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This paper presents the performance of a hard decision belief propagation (HDBP) decoder used for Luby transform (LT) codes
over additive white Gaussian noise channels; subsequently, three improved HDBP decoders are proposed. We first analyze the
performance improvement of the sorted ripple and delayed decoding process in a HDBP decoder; subsequently, we propose
ripple-sorted belief propagation (RSBP) as well as ripple-sorted and delayed belief propagation (RSDBP) decoders to improve
the bit error rate (BER). Based on the analysis of the distribution of error encoded symbols, we propose a ripple-sorted and
threshold-based belief propagation (RSTBP) decoder, which deletes low-reliability encoded symbols, to further improve the
BER. Degree distribution significantly affects the performance of LT codes. Therefore, we propose a method for designing
optimal degree distributions for the proposed decoders. Through simulation results, we demonstrate that the proposed RSBP
and RSDBP decoders provide significantly better BER performances than the HDBP decoder. RSDBP and RSTDP combined
with the proposed degree distributions outperformed state-of-the-art degree distributions in terms of the number of encoded
symbols required to recover an input symbol correctly (NERRIC) and the frame error rate (FER). For a hybrid decoder
formulated by combining RSDBP with a soft decision belief propagation decoder, the proposed degree distribution outperforms
the other degree distributions in terms of decoding complexity.

1. Introduction

The Luby transform (LT) codes proposed in [1] are the first
practical fountain code that performs well on reliable com-
munications over a binary erasure channel (BEC). Successful
hard decision belief propagation (HDBP) decoding is possi-
ble whenð1 + εÞk encoded symbols are available, where ε is
the overhead of decoding. With the advantage of being
rateless, LT codes have been introduced in broadcast services
and noisy channels [2]. The performance of LT codes over
additive white Gaussian noise (AWGN) channels has been
investigated in [3]. To improve decoding performance, soft
information is used in a soft decision belief propagation
(SDBP) decoder, which is used as the decoding algorithm
over noisy channels [4].

Different strategies have been proposed to improve the
performance of LT codes over AWGN channels. A Gauss–
Jordan-elimination-assisted belief propagation (BP) decoder
was proposed to address the premature termination of BP

decoding [5]. However, it is only practical for short LT codes.
Generally, an SDBP decoder begins when all encoded sym-
bols are available. Therefore, in greedy spreading serial
decoding, encoded symbols are processed at once, and mes-
sages propagated greedily to improve the convergence speed
[6]. However, the increase in decoding complexity was dem-
onstrated in [5, 6]. A cross-level decoding scheme that
combines LT codes with low-density parity check (LDPC)
codes was proposed [7]. Although this method provided an
effective decoding scheme, it required additional bit decoding
from the LDPC, thereby increasing the decoding complexity.
The piggybacking BP decoding algorithm, which decreases
the decoding overhead and decoding delay, was proposed
for repeated accumulated (RA) rateless codes [8]. However,
it is only useful for RA rateless codes. A parallel soft iterative
decoding algorithm was proposed for satellite systems [9].
Similar to the study in [7], it is only effective when combining
LDPC codes with LT codes in the physical layer. A low-
complexity BP decoder was proposed to improve
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performance by deleting low-reliability symbols at the cost of
a slight transmission efficiency loss [10]. The BP-based
algorithm is combined with the log likelihood ratio- (LLR-)
based adaptive demodulation (ADM) algorithm to further
reduce the decoding complexity [11]. The maximum a pos-
teriori probability-based ADM algorithm was proposed to
improve performance by discarding incorrect bits [12]. An
adaptive decoding algorithm was proposed to reduce the
decoding complexity by reducing the number of active check
nodes [13], which degraded the performance of LT codes. In
[10–13], the decoding complexity was reduced at the expense
of increasing overhead because unreliable symbols were
deleted. The trade-off between performance and decoding
complexity was analyzed in [14]. Reducing the decoding
complexity is important for the practicability of LT codes
over noisy channels. However, the decoding complexity of
the SDBP decoder remains high.

Several degree distributions have been proposed for LT
codes over AWGN channels. An optimization process is for-
mulated to design a new degree distribution, which improves
the performance of LT codes over AWGN channels [15].
Three types of check-node degree distributions are proposed
to improve the performance of systematic LT codes over
AWGN channels [16]. A novel optimization model was pro-
posed to design degree distributions over AWGN multiple
access channels [17]. A ripple-based design of the degree
distribution for AWGN channels was proposed in [18].
However, designing a good degree distribution and improv-
ing the performance in HDBP decoding over noisy channels
remain an open problem.

Compared with SDBP decoding, HDBP decoding
significantly reduced decoding complexity, which is
extremely important for battery-powered equipment. The
use of HDBP decoding can effectively reduce the decoding
complexity of the hybrid decoding scheme, in which SDBP
decoding will be invoked when HDBP decoding fails.
Herein, the performance of HDBP decoding is analyzed,
and improved HDBP decoders and their corresponding
degree distributions are proposed. First, we investigate the
ripple size throughout the decoding process and argue that
sorting encoded symbols in ripple improves decoding per-
formance; subsequently, we propose a ripple-sorted BP
(RSBP) decoder. Based on the RSBP decoder, we discovered
that with more encoded symbols available before decoding
started, the decoding performance improved. Hence, we

propose an improved BP decoder known as a ripple-
sorted and delayed BP (RSDBP) decoder. Based on the
analysis of the distribution of error encoded symbols, we
argue that low-reliability encoded symbols should be
deleted to improve decoding performance and propose a
ripple-sorted and threshold-based BP (RSTBP) decoder.
Second, by analyzing the random walk model, we propose
a method to generate a set of candidate ripple-size evalua-
tions. A ripple-based design of degree distribution known
as the generalised degree distribution algorithm (GDDA)
is used to generate the degree distribution [19]. Based on
the Monte Carlo method, the optimal degree distribution
for a specific BP decoder is achieved. Simulation results
demonstrated that our proposed RSBP and RSDBP
decoders outperformed the BP decoder in terms of the bit
error rate (BER) performance. Additionally, RSDBP and
RSTDP combined with the proposed degree distributions
outperformed state-of-the-art degree distributions in terms
of the number of encoded symbols required to recover an
input symbol correctly (NERRIC) and the frame error rate
(FER). For the hybrid decoder formulated by combining

Pseudocode of LT encoding
Input: input symbols X = ðx1, x2,⋯, xkÞ, degree distribution ΩðdÞ
Output: an encoded symbol c
1: initialize an encoded symbol c=0
2: select a degree d from [1, k] according to ΩðdÞ
3: select d different input symbols from X and add to a neighbor set V
4: for input symbol v in Vdo
5: c=c XOR v
6: end for
7: returnc

Algorithm 1.

Pseudocode of hard decision BP decoding
Input: encoded symbols received from channels
Output: recovered input symbols X̂
1: initialize ripple R as an empty queue
2: initialize recovered input symbols X̂ as an array
3: initialize waited encoded symbols Y as an array
4: whilesizeofðX̂Þ < kdo
5: receive an encoded symbol y from channels
6: XORsðX̂, yÞ
7: degreeðyÞ == 1?pushðR, yÞ: pushðY , yÞ
8: whilesizeofðRÞ > 0do
9: dequeue an input symbol x̂ from R
10: pushðX̂, xÞ
11: for encoded symbol y in Ydo
12: XORðy, x̂Þ
13: degreeðyÞ == 1?pushðR, yÞ: pushðY , yÞ
14: end for
15: end while
16: end while
17: returnX̂

Algorithm 2.
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RSBP with an SDBP decoder, the proposed degree distribu-
tion outperformed state-of-the-art degree distributions in
terms of decoding complexity.

The remainder of this paper is organised as follows. In
Section 2, a review of the system model and the encoding
and decoding of LT codes are provided. In Section 3, the
performance of HDBP decoding is analyzed. In Section 4,
our RSBP, RSDBP, and RSTBP decoders are presented. In
Section 5, the performance of the proposed decoders is ana-
lyzed. In Section 6, a method to generate the optimal degree
distribution for a specific BP decoder is proposed. In Section
7, our experimental design is outlined, and the efficiency of
the proposed decoders and the proposed degree distribution
are demonstrated by experimental results. Finally, our study
is summarised as follows.

2. Background

2.1. System Model. Information messages must be transmit-
ted from the source to the destination over AWGN channels.

Messages are partitioned into blocks, and each block is parti-
tioned into symbols. The input symbols of the LT codes are
denoted as X = ðx1, x2,⋯, xkÞ, which is a combination of
original symbols and a cyclic redundancy check (CRC).
Typically, a single input symbol can be one bit or even a
packet. For simplicity, one bit is regarded as an input symbol
in this study. At the source, a stream of encoded symbols
C = ðc1, c2,⋯, cN ,⋯Þ is generated from k input symbols.
The encoded symbol cj is modulated by the binary phase shift
keying and transmitted to the destination independently as si.
At the destination, the output of the AWGN channels for
each symbol sj is as follows:

yj = sj + nj, ð1Þ

where ni ~Nð0,N0/2Þ, with Nð⋅Þ being the normal distribu-
tion. At the destination, ð1 + εÞkencoded symbols are
received to recover the k input symbol. Generally, a soft

X1 X2 X3 X4

y1 y2 y3 y4 y5

Figure 1: An example of tanner graph.
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Figure 2: (a) lower-reliable encoded symbol arrived first. (b) higher-reliable encoded symbol arrived first.
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Figure 3: (a) Get a symbol from ripple and XOR with encoded symbols in waiting array. (b) Add the degree-one encoded symbols to the
ripple.
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demodulation is performed on encoded symbols. The log-
likelihood ratio (LLR) of the encoded symbol is defined as

L yj
� �

= ln
Pr sj = 1 yj

���
� �

Pr sj = 0 yj
���

� � : ð2Þ

In this study, HDBP decoding was concatenated with
SDBP decoding, which can reduce decoding complexity.
The encoded symbols with LLR were passed to HDBP decod-
ing, and the output of decoding was verified by a CRC.
Decoding is successful if it passes; otherwise, SDBP decoding
is invoked.

2.2. BP Encoding. Given k input symbols X = ðx1, x2,⋯, xkÞ
and a degree distributionΩðdÞ, d = 1, 2,⋯, k, subsequently,
an infinite number of encoded symbols are generated accord-
ing to Algorithm 1.

2.3. Hard Decision BP Decoding. BP decoding is widely used
for LT codes, which are implemented in different variants
for different channels. HDBP decoding is used in BEC,

whereas SDBP decoding is used in noisy channels. We dis-
covered that HDBP decoding concatenated with SDBP
decoding can be used in noisy channels, which will be
analyzed herein. In HDBP decoding, encoded symbols
participating in the decoding process are considered as
correct symbols. Hence, simple inversed XOR operations
are performed. The pseudocode of HDBP decoding is
shown in Algorithm 2, where decoding is performed at
once. Decoding is completed when sufficient encoded sym-
bols are received.

3. Analysis of Hard Decision BP Decoding

For HDBP decoding, suppose n encoded symbols y1, y2,⋯,
yn are sufficient to recover k input symbols x1, x2,⋯, xk.
The relationship between the input symbols and encoded
symbols can be expressed by a Tanner graph. For example,
the Tanner graph of four input symbols and five encoded
symbols is shown in Figure 1.

3.1. Error Probability of Hard Decision BP Decoding. Let ρðyjÞ
denotes the error probability of the encoded symbol yj.
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Figure 4: Ripple size and waiting array size as a function of number of recovered symbols for k = 500.
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Figure 5: (a) BP decoder. (b) Delayed BP decoder.
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Generally, ρðy1Þ < ρðy2Þ, if jLðy1Þj > jLðy2Þj and vice versa. A
decreasing function exists such that

ρ yj
� �

= f L yj
� ����

���
� �

: ð3Þ

Let ρðxiÞ denotes the error probability of the input
symbol xi if it is recovered by the encoded symbol yj, which
is shown in formula (4).

ρ xið Þ =
ρ yj
� �

max ρ yj
� �

, ρ N yj, xi
� �� �� �

d yj
� �

= 1

d yj
� �

> 1

8><
>:

, ð4Þ

where Nðyj, xiÞ denotes the neighbors of yj except xi. In
HDBP decoding, input symbols are recovered individually
in sequence. In Figure 1, ðx1, x2, x3, x4Þ is a reasonable
sequence of input symbols recovered in decoding, and it is
not the only one. For a sequence, we define QðxiÞ as the set
of encoded symbols that are the only neighbors of the input
symbol xi at the end of decoding. For the sequence ðx1, x2,
x3, x4Þ, we have Qðx1Þ = fy1g,Qðx2Þ = fy2, y3g, Qðx3Þ = fy4g
, and Qðx4Þ = fy5g. We discovered that x2 can be recovered
by both y2 and y3. LetQ′ðxiÞ denotes the set of encoded sym-
bols supported to decode xi. We have Q′ðx2Þ = fy1, y2g if it is
recovered by y2; otherwise, Q′ðx2Þ = fy1, y4, y3g. Therefore,
we have

ρ xið Þ =max ρ Q′ xið Þ
� �� �

: ð5Þ

Letℚ = fQ′ðx1Þ,Q′ðx2Þ,⋯,Q′ðxkÞg; the error probabil-
ity of HDBP decoding is shown in formula (6).

ρ ℚð Þ = 1 −
Yk
i=1

1 − ρ xið Þ: ð6Þ
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Figure 6: Ratio of error symbols as a function of segment sequence length.

Pseudocode of calculating threshold
Input: Probability δ
Output: Threshold t
1: initialize an ordered array S
2: initialize n=0
3: whilei<Mdo
4: generate a packet p and add to S
5: ifp is error then
6: n=n+1
7: end if
8: i++9: end while
10: e = n × δ
11: i=M
12: whilei ≥ 0do
13: p=S[i]
14: ifp is error then
15: e=e – 1
16: end if
17: ife<= 0 do
18: t = AbsðLLRðS½i�ÞÞ
19: break
20: end if
21: i–
22: end while
23: returnt

Algorithm 3.
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For a Tanner graph, several different ℚ exist. Our aim is
to optimize the supported set of each input symbol to reduce
the error probability of decoding. For example, x2 should be
recovered by a supported set with a lower error probability.
For example, the Tanner graph with the LLR value is shown
in Figure 2. The LLRs of y2 and y3 were set as -0.1 and 0.2,
respectively. As shown in Figure 2(a), the input symbol is
incorrect if it is recovered by y2. Otherwise, it is correct if it
is recovered by y3, which is shown in Figure 2(b).

3.2. Improvement in Error Probability. In HDBP decoding,
each input symbol is recovered by 1 + ε encoded symbols
on average. In other words, ε input symbols will be recovered
by two encoded symbols. This is a valid assumption because
the probability of an input symbol recovered by more than
two encoded symbols is small. Consider the case in which
both encoded symbols y1 and y2 have only the neighbor of

the input symbol xiat the end of decoding. The error proba-
bility of xi is shown in formula (7) if it is recovered by y1 or
y2 at random.

ρ xið Þ = 1
2〠

2

j=1
max ρ yj

� �
, ρ N yj, xi

� �� �� �
: ð7Þ

Otherwise, the error probability of xi is as shown in for-
mula (8) if it is recovered by the encoded symbol with a lower
error probability.

ρ xið Þ =min max ρ y1ð Þ, ρ N y1, xið Þð Þð Þ, max ρ y2ð Þ, ρ N y2, xið Þð Þð Þð Þ:
ð8Þ

Therefore, the error probability of decoding is reduced if
the encoded symbol with a lower error probability is selected
to recover the corresponding input symbol.

4. Improved Hard Decision BP Decoders

As shown, the error probability of the input symbol can be
reduced by selecting the support set with a lower error prob-
ability. In this section, we propose three improved HDBP
decoders to reduce the probability of decoding.

4.1. Ripple-Sorted BP Decoder. The structure of the HDBP
decoder is shown in Figure 3. First, degree-one encoded
symbols are added to the ripple to start the decoding. The
symbols in the ripple are processed individually until the rip-
ple is empty. Two methods can be used to reduce the error
probability of recovered symbols in the decoding process.
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Table 1: Computational complexities of four decoders.

BP RSBP RSDBP RSTBP

XOR O �dk
� �

O �dk
� �

O �dk
� �

O �dk
� �

SORT ━ O k log Rmaxð Þ O k log Rmaxð Þ O k log Rmaxð Þ

Table 2: Numerical results of computational complexities with
k=256.

BP RSBP RSDBP RSTBP

XOR 2156.27 2156.60 2157.47 2157.52

SORT ━ 560.89 571.29 571.30

6 Wireless Communications and Mobile Computing



The first one is to sort symbols in the ripple. The second one
is to sort symbols in the waiting array.

Lemma 1. Sorting the symbols in the waiting array can be
replaced by sorting the symbols in the ripple, and both the
RSBP decoder and waiting-array-sorted BP (WSBP) decoder
can reduce the error probability of decoding.

Proof. The symbols released in each step depend only on the
symbol being processed and the symbols in the waiting array;
they are irrelevant to the order of the waiting array. The
released symbols are sorted in the WSBP decoder, whereas
the released symbols are sorted after being added to the ripple
in the RSBP decoder. We assume that two symbols y1 and y2
are released simultaneously and jLðy1Þj > jLðy2Þj without loss
of generality. If the remaining neighbor of both y1 and y2 is x1,
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the error probability of x1 is reduced in both the RSBP and
WSBP decoders. Hence, Lemma 1 is proven.

Lemma 2. For HDBP decoding, sorting symbols in ripple is
better than sorting symbols in the waiting array.

Proof.We assume that two symbols y1 and y2 exist in the rip-
ple and jLðy1Þj > jLðy2Þj. The remaining neighbors of y1 and
y2 are x1 and x2, respectively. It is clear that the error proba-
bility of the symbol released in this step is equal to or greater
than the error probability of y1. Therefore, the symbol with

minimal error probability should recover the corresponding
input symbol in each decoding step. However, the error
probability of the symbol released in the next steps may be
less than the error probability of y2. If y3, jLðy3Þj > jLðy2Þj is
released and added to the ripple when y1 is processed, the
remaining neighbor of y3 will be x2. The input symbol x2
should be recovered by y3. In this case, the performance of
the RSBP decoder is better than that of the WSBP decoder.
Hence, Lemma 2 is proven.

he design of the ripple size evolution assumes that the
ripple size should be remain more than one throughout the
decoding process. Therefore, in theory, the performance of
the RSBP decoder is better than that of the HDBP decoder.
To analyze the performance improvement, the ripple size
and waiting array size are analyzed by Monte Carlo simula-
tions. The result is shown in Figure 4 with k = 500 and the
degree distribution in [18], where the average ripple size
and average waiting array size in each decoding step are cal-
culated by 100000 simulations. The percentage of ripple sizes
greater than one exceeds 80%, which means that symbols in
the ripple can be sorted based on the absolute LLR value.
As shown in Figure 4, the waiting array size is large at the
beginning of decoding, which means that the probability of
y1 and y2 released in the same decoding step is high. Addi-
tionally, we discovered that the number of symbols in the
waiting array is larger than that in the ripple exception of
nr ≥ 499. Therefore, sorting symbols in ripple is more effi-
cient than sorting symbols in a waiting array. The proposed
RSBP decoder can be implemented by replacing push (R, y)
with pushAndSort (R, y) in Algorithm 2.

4.2. Ripple-Sorted and Delayed BP Decoder. For HDBP
decoding, the number of symbols released in each step
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Table 3: Computational time of three decoders.

k BP (ms) RSBP (ms) RSDBP (ms)

256 0.766 0.768 0.772

500 3.069 3.081 3.088

Table 4: Optimal parameter values and average degree of the
proposed degree distribution Ω.

k mmax c �d ε

256 3 0.3 7.68 0.1614

500 4 0.4 9.08 0.1196

Table 5: Average degree of compared degree distributions.

k �d ε

Φ 256 8.11 0.1636

Ψ 500 16.10 0.1381
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increased with the size of the waiting array. Therefore, the
performance increased with the size of the waiting array.
For example, as shown in Figure 5(a), the input symbolx2
recovered byy2is incorrect becausey2is incorrect. As a result
of error propagation,x3, x4are also incorrect. In Figure 5(b),
the decoding process is delayed until sufficient encoded
symbols are available. The input symbolx4recovered byy5is
correct becausey5is correct; therefore,x3, x4are correct as well.
Consequently, the encoded symboly2with a high error prob-
ability is redundant.

Lemma 3. The more encoded symbols are available before
decoding starts, the better is the BER performance of decoding.

Proof. We assume that the input symbol x can be recovered
by one of y1, y2 with jLðy1Þj < jLðy2Þj. If y1 is processed before
y2 is available, then the error probability of x is reduced if
decoding is delayed until y2 is available. If more encoded
symbols are available before decoding starts, the error prob-
ability of more input symbols will be reduced. Hence, Lemma
3 is proven.

Based on Lemma 3, we propose our RSDBP decoder,
which delays the start of the decoding until kð1 + εÞ encoded
symbols are received. The parameter ε depends on k and the
degree distribution. For example, ε is set as 0.16 for k = 256
with a degree distribution in [20]. The proposed RSDBP
decoder can be implemented by starting the RSBP decoding
process until sufficient encoded symbols are added to the
waiting array.

4.3. Ripple-Sorted and Threshold-Based BP Decoder. Let P
denotes the ratio of error symbols, which increases as the
SNR decreases. The BER performance of the RSDBP decoder
decreased as P increased. To reduce the probability of incor-
rect encoded symbols participating in decoding, the encoded
symbols with a high error probability should be deleted. The
distribution of error symbols can be analyzed using Monte
Carlo simulations. For example, 2k (k = 500) encoded sym-
bols are generated and sorted by the error probability,
denoted as y1, y2,⋯, y2k, jLðy1Þj ≥ jLðy2Þj ≥⋯ ≥ jLðy2kÞj.
We segmented y1, y2,⋯, y2k into 100 segments. The ratio of
error encoded symbols in each segment is shown in
Figure 6. As shown, only a small number of error encoded
symbols exist, and the ratio of error encoded symbols
increased with the segment sequence. Therefore, most error
encoded symbols can be deleted from decoding if the tails
of the sorted encoded symbols are deleted.

For HDBP decoding, the received encoded symbol yj will
be deleted if jLðyjÞj < t, where t denotes the threshold. Other-
wise, it will participate in decoding. Let δ denotes the proba-
bility that an error symbol will be deleted. For deletion
probability δ, the threshold t can be calculated by Monte
Carlo simulations, as shown in Algorithm 3.

Let ω denotes the ratio of encoded symbols deleted by
decoding, which depends on δ. Figure 7 shows the ratio of
deletion as a function of δ. As shown, the ratio of deletion
decreased as the SNR increased, whereas it increased with δ.

Therefore, the trade-off between the BER performance and
overhead can be adjusted by δ.

Based on the analysis of symbol deletion, we propose a
new decoder named the RSTBP decoder, in which encoded
symbols with higher error probabilities are deleted from
decoding. The proposed RSTBP decoder can be implemented
by deleting encoded symbols that exceed the threshold.

5. Analysis of the Improved BP Decoder

Lemma 4. The decoding complexity of the sorting ripple
satisfies the constraint

C ≤O 1 + εð ÞklogR kð Þð Þ: ð9Þ

Proof. The ripple size decreases as the decoding process
proceeds. Initially, RðkÞ symbols are released and sorted,
and the decoding complexity is OðRðkÞ log RðkÞÞ. The
remainingð1 + εÞk − RðkÞ symbols will be inserted into the
ripple, and the decoding complexity is less than Oððð1 + εÞk
− RðkÞÞ log RðkÞÞ. Hence, Lemma 4 is proven.

The computational complexities of the four decoders are
shown in Table 1, where�d = 1/k∑k

d=1dΩðdÞ and Rmax = max
ðRk, Rk−1,⋯, R1Þ, and the numerical results of computational
complexities obtained by simulations are shown in Table 2. It
is noteworthy that the number of XOR operations depends
only on the average degree, and the number of SORT opera-
tions in RSDBP is the same as that in RSTBP. The number of
SORT operations in RSBP is slightly less than that in RSDBP
because small input symbols have been recovered before
ð1 + εÞk encoded symbols are available.

Lemma 5. For a P and δ, the number of error encoded symbols
participating in decoding is

Ne =
1 − δð ÞP
1 − δP

1 + εð Þk: ð10Þ

Proof. LetN denotes the number of encoded symbols received,
and we haveNð1 − δPÞ = ð1 + εÞk. The error encoded symbols
participating in decoding are Ne =NPð1 − δÞ. Hence, Lemma
5 is proved.

Lemma 6. The number of input symbols recovered by error
encoded symbols directly satisfies the constraint

Ne ′ ≤Ne −
εNe

2

2 1 + εð Þk : ð11Þ

Table 6: Optimal parameter values for proposed degree distribution.

k δ mmax c �d

256
0.01 3 0.22 7.36

0.90 3 0.24 7.40

500
0.01 4 0.25 8.62

0.90 4 0.40 8.84
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Figure 13: σ as a function of SNR for k = 256.
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Figure 14: σ as a function of SNR for k = 500.
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Proof. There exist ε pairs of encoded symbols. Since Ne is
small compared with ð1 + εÞk, the probability of an error
encoded symbol pairing with a correct encoded symbol is
εNe/ð1 + εÞk. Let ðy1, y2Þ, jy1j ≤ jy2j denotes a pair of
encoded symbols without loss of generality. If one of y1
and y2 is an error encoded symbol, the probability that y1
is the error encoded symbol exceeds 0.5. Therefore, more
than εNe

2/2ð1 + εÞk error encoded symbols will be consid-
ered as redundant symbols. Hence, Lemma 6 is proven.

Definition 7. (error propagation probability). the neighbors
of the encoded symbol are selected randomly. Therefore,
the probability that an encoded symbol with degree d is
affected by an error input symbol that satisfies the constraint

ρ dð Þ = C1
1C

d−1
k

Cd
k

: ð12Þ

We observed that the error propagation probability
decreased with the average degree. For example, no error
propagation was observed when the average degree was
one. Hence, a trade-off occurred between the error propaga-
tion probability and overhead.

Definition 8. (number of affected encoded symbols). let d1,
d2,⋯, dL denote the degrees of L encoding symbols that will
recover L input symbols. The number of encoded symbols
affected by an error symbol in step L directly satisfies the
constraint

N Lð Þ = 〠
L

i=1
ρ dið Þ: ð13Þ

Lemma 9. (total number of affected encoded symbols). let
l1, l2,⋯, lNðLÞ denotes the steps affected by the error symbol
in steps k-L. The total number of encoded symbols affected
by an error symbol satisfies the constraint

ℕ Lð Þ ≈ N Lð Þ + 〠
N Lð Þ

l=1
ℕ lð Þ

N Lð Þ

L > 1

L = 1

8>><
>>:

: ð14Þ

Proof. Compared with k, the average degree of encoded
symbols is small. Hence, ρðdÞ is relatively small. The number
of encoded symbols that are affected by an error symbol
directly and indirectly is small. Therefore, the double count-
ing problem is disregarded; hence, the lemma is proven.

To validate the performance of LT codes in AWGN
channels, we propose a new indicator known as NERRIC,
which is defined as follows:

σ = 1 + εð Þ/τ, ð15Þ

where τ denotes the BER of decoding.

6. The Optimal Degree Distribution for a
Specific BP Decoder

Studies regarding the design of an optimal degree distribu-
tion for a specific BP decoder over AWGN channels are
limited, as previously discussed. Herein, a method for design-
ing a degree distribution for a specific goal is proposed. The
ripple size evolution is important for the design of a degree
distribution. Random walk was used to model the number
of encoded symbols released in each step. We assumed that
the number of encoded symbols released in each step was a
Poisson distribution.

Lemma 10. (symbol release). let φðmÞ denotes the probability
thatm encoded symbols will be released in each step. It satisfies
the constraint

φ mð Þ = e−1/m: ð16Þ

Proof. The number of encoded symbols released is a Poisson
distribution. The expectation of this distribution is one.
Therefore, Lemma 10 is proven.

Letmmax denotes the maximum number of encoded sym-
bols released in a single decoding step. For a fixed mmax,
Monte Carlo simulations can be used to generate plenty of
ripple size evolutions. Each ripple addition is modeled as a
randomwalk with a probability distribution φðmÞ. The ripple
size evolution is modeled as follows:

RL = RL + cσL, ð17Þ

where �RL and σL denote the average ripple size and variance
of the simulation results in decoding step L, respectively; c
denotes a parameter to adjust the ripple size evolution. For
mmax = 3, the ripple size as a function of decoding step for
different c is shown in Figure 8. It is clear that the expected
ripple size evolution can be generated by carefully adjusting
parameter c. Given the ripple size evolution, the degree
distribution can be calculated using the GDDA. The degree
distribution is obtained based on formula (18).

Ω =GDDA RSE mmax, cð Þð Þ, ð18Þ

where RSEðmmax, cÞ denotes the ripple size evaluation deter-
mined by parameters mmax, c.

Let Ω denotes the degree distribution designed to
minimize average overhead. Let Ω′ denotes another well-

Table 7: Optimal parameters of the proposed degree distribution
with fixed overhead.

k ε mmax c

256
0.20 3 -0.4

0.25 3 0.4

500
0.15 6 0.4

0.20 6 0.5
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Figure 15: Frame error rate as a function of SNR for k = 256.

Figure 16: Frame error rate as a function of SNR for k = 500.
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designed degree distribution to decrease the average degree
at the expense of increasing the average overhead. The aver-
age overhead and average degree as a function of parameter
c are shown in Figure 9. The BER decreased as the average
degree decreased because of two reasons. First, the more
encoded symbols participated in decoding, the more
encoded symbols recovered the same input symbol, result-
ing in a decrease error probability of decoding. Subse-
quently, the error propagation decreased with the average
degree. Therefore, the BER is in conflict with the average
overhead. Additionally, the average degree directly deter-
mines the number of operations during the encoding and
decoding processes.

Let GðΩÞ denotes the objective function of the degree
distribution Ω. Additionally, the optimal parameters
ðmmax, cÞ can be converted to a pure optimization problem
as follows:

mmax, c = arg min
mmax,c

G GDDA RSE mmax, cð Þð Þð Þ ð19Þ

The variable c is used for the range [-1,1] and mmax for
the range [3,

ffiffiffi
k

p
]. Generally, for a fixed mmax, it might

appear that a lower value of c would be desirable for
decreasing both the average degree and BER at the
expense of increasing the average overhead.

7. Numerical Results

In this section, some simulation results are provided to vali-
date our study. The decoding algorithms were implemented
in C++ and executed on a computer with a Xeon E3-
1505M CPU and 16GB of RAM under Windows10. The
degree distributions proposed in [18, 20] were used in our
simulations, which are denoted as Φ andΨ, respectively,
and our proposed degree distribution is denoted as Ω. The
BER as a function of Nb/N0is shown in Figure 10. The BERs
of the RSBP and RSDBP decoders were better than that of the
BP decoder, consistent with our analyses. For example, with
k = 500 and Nb/N0 = 4:0, the BER of the BP decoder was
0.115, whereas the BER of the RSDBP decoder was 0.082.
The computational times of BP, RSBP, and RSDBP are
shown in Table 3. As shown, the computational times of
the three decoders were similar.

The RSDBP decoder combined with the proposed
degree distribution Ω was compared with the other
decoders. The degree distribution Ω was designed to opti-
mize σ by selecting the appropriate mmax and c; the optimal
parameters and average degree of Ω are shown in Table 4,
whereas the average degrees of Φ andΨ are shown in
Table 5. As shown, the average degree of Ω is smaller than
those of the others.

Figures 11 and 12 illustrate the NERRIC σ achieved by
different decoders and different degree distributions with k
= 256 and k = 500, respectively. It is clear that the RSBP

Nb/N0
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m
e (

m
s)

4.5 5.5 6.5 7.5 84 5 6 7

Ω 𝜖=0.20
Ω 𝜖=0.25

Φ 𝜖=0.20
Φ 𝜖=0.25

Figure 17: Decoding time as a function of SNR for k = 256.
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and RSDBP decoders outperformed the BP decoder, which is
consistent with the theoretical analysis. The improvement
decreased as the SNR increased because barely any error
encoded symbols were discovered in channels with higher
SNRs. Furthermore, RSDBP combined with the proposed
degree distribution outperformed the other methods, and
the improvement increased with the SNR. For example,
with k = 500 and Nb/N0 = 4:0, the σ of the RSDBP decoder
combined with Ψ was 1.241, whereas the σ of RSDBP com-
bined with the proposed degree distribution was 1.217.
This is because the optimization goal was to minimize σ,
and the probability of error propagation decreased with
the average degree.

The RSTBP decoder combined with the degree distribu-
tion Ω was compared with the other decoders, and the
optimal parameters of Ω with different δand k are listed in
Table 6.

Figures 13 and 14 show σ as a function of SNR for k = 256
and k = 500, respectively. As shown from the figures, the pro-
posed degree distribution Ω yielded better results than the
others for both δ = 0:01 and δ = 0:90to minimize σ for opti-
mization. As the SNR increased, the performance of Ω was
better than that of the others. This is because the average
degree of Ω was smaller. Furthermore, as δincreased, σ
decreased more slowly. This is because the number of error
encoded symbols decreased as the SNR increased, and the
number of encoded symbols deleted at δ = 0:01approached
that at δ = 0:90.

In hybrid decoding, the decoding complexity decreased
as the FER increased. For RSDBP decoder, the degree
distributionΩcan be tuned to achieve a lower FER in a fixed
overhead. The optimal parameters of the degree distribution
Ω with different ε and k values are shown in Table 7.

Figures 15 and 16 show the FER as a function of the SNR
with k = 256 and k = 500, respectively. It was observed that
the proposed optimal degree distribution outperformed the
others for different fixed overheads. For instance, in the case
of k = 500, ε = 0:2, and Nb/N0 = 4:0, the FERs of Ψ and Ω
were 0.0232 and 0.0138, respectively. This is because a better
trade-off between the average overhead and average degree
was achieved to reduce the effect of error propagation.

A hybrid decoder can be formulated by combining the
RSDBP and SDBP decoders. Figures 17 and 18 show the
decoding time as a function of the SNR for k = 256 and
k = 500, respectively. It was observed that Ω outperformed
the others in terms of the decoding complexity, as Ω was
better than the others in the HDBP decoding stage.

8. Conclusions

Herein, we first analyzed the improvement of BP decoding by
introducing a sorting ripple, delaying the decoding process,
and deleting low-reliable symbols. Subsequently, we pro-
posed three improved HDBP decoders, namely, RSBP,
RSDBP, and RSTBP decoders. We demonstrated that both
RSBP and RSDBP outperformed BP decoding in terms of
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Figure 18: Decoding time as a function of SNR for k = 500.
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NERRIC although the decoding complexity increased
slightly. Compared with the RSDBP decoder, the RSTBP
decoder further increased the NERRIC but the average over-
head increased. Furthermore, a ripple size evolution-based
design of the optimal degree distribution was proposed.
Numerical simulations demonstrated that the proposed
degree distribution outperformed the others in terms of
both the NERRIC and FER. The proposed scheme was not
limited to AWGN channels and LT codes. It can be readily
extended to noisy channels and Raptor codes. In future
work, the energy consumption of LT codes will be investi-
gated to identify a balance among the FER, average over-
head, and average degree.
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