of the convex function,
the objective function of the optimization problem is also a
convex function. So, (1), (2), (3), and (4) constitute an
unconstrained convex optimization problem. There is only
one optimal solution, and the locally optimal solution is also
the global optimal solution when the optimization problem is
a convex optimization problem [28].

According to (2) and (6), we get that

Δv ∗,mð Þ
n ← argmin〠

j

t=i
ωt
n ⋅ d Δv ∗,mð Þ

n , Δv t,mð Þ
n

� �

= argmin〠
j

t=i
ωt
n ⋅ Δv ∗,mð Þ

n − Δv t,mð Þ
n

� �2
:

ð22Þ

Malicious nodes 5%−10%
Malicious nodes 10%−20%
Malicious nodes 20%−50%
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Figure 6: False positive rates of CRMA under different percentages of malicious nodes.

Table 4: Values of objective function in multiround iterations.

Round
r

Objective function
f rð Þ

Difference of objective function f rð Þ
− f r − 1ð Þ

1 3042.33066037449

2 3041.47055739694 0.86010297755

3 3041.46891236754 0.00164502940

4 3041.46890797954 0.00000438800

5 3041.46890796675 0.00000001279

6 3041.46890796671 0.00000000004

7 3041.46890796671 0.00000000000
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Let the partial derivative with respect to Δvð∗,mÞ
k be equal

to 0, and then, we derive the solution of Normal Change Rate

Δvð∗,mÞ
n .

Δv ∗,mð Þ
n ← ∑j

t=iω
t
n ⋅ Δv

t,mð Þ
n

∑j
t=iω

t
n

: ð23Þ

Therefore, the CRMA intrusion detection algorithm will
converge to fixed value during the iterative process.

3.2.4. Time Complexity. The time complexity of the CRMA
intrusion detection algorithmwill vary when using a different
deviation function, constraint function, and objective func-
tion. If (2), (3), and (4) are used, the time complexity of
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Figure 7: True positive rates of ARMA and CRMA.
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Figure 8: False positive rates of ARMA and CRMA.
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CRMA is shown as follows:

T nð Þ =O T ×N ×Mð Þ, ð24Þ

where T is the time range and T = j − i + 1, N is the number
of sensor nodes, and M is the number of attributes of the
nodes.

If the squared deviation function (2), (3), and (7) is used,
the time complexity of CRMA is (25).

T nð Þ =O T2 ×N ×M
� �

: ð25Þ

In (7), the CRMA intrusion detection assigns weights to
each node at each time of the observation phase. Calculating
the state of each node separately can improve the accuracy of
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Figure 9: False negative rates of ARMA and CRMA.
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Figure 10: True negative rates of ARMA and CRMA.
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the IDS. But, it greatly increases the complexity of the
algorithm.

4. Experiments and Discussion

Attacks from the internal network are the biggest threats to
the WSN. Attacks from the external network only make the
attacker become a legitimate node to obtain the network

information. However, internal attacks often destroy or mod-
ify the network data. In this paper, we hope to find an effec-
tive way to detect internal attacks.

The parameters to measure the performance of the intru-
sion detection system are set as (26)–(29). There are four
concepts: true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). The TP occurs when normal
patterns are correctly classified as normal. The FP occurs
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Figure 12: False positive rates of NeTMids and CRMA.
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when abnormal patterns are incorrectly classified as normal.
The TN occurs when abnormal patterns are correctly classi-
fied as abnormal. The FN occurs when normal patterns are
incorrectly classified as abnormal. The true positive rate
(TPR) is the probability of successfully detecting the intru-
sion attacks. The true negative rate (TNR) is the probability
that abnormal patterns are incorrectly classified as normal.
The false positive rate (FPR) is the probability that attacks
will be issued no attacks. The false negative rate (FNR) is
the probability that nonattacks will falsely be classified as
attacks [29, 30]. The high performance of IDS should achieve
a high TPR and low FPR to ensure the efficiency and reliabil-
ity of the IDS and guarantee the security of the network.

TPR = TP
TP + FN

, ð26Þ

TNR =
TN

TN + FP
, ð27Þ

FNR =
FN

TP + FN
= 1 − TPR, ð28Þ

FPR =
FP

FP + TN
= 1 − TNR: ð29Þ

We simulated several typical attacks based on MATLAB;
the simulation parameters are given in Table 2.

We validate our algorithms with several typical internal
attacks in the WSN including hello flooding attacks, selective
forwarding attacks, DoS attacks, sinkhole attacks, and their
hybrid attacks (multiple attacks). Table 3 shows the charac-
teristics and impacts of simulated attacks. The multiple

attacks are that the above four kinds of attacks exist
simultaneously.

In the CRMA, we detect the change rate of attributes
based on the characteristics and impacts of the simulated
attacks. We assume that the base station (BS) and IDS agents
are trusted nodes. CRMA can detect multiple attacks simul-
taneously. Each point in the following figures is the average
of the results of hundreds of tests, and each line has been
accumulated over thousands of tests in this paper.

Figure 3 shows that the CRMA has higher true positive
rates (TPR) for the four simulated attacks and their hybrid
attack (multiple attacks). The TPR for the sinkhole attacks
is relatively low. This is because the change rate of the attri-
bute caused by the sinkhole attack is small. So, the CRMA
is not good at detecting such attacks. The TPR of the DoS
attacks can reach 100% when the number of nodes is large.
This is because once the node launches the DoS attacks, the
node stops all functions, which will immediately cause the
node to change attributes, such as stopping the sending and
receiving of data packets, stopping the collection of sensor
data, etc. So, the CRMA will more easily detect changes in
these attributes.

Figure 4 shows that CRMA has lower false positive rates
(FPR) for the four types of attacks and their hybrid attacks.
When the number of nodes is relatively small, the FPR is rel-
atively high. But as the number of nodes increases, the false
positive rate will decrease. In (29), the FP occurs when abnor-
mal patterns are incorrectly classified as normal and the TN
occurs when abnormal patterns are correctly classified as
abnormal. With the increase of nodes, the number of attri-
butes also increases. The ability of the system to judge what
is abnormal becomes stronger.
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Figure 13: Packet delivery ratio with CRMA and without IDS.
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The performance of networks is significantly affected by
the malicious nodes [31]. In this paper, it is divided into three
levels according to the percentage of malicious nodes. There
is a low percentage of malicious nodes when the number of
attack nodes is 5%~10% of the total nodes, and there is a
medium percentage of malicious nodes when the number
of attack nodes is 10%~30% of the total nodes. When the
number of attack nodes is 30%~50% of the total nodes, there
is a high percentage of malicious nodes.

Figure 5 shows the true positive rate (TPR) of CRMA
intrusion detection system under different percentages of
malicious nodes. The TPR of the system decreases as the per-
centage of malicious nodes increases.

Figure 6 shows the false positive rate (FPR) of CRMA
intrusion detection system under different percentages of
malicious nodes. The FPR of the system decreases as the per-
centage of malicious nodes increases.

The experimental results show that CRMA has a fast con-
vergence rate. Table 4 shows an example of the value of the
objective function of each round in the process of iteration.
It can be seen that the value of the objective function gradu-
ally decreases, and the difference of the value of the objective
function is approximately equal to 0.

In this paper, ARMA [25] and NeTMids [26] are com-
pared with CRMA. ARMA predicts the traffic attributes of
the WSN and only detects one type of attribute. The packet
forwarding rate is selected as an attribute of ARMA. Among
the above four intrusion attacks, only the sinkhole attacks
will affect the packet forwarding rate. Therefore, the ARMA
and CRMA algorithms compare the detection results under
sinkhole attacks.

Figure 7 shows the true positive rates of ARMA and
CRMA under sinkhole attacks and the aforementioned

hybrid attacks (multiple attacks). It can be seen that the
ARMA algorithm has a high TPR when the number of nodes
is small and a low TPR when the number of nodes is large.
The TPR of CRMA is much higher than that of ARMA under
multiple attacks. Therefore, CRMA will be a better choice
when there are more nodes or multiple attacks in the WSN.

Figure 8 shows the false positive rates of ARMA and
CRMA under sinkhole attacks and multiple attacks. When
the number of nodes is large, the CRMA intrusion detection
algorithm has very low false positive rates for the detection of
sinkhole attacks and multiple attacks. In practical applica-
tions, the types of attacks are unknown, and the number of
nodes maybe very large. At this time, ARMA is not a good
choice.

Figure 9 shows the false negative rates (FNR) of ARMA
and CRMA under sinkhole attacks and multiple attacks
which can be obtained by combining Figure 7 with formula
(27). Figure 10 shows the true negative rates (TNR) of ARMA
and CRMA under sinkhole attacks and multiple attacks
which can be obtained by combining Figure 8 with formula
(28). The FNR of ARMA is much higher than that of CRMA
under multiple attacks.

The CRMA is compared with the NeTMids [26] intru-
sion detection algorithm, which uses different attributes of
the WSN to detect different attacks. Figure 11 shows the true
positive rates of NeTMids and CRMA under the above-
mentioned four hybrid attacks (multiple attacks). It can be
seen that the true positive rates of NeTMids are significantly
lower than those of CRMA.

Figure 12 shows the false positive rates of NeTMids and
CRMA under multiple attacks. The NeTMids algorithm has
relatively higher false positive rates. Although the NeTMids
algorithm is relatively simple and consumes fewer resources,
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Figure 14: End-to-end delay with CRMA and without IDS.
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the intrusion detection results are not as good as those of
CRMA, and CRMA can detect unknown attacks through
the detection of change rates of attributes.

Packet delivery ratio (PDR) is defined as the ratio of the
total data packets received to the number of data packets sent
[31]. The performance of the WSN is also studied by analyz-
ing the PDR. Figure 13 illustrates the PDR with CRMA and
without IDS. The performance of the PDR without any mali-
cious nodes is also presented for comparison. The PDR dra-
matically decreases from 92% to 43% in the presence of an
attacker in WSN. The use of CRMA improves the delivery
performance of the system packet from 43% to 85%.

The performance of the network is also studied by ana-
lyzing the average end-to-end delay (EED). Figure 14 illus-
trates the average EED with CRMA and without IDS. The
EED dramatically increases in the presence of attacks. The
use of CRMA reduces the EED of the WSN.

5. Conclusion

The intrusion detection algorithm based on the change rates
of multiple attributes (CRMA) can detect multiple attacks
including known and unknown types simultaneously. In
CRMA, the Normal Change Rate is calculated by minimizing
the weighted deviation between the Observed Change Rate
and the normal one through convex optimization. We also
give proof that CRMA will converge to a fixed value during
the iterative process. Especially in the case where multiple
attacks exist simultaneously, the true positive rates of CRMA
are 88%~95%. Compared with ARMA and NeTMids, the
CRMA has robust detection performance under multiple
attacks.

Further, we will improve the CRMA intrusion detection
algorithm to reduce its computational complexity and stor-
age requirements. How to set the threshold in CRMA and
other parameters according to the actual situation is also a
research direction.
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