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With the rapid development of information technology, large-scale data is collected and stored, which provides a huge amount of
information for decision-making. This paper focuses on the planning of mine supply chain under the big data. The mine supply
chain usually contains three stages, which is mining, processing, and ore product transportation. This paper tackles the difficulty
of variable cut-off grade by establishing a robust optimization model. To solve the robust optimization model, the nonlinear
constraints in the model were linearized first. Then, the specific parameter values were determined through the employment of
the hypothesis test in statistics, and the robust optimization model was solved finally. The analysis results show that the robust
optimization model can be stabilized when the parameters are subject to disturbance. Finally, sensitivity analysis experiments
are carried out for several parameters in the model to find out the influence of each parameter on the model. This paper
combines mine supply chain planning with big data, which not only improves the production and transportation efficiency of
ore products, but also reduces related costs.

1. Introduction

The steel industry is an important basic industry sector,
which is the material base of developing national economy
and national defense construction. It consumes large amount
of iron ores in daily production and thus tends to maintain a
high level of inventory. Meanwhile, the mining companies,
which provide the iron ores suffer from the uncertainty of
ore grade in mining and the market fluctuations in transpor-
tation. Based on this, it is necessary to establish a long-term,
stable, and safe mine supply chain.

The mine supply chain under big data involves many
links and contains a large number of relevant data or param-
eters. The emergence of big data has an unmistakable impact
on the amount and speed of data processed in supply chains
[1–3]. In the mine supply chain, the raw ores are extracted
from multiple mining locations first, and each of the location
might have different ore grade. Then, the raw ores are mixed
to meet the ore grade requirements and then transport to the
concentrating mills for processing. Finally, the ore products
are transported through railway or sea transportation from
the concentrating mills to the logistics centers. The demands

of the final users are met by the accurate services of the logis-
tics centers. During the whole mine supply chain, the ore
grade is a key factor involved in the decision-making. For
each mining location, based on the estimation of the natural
ore grade, the manager must determine a cut-off grade to
optimize the quality and quantity of the mined ore. Gener-
ally speaking, the higher the cut-off grade, the higher the
ore quality while the lower the ore quantity, since the iron
ore blocks with a natural ore grade lower than the cut-off
grade is dumped as waste. The concentrating mill has a
minimum ore grade for the raw ore, and the decision of
the cut-off grades in multiple ore locations will be subject
to the mining of the iron ore, as well as the corresponding
processing, inventory, and transportation largely. In this
paper, the variable cut-off grade, which varies in different
time periods is considered, for the purpose of promoting
the flexibility of the whole ore supply chain. Most of the pre-
vious research attaches importance to the solution to a single
component of the mine supply chain, e.g., mining, process-
ing, production, warehousing, or transportation. It is of great
significance to study the whole mine supply chain, which is
composed of the entire process of production, processing,
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inventory, and transportation. Mine supply chain planning
is a data-driven process that focuses on developing plans to
operate the supply chain efficiently and optimizing out-
comes under given constraints [4]. Big data analysis tools
such as optimization algorithms can help the supply chain
to balance resource and to determine reasonable production
planning capabilities, inventory levels, distribution capabili-
ties, etc. [5, 6].

We followed the modeling methods of Liu et al. [7] and
built a robust optimization model based on the important
parameter of the cut-off grade. It was the logic of this paper
that firstly determined the range of the parameter by the sta-
tistical analysis for the ore grade parameters through the
employment of actual observation and exploration results,
and then helped obtain the value of the relevant parameters
by using hypothesis testing. Hypothesis testing with statisti-
cal significance is one of the most important methods of big
data analysis. In addition, the objective function values
obtained by the robust optimization model were compared
with each other by carrying out numerical experiments,
and then the verification for the stability and optimality of
the robust optimization model was performed. As for robust
optimization, it was able to address the problem of data
uncertainty by guaranteeing the feasibility and optimality
of the solution for the worst instances of the parameters.
Through a number of numerical experiments, it was shown
by the experimental results that the proposed robust optimi-
zation model was very stable under the circumstance of
parameter perturbations.

This paper is aimed at coordinating mining, inventory,
and transportation between all the aspects of the mine
supply chain under the premise of considering relevant
constraints and minimizing the total costs on the mining,
blending, processing, inventory, and transportation of the
supply chain. The main contribution of this paper is to inte-
grate the key node enterprises in the mine supply chain, the
optimization of its production and logistics systems, reduce
or eliminate the phenomenon of unbalanced production,
avoid the fluctuation of upstream and downstream, make
the ore mining, processing, and transportation orderly, and
realize the balanced development of supply and demand,
so as to improve the overall benefit and efficiency of the
mine supply chain. The research objects of this paper
include monomer ore and other multimetal.

This paper is organized as follows: In Section 2, we
review relevant literature. Section 3 describes our problem
and constructs a robust optimization model. In Section 4,
performance analysis and sensitivity analysis experiments
are carried out for the robust optimization model. It is veri-
fied by the numerical experiments that the robust optimiza-
tion model is able to meet the actual needs and obtain ideal
results. Section 5 concludes the paper.

2. Literature Review

Ghiani et al. [8] defined the supply chain as “a complex
logistics system in which raw materials are converted into
finished products and then distributed to final users
(consumers or companies).” The competitive advantage of

supply chain management in various industries is realized
though supply chain planning [9]. The supply chain plan-
ning involves many functional areas of procurement,
production and distribution, and across strategic network
planning, production planning and scheduling, purchasing
and material requirement planning, and distribution and
transport planning [6, 10]. Brunaud and Grossmann [11]
put forward the statement that some researchers carried
out relevant studies on the supply chain modeling and opti-
mization issues in a variety of industries. Nishi et al. [12]
proposed a framework for distributed optimization of supply
chain planning and coordination approach. Steinrücke [13]
studied the practical problems of the global aluminum for
supply chain network. Members of the aluminum for supply
chain network are scattered around the world. They con-
structed a novel type of mixed-integer decision-making
model, which can coordinate the production quantities and
times of all supply chain members, in order to minimize
the production and transportation cost of the whole supply
chain. Vintró et al. [14] and Söderholm et al. [15] focused
their research on green supply chain, such as the issues
related to the society, environment, health, and safety. Apart
from that, Kusi-Sarpong et al. [16] fixed their attention on
the studies carried out for a framework and evaluation of
Ghana’s mining green supply chain practices. Azapagic
[17] devoted himself to the development of a framework
for the sustainable development of the mining and mining
industry, in which economic, environmental, social, and
other comprehensive indicators for the mining industry
stakeholders are included.

Big data analysis is highly relevant to supply chain plan-
ning [5]. Optimization techniques can provide fundamental
support to demand planning, production planning, inven-
tory plans, and logistics planning by improving planning
accuracy and flexibility [18–20]. The big data is collected
from a wide range of diversified sources with various per-
spectives and data formats (i.e., variety) [21]. The digitiza-
tion of supply chains [22] for better tracking of supply
chains further highlights the role of big data analytics. He
et al. [23] carried out some researches in the fields of big data
analysis, which used dimensionality reduction algorithm of
big data to quickly extract valuable parts from a huge
amount of data and improve computational efficiency.

The production and distribution logistics planning in the
open pit mine is known for its own unique features of the
mining industry. It is the uncertainty available in the quality
requirements of ore iron concentrates that challenges the
choice about which grade of ore to mine. Newman et al.
[24] review several decades of literature, including mine
design, long-term and short-term production scheduling,
equipment selection, and dispatching. Chen and Wang
[25] constructed a linear programming model for integrated
production planning for Canadian steel making company.
The production plan is considered as an integrated process,
including raw material procurement, semi-finished product
procurement, capacity allocation, and finished product pro-
duction and distribution. The purpose of the model is to
optimize production planning based on production costs,
product throughput rates, customer demands, sales prices,
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and facility capacities. Lagos et al. [26] consider a mining
problem involving extraction and processing decisions
under capacity constraints, and they solved the uncertainty
of the ore grade.

The measure of dealing with uncertainty in supply chain
optimization is usually completed by four common
methods, stochastic programming (Azaron et al. [27]), fuzzy
programming (Mitra et al. [28] and Lin et al. [29]), probabi-
listic programming (You and Grossmann [30]), and sensi-
tivity analysis for instance. Robust optimization (Ben-Tal
and Nemirovski [31]) is able to provide a framework to han-
dle the uncertainty of parameters in the problems related to
optimization within the category of a given set of bounded
uncertainties, and the optimal solution can also be offered
in an uncertain implementation. In addition, robust optimi-
zation can solve the model with uncertain parameters and
realize the feasibility and optimality of the solution in the
worst case of parameters. Bertsimas and Thiele [32]
proposed a general robust methodology for the purpose of
solving the problem of inventory with fixed costs and con-
straints of capacity for production/inventory. Gurnani et al.
[33] focused on the analysis of a supply chain in assembly
systems, where there was uncertainty in yields and demand.
Zahiri et al. [34] proposed a robust model of demand-
deterministic supply chain, which was composed of the cen-
ters for collection and distribution. Pishvaee et al. [35] fixed
their attention on the study of a robust optimization model
to manage uncertainty data for the problems existing in
supply chain design. Vahdani et al. [36] proposed a reliable
design model of supply chain in the circumstance of uncer-
tainty. They present a dual-objective mathematical program-
ming method, which can minimize the total cost and
expected transportation cost under the failure of logistics
network facilities. Additionally, Paydar et al. [37] proposed
a MILP model for the used oil supply chain. Based on the
uncertainty of oil collection, the robust optimization method
was proposed by Mulvey et al. [38]. [32] Safaei et al. [39]
proposed a mixed integer linear programming model, which
can be used to optimize the paper and cardboard recycling
network and solve demand uncertainty of the network by
using the robust optimization. Jiao et al. [40] studied the
design of sustainable closed-loop supply chain in a variety
of uncertain circumstances. They also presented the data-
driven approaches to generate robust closed-loop supply
chain which can reduce uncertainty. It follows that most of
the studies conducted previously put emphasis on the mech-
anism modeling and failed to set up the supply chain system
from the data-driven perspective. Therefore, it is quite diffi-
cult to ensure the accuracy of the mechanism model, due to
the subjective factors. In fact, data on relevant industries are
easy to collect because it reflects the objective world.

3. Problem Description and Model

3.1. Problem Description. In recent years, with the continuous
increase of global mining investment and production capacity,
the overall supply capacity of ore has been significantly
improved, which further promotes the continuous increase

of global iron ore production and sea transport. The long-
term stability of ore supply chain will attach great importance.

Macroscopically, the relevant nodes of the mine supply
chain include mines, concentrating mills, logistics centers,
and final users. The efficient operation of mine supply chain
can realize the minimum total cost, including mining, pro-
cessing, inventory, and transportation.

Different from general enterprises, mining enterprises
extract ore resources from nature. Each ore body has its
own characteristic; there are significant differences in min-
ing technology, methods, and equipment. It is widely
believed that ore grade is a very important factor in the pro-
cess of mining. The production capacity of mine is affected
by the grade distribution of ore body. The fluctuation of
ore grade distributed in different orebodies will have a great
influence on the output and quality of mined ore and then
affect the subsequent processing. Therefore, the variable
cut-off grade should be considered in the mining plan to
allow for the flexibility of the mining stage under production
capacity constraints. Due to the development of technology
and industry, the quality of mineral requirements is more
and more high, the need for mineral processing of raw ore,
which is mineral processing. The mineral processing is the
most important section in the whole production of mine. In
addition, in order to meet the final users’ demand for ore
products in the supply chain, it is necessary to coordinate
the mining and processing of ore. Therefore, the mine supply
chain mentioned in this paper is different from the traditional
single (multi) product and single (multi) period supply chain.

Figure 1 shows the framework of mine supply chain. Ore
mined from multiple locations needs to be blended to meet
the grade requirements of the concentrating mill. Then, the
ore products from the concentrating mill will be transported
to logistics centers in batches. According to demand, the
logistics centers will store ore products of specific grades.
Finally, the ore product will be transported from the logistics
centers to the final users according to requirements.

The actual assumptions are as follows:

(1) Each mine has a number of ore extraction locations
and can extract a variety of ore grade of raw ore,
but the mining capacity of each mine is limited

(2) In each mine, raw ore from different locations is
transported to the concentrating mill which belongs
to mine for processing, and only one type of ore
products is produced in the whole process

(3) Ore products of different grade are transported from
the concentrating mills to logistics centers in
batches, and ore products are then sent to final users
in batches

In the next section, a robust optimization model is
proposed.

3.2. Model. A robust optimization model is built based on
the sets, parameters, and variables as follows.

Sets and parameters
M: set of concentrating mills corresponding to mines
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N : set of logistics centers
S: set of final users
T : set of time periods
Lm: number of mining sites in minem (l = 1, 2,⋯, ∣ Lm ∣ )
Om: number of optional cut-off grade of mine m

(o = 1, 2,⋯, ∣Om ∣ )
rml : consumption resource associated with the extraction

of site l of mine m
Cmlo: unit exploitation cost of site l of mine m according

the cut-off grade o
Pm: unit processing cost of concentrating mill of mine m
IOm: unit inventory cost of concentrating mill of mine m
TRmn: unit transport cost of ore product from concen-

trating mill of mine m to logistics center n
IDmn: unit inventory cost at logistics center n for the ore

product from concentrating mill of mine m
DCns: unit transportation cost of ore product from logis-

tics center n to final user s
SDmnt : start-up cost of ore products from concentrating

mill of mine m at logistics center n in time period t
STnst : start-up cost when ore products are transported

from logistics center n to final user s in phase t
Umt : maximum storage of ore products at concentrating

mill of mine m in time period t
Lmt : minimum storage of ore products at concentrating

mill of mine m in time period t
Hmax

nt : maximum storage of ore products from all con-
centrating mill at logistics center n in time period t

Dmst : demand of final user s for ore products of mine m
in time period t

gmlot : the cut-off grade o, which is proportion of useful
ore obtained from total mining, at the site l of mine m in
time period t. In the mining process, for the reason of the
error existing in exploration and the complex and variable

geology, geomorphology, and grade of the mine, the actual
value may deviate from the preestimated value, and the
parameter gmlot can be random. Through statistical analysis
by a large amount of actual mining data, it is observed that
the parameter ~gmlot changes in the polyhedron (Khan and
Asad [41]) and it can be expressed by the formula as follows:
~gmlot ∈Ω = fgjHg ≤ qg. Here, H is uncertainty set matrix,
and q is parameter matrix

gmin
m : minimum selected grade of the concentrating mill

of mine m
jm: productivity of ore products of concentrating mill of

mine m
SCmlot : start-up cost of location l of mine m using the

cut-off grade o in time period t
CAmt : production ability of mine m in time period t
PAmt : processing ability of concentrating mill of mine m

in time period t
remlot : unit consumption resource of location l of minem

using the cut-off grade o in time period t
MCmnt : maximum transport ability of ore products of

concentrating mill of mine m to logistics center n in time
period t

M: large positive number
Variables
Xmlot : amount of ore mined from location l of mine m

using the cut-off grade o in period time t
Xmt : amount of ore blended in the concentrating mill of

mine m in time period t
Imt : inventory of ore products processed in concentrat-

ing mill of mine m in time period t
Xmnt : amount of ore products transported from concen-

trating mill of mine m to logistics center n in time period t
Imnt : inventory of ore products of mine m in logistics

center n in time period t
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Figure 1: The framework of mine supply chain.
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Xmnst : amount of the ore products of minem transported
from logistics center n to final user s in time period t

λmlot : 1 if ore is mined from location l of mine m using
the cut-off grade o in time period t, 0 otherwise

ωmnt : 1 if ore products shipped from the concentrating
mill of mine m to logistics center n in time period t, 0
otherwise

πnst : 1 if the ore products shipped from logistics center n
to final user s in time period t, 0 otherwise

Formulation

Min Z = 〠
M

m=1
〠
Lm

l=1
〠
Om

o=1
〠
T

t=1
SCmlotλmlot + 〠

M

m=1
〠
Lm

l=1
〠
Om

o=1
〠
T

t=1
Cmloxmlot

+ 〠
M

m=1
〠
T

t=1
PmXmt + 〠

M

m=1
〠
T

t=1
IOmImt + 〠

M

m=1
〠
N

n=1
〠
T

t=1
SDmntωmnt

+ 〠
N

n=1
〠
S

s=1
〠
T

t=1
STnstπnst + 〠

M

m=1
〠
N

n=1
〠
T

t=1
TRmnXmnt

+ 〠
M

m=1
〠
N

n=1
〠
T

t=1
IDmnImnt + 〠

M

m=1
〠
N

n=1
〠
S

s=1
〠
T

t=1
DCnsXmnst ,

ð1Þ

subject to

〠
l∈Lm

rml 〠
o∈Om

λmlot + 〠
o∈Om

remlotXmlot

 !
≤ CAmt ,∀m ∈M, t ∈ T ,

ð2Þ

〠
l∈Lm

〠
o∈Om

Xmlot ≤ PAmt ,∀m ∈M, t ∈ T , ð3Þ

min
εΤH≥x
ε≥0

〠
l∈Lm

〠
o∈Om

qεΤmlot ≥ gmin
m 〠

l∈Lm

〠
o∈Om

Xmlot ∀m ∈M, t ∈ T ,

ð4Þ
〠
l∈Lm

〠
o∈Om

Xmlot ≥ jmXmt ,∀m ∈M, t ∈ T , ð5Þ

Xmlot ≤Mλmlot ,∀m ∈M, l ∈ Lm, o ∈Om, t ∈ T , ð6Þ
〠
o∈Om

λmlot ≤ 1,∀m ∈M, l ∈ Lm, t ∈ T , ð7Þ

Xmt + Im,t−1 − 〠
n∈N

Xmnt = Imt ,∀m ∈M, t ∈ T , ð8Þ

Xmnt + Im,n,t−1 −〠
s∈S

Xmnst = Imnt ,∀m ∈M, n ∈N , t ∈ T , ð9Þ

Lmt ≤ Imt ≤Umt ,∀m ∈M, t ∈ T , ð10Þ
〠
m∈M

Imnt ≤Hmax
nt ,∀n ∈N , t ∈ T , ð11Þ

Xmnt ≤MCmntωmnt ,∀m ∈M, n ∈N , t ∈ T , ð12Þ
〠
m∈M

Xmnst ≤Mπnst ,∀n ∈N , s ∈ S, t ∈ T , ð13Þ

〠
n∈N

Xmnst ≥Dmst ,∀n ∈N , s ∈ S, t ∈ T ð14Þ

Xmlot , Xmt , Imt , Xmnt , Imnt , Xmnst ≥ 0,∀m ∈M, l ∈ Lm, o ∈Om, n ∈N , s ∈ S, t ∈ T ,

ð15Þ
λmlot , ωmnt , πnst ∈ 0, 1f g,∀m ∈M, l ∈ Lm, o ∈Om, n ∈N , s ∈ S, t ∈ T:

ð16Þ
Equation (1) presents the objective function that mini-

mizes the total cost of production, processing, inventory,
transportation, and other related.

Constraint (2) indicates the tonnage of ore removed
does not exceed the production ability. Constraint (3)
indicates the tonnage of ore blended does not exceed the
processing ability.

Constraint (4) ensures that ore processed in the concen-
trating mill meets the minimum ore grade requirements.
Using the dual gap of linear programming is zero, the con-
straints (17)–(19) can be substituted for the constraint (4).

gmin
m 〠

l∈Lm

〠
o∈Om

Xmlot − 〠
l∈Lm

〠
o∈Om

qεTmlot ≤ 0 ∀m ∈M, t ∈ T ,

ð17Þ

εTmlotH ≥ Xmlot ∀m ∈M, l ∈ Lm, o ∈Om, t ∈ T , ð18Þ
εmlot ≥ 0 ∀m ∈M, l ∈ LM , o ∈Om, t ∈ T: ð19Þ

Constraint (5) means to achieve the productive rate.
Constraint (6) indicates logical constraints between variables
related to mining. Constraint (7) requires that for each time
period, only one ore cut-off grade can be selected.
Constraints (8) and (9) represent the balance constraints.
Constraints (10) and (11) ensure that the amount of ore
products is required to be between the minimum and maxi-
mum inventory in each concentrating mill and logistics
center. Constraints (12) and (13) represent the logical con-
straint. Constraint (14) means meeting the final user’s
demand for ore products in terms of time and quantity.
Finally, constraints (15) and (16) enforce nonnegativity
and integrality, as appropriate.

4. Performance Analysis of Model

The methods to deal with the problems of uncertain optimi-
zation mainly include analysis on sensitivity, fuzzy program-
ming, stochastic programming, and robust optimization.
The purpose of sensitivity analysis is to analyze the influence
of uncertain parameter changes on the optimal solution.
Sensitivity analysis can be used to study the stability of the
optimal solution when the original data is inaccurate or
has change, and it can also determine which parameters
have a greater impact on the system or model. The robust
optimization is derived from the traditional robust control
theory, and it is regarded as a replacement of sensitivity
analysis and stochastic programming. Robust optimization
can limit the uncertain parameters within the disturbance
range. The purpose is finding a solution that can be
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effectively resist the uncertainty and ensure the feasibility of
the solution over the uncertain sets.

4.1. Robust Optimization Analysis

4.1.1. Hypothesis Testing. The parameter ~gmlot changes in the
polyhedron as mentioned above and satisfies the following
formula:

~gmlot ∈Ω = g Hg ≤ qjf g: ð20Þ

Through the observation, derivation, and statistical anal-
ysis of multiple sets of uncertain parameters, the value in
matrix H is assumed to be -10, and in matrix q, it is assumed
to be -3. In this section, hypothesis testing is used to verify
whether the values of these two parameters are feasible.

The process is as follows:

(1) Propose reasonable original hypothesis (H0) and
alternative hypothesis (H1) based on the problem

(2) Select suitable test statistics according to hypotheti-
cal characteristics

(3) Calculate the value of the test statistic from the
sample observation at H0

(4) For a given of significance level α, check the table or
calculate the critical value through the distribution of
test statistics and then get rejection domain and
acceptance domain of H0

(5) The decision is to accept H0 when the value of the
test statistic falls into the accepted domain, and
otherwise, reject H0

Find the 20 samples from actual observations, due to the
small sample size (n < 30), the T-test is used.

Establish two assumptions:
Original hypothesis (H0): μ < 0:3
Alternative hypothesis (H1): μ ≥ 0:3
μ represents the average value of the ratio of the useful

ore component quality to the total ore quality obtained by
selecting different mining cut-off grade at different periods
of the mine.

Based on the original hypothesis, probability is obtained
of the sample mean or more extreme mean. If the probability
is large, the original hypothesis H0 is considered correct;
otherwise, the original hypothesis is considered wrong, and
the alternative hypothesis H1 is accepted.

Since the sample is normal distribution, the number of
samples is 20, and the statistic is the t-statistic, and the
formula is as follows:

t =
�x − μ

S/
ffiffiffi
n

p ~ t n − 1ð Þ: ð21Þ

�x is the sample average, μ is the ensemble average, S is
the sample standard deviation, and n is the sample size.

This statistic is the t distribution of the degree of free-
dom is (n − 1).

Actual observations were made on the ratio of the useful
ore component quality to the total ore mining quality

Table 1: The objective function value results of the robust optimization model.

Numerical example (M-N-S-T) Lm/Om Mean (T RMB) Variance Maximum (T RMB) Minimum (T RMB)

3-2-2-3

I 7.7698 0.0645 8.4266 7.3586

II 6.5342 0.0831 7.7921 6.3082

III 5.4109 0.1035 6.1293 5.4098

IV 5.4125 0.0792 6.0424 5.3905

V 6.8091 0.0592 8.0009 6.7298

4-3-3-5

I 3.2983 0.0628 3.8723 3.0799

II 2.1532 0.0592 2.8901 2.0003

III 2.4103 0.0425 2.9904 2.0212

IV 2.1096 0.0691 2.7903 2.0109

V 2.0271 0.0701 2.6312 2.0002

6-5-6-8

I 111.834 0.1463 145.342 101.093

II 85.853 0.1596 128.093 75.334

III 85.212 0.1394 130.984 76.987

IV 99.035 0.0809 140.242 87.092

V 90.352 0.1783 134.091 77.023

8-5-12-10

I 289.355 0.0532 289.731 246.985

II 302.437 0.1903 380.921 251.243

III 250.876 0.3094 359.248 235.042

IV 274.902 0.0732 320.942 256.914

V 289.351 0.3190 341.253 268.933
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obtained by selecting different cut-off grades at different sites
at different periods, and 20 sample values were obtained,
respectively:

x1,⋯, 20 = f0:62, 0:27, 0:44, 0:50, 0:26, 0:21, 0:48, 0:69,
0:36, 0:28, 0:41, 0:65, 0:21, 0:24, 0:50, 0:38,0:11, 0:45, 0:31,
0:25g.

After calculation, the following results can be obtained:

�x =∑20
i=1xi/20 = 0:381, S =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/19∑20

i=1ðxi − �xÞ2
q

≈ 0:16, and t

= 2:27.
Taking the threshold is 0.025, according to the table of

quantile of t distribution, the t19ð0:025Þ = 2:093 can be

Table 2: The objective function value of different mining capacity and combination of the Lm and Om.

Numerical example (M-N-S-T) Lm/Om
U1

(T RMB)
U2

(T RMB)
U3

(T RMB)
U4

(T RMB)
U5

(T RMB)
U6

(T RMB)
U7

(T RMB)

3-2-2-3

I 7.6839 7.6923 7.7231 7.8423 7.8901 7.9021 7.9521

II 6.3369 6.3588 6.3730 6.4484 6.7816 6.8315 6.9723

III 5.3950 5.3950 5.3966 5.4326 5.5778 5.7789 5.8452

IV 5.3776 5.3776 5.3951 5.4094 5.4739 5.5349 5.5892

V 6.7086 6.7096 6.7452 6.9160 7.4193 7.3130 7.5295

4-3-3-5

I 3.2654 3.2832 3.2937 3.3597 3.1307 3.3642 3.3958

II 2.1203 2.1203 2.1203 2.1216 2.1228 2.1394 2.1518

III 2.3111 2.3117 2.3121 2.3137 2.3206 2.3356 2.3813

IV 2.0817 2.0846 2.0891 2.0967 2.1044 2.2041 2.2402

V 2.0198 2.0198 2.0208 2.0228 2.0303 2.0621 2.0772

6-5-6-8

I 109.147 109.589 110.184 110.870 111.021 111.068 112.098

II 83.989 84.152 84.456 84.792 85.411 85.896 86.231

III 83.895 84.008 84.229 84.399 84.712 85.023 85.932

IV 95.637 95.724 95.913 96.056 96.305 96.832 97.235

V 86.961 86.983 86.992 87.009 87.135 87.832 88.016

8-5-12-10

I 265.303 266.831 269.233 270.665 272.116 274.359 283.012

II 291.983 292.580 293.404 293.878 294.387 295.346 296.063

III 238.284 238.423 238.535 238.666 238.783 239.012 239.983

IV 250.909 250.961 250.985 250.979 251.092 251.931 252.096

V 276.022 276.049 276.077 276.092 276.115 276.903 277.012

10-5-12-10

I 340.973 341.329 341.772 342.006 342.366 343.001 343.893

II 334.036 334.357 334.877 335.255 335.768 335.982 336.023

III 284.802 284.851 284.857 284.878 285.912 286.012 288.022

IV 294.162 294.181 294.261 294.231 294.257 294.719 294.975

V 309.256 309.253 309.276 309.299 309.542 309.892 310.021

15-5-15-10

I 537.261 537.321 537.982 537.998 538.231 539.012 539.823

II 432.421 432.498 432.512 432.832 432.987 433.053 433.875

III 421.905 421.998 422.012 422.429 422.498 423.712 423.891

IV 415.235 412.389 412.578 412.698 412.986 413.245 414.046

V 409.357 409.398 409.406 409.502 409.584 410.302 410.356

25-5-15-10

I 589.599 589.904 590.052 590.146 590.250 590.457 590.602

II 508.920 508.874 508.922 508.930 509.103 509.521 510.903

III 509.103 509.428 509.754 509.981 509.995 510.325 510.932

IV 488.837 488.835 488.879 488.914 488.941 488.982 489.041

V 479.032 479.321 479.832 479.982 479.998 480.216 480.427

30-5-20-10

I 673.923 674.022 675.921 675.995 676.023 676.901 679.313

II 665.321 665.492 665.792 666.912 666.998 670.321 679.352

III 650.384 650.822 650.982 651.342 652.094 653.926 654.932

IV 642.394 642.834 643.136 643.213 644.932 645.138 658.227

V 639.356 639.722 640.201 640.835 642.930 631.159 638.315

7Wireless Communications and Mobile Computing



found. Since the absolute value of the t-statistic is 2.27 and
falls within the “rejection domain,” the original hypothesis
is rejected and the alternative hypothesis is accepted. This
shows that the sample average is significantly different from
the overall average. So, it can be concluded that the average
value grade of the useful ore component quality obtained by
different cut-off grades at different periods at different sites
to the total ore quality is greater than or equal to 0.3.

Through the above statistical hypothesis testing, it can be
finally determined that the value in the matrix H is -10, and
the value in the matrix q is -3.

4.1.2. Solution of Robust Optimization Model. After deter-
mining the value range of H and q, the results of H and q
are substituted into Equations (17)–(19), the robust optimi-
zation model is directly solved by mainstream optimization
software ILOG CPLEX V12.6.1, and then, the objective func-
tion value was obtained.

The purpose of numerical experiments is to verify the
optimality and stability of the robust optimization model,
so only small-scale examples are tested.

For the robust optimization model, the objective func-
tion values are obtained by 20 times disturbances.

Table 1 lists the mean, variance, maximum, and min-
imum values of the objective function values of the robust
optimization model under disturbed 20 times for 4 exam-
ples. A different numbers of mines, logistics centers, final
users, and time periods are considered, denoted by “M-N-
S-T,” which are as follows: “3-2-2-3,” “4-3-3-5,” “6-5-6-8,”
and “8-5-12-10.” Based on the combinations of mining
sites (Lm) and ore cut-off grades (Om), there are 5 cases
in each group, i.e., case I: Lm = f3g and Om = f3g, case
II: Lm = f5g and Om = f3g, case III: Lm = f10g and Om
= f5g, case IV: Lm = f15g and Om = f5g, and case V:
Lm = f20g and Om = f5g.

The variance was a measure of the dispersion of a set of
data. The results show that the variance of these examples
was small, which proved that the fluctuation of examples
was small as well. This also verifies that the robust optimiza-
tion model was quite stable. Even if the actual mining grade
differed greatly from expected, it can ensure the stability of
the entire supply chain and meet demand.
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Figure 5: Sensitivity curve of the objective function value on the
disturbance of mining capacity of example “8-5-12-10.”
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Figure 2: Sensitivity curve of the objective function value on the
disturbance of mining capacity of example “3-2-2-3.”
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Figure 3: Sensitivity curve of the objective function value on the
disturbance of mining capacity of example “4-3-3-5.”
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Figure 4: Sensitivity curve of the objective function value on the
disturbance of mining capacity of example “6-5-6-8.”
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4.2. Sensitivity Analysis. The calculation examples in this
section are similar to the previous section, and four groups
are again added here, which are as follows: “10-5-12-10,”
“15-5-15-10,” “25-5-15-10,” and “30-5-20-10.”

For each group of examples “M-N-S-T,” the parameters
of seven situations are set according to different mining
capabilities under the corresponding mining site Lm and
the cut-off grade Om, so U1, U2, U3, U4, U5, U6, and U7

are shown, respectively. In these seven examples, other
parameters remain unchanged, and only the mining capacity
CAmt changes. Table 2 lists the best objective function values
for different mining capacities and mining site Lm and the
cut-off grade Om.

The objective function value is obtained based on five
different mining sites and combination of schemes under
seven different mining capacities. The sensitivity curve of
the whole objective function value after the disturbance of
the mining capacity is plotted, as shown in Figures 2–9.
The yellow line among the five broken lines is the linear
trend line in each figure, and it represents the variation trend
of objective function value.

From Table 2 and sensitivity curves 1~8, the following
conclusions can be drawn:

(1) In terms of vertical comparison, for each example, as
the number of mining sites and the programs
increases, the overall objective function value shows
a downward trend, indicating that the increase of
the mining site and multiple alternatives can help
reduce the total cost

(2) In terms of horizontal comparison, as far as the over-
all trend is concerned, with the same number of
mines, logistics centers, final users, and time periods
and the same set of mining sites and schemes, as the
mining capacity decreases, the total cost increases (in
some cases, the target value first decreases and then
increases), which shows that as long as resources
are allocated and used reasonably, the total cost can
be reduced

5. Conclusion

In this paper, a robust optimization model was established
for mine supply chain under big data, which includes mines,
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Figure 9: Sensitivity curve of the objective function value on the
disturbance of mining capacity of example “30-5-20-10.”
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Figure 6: Sensitivity curve of the objective function value on the
disturbance of mining capacity of example “10-5-12-10.”
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Figure 7: Sensitivity curve of the objective function value on the
disturbance of mining capacity of example “15-5-15-10.”
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Figure 8: Sensitivity curve of the objective function value on the
disturbance of mining capacity of example “25-5-15-10.”
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concentrating mills, logistics centers, and final users. The
model not only considers the production details such as
mining, grinding and separation, and ore blending, but also
satisfies the intermediate links such as transportation and
inventory and will ultimately meet the final users’ require-
ments for ore product amount, ore grade, and time period.
The model has universality and can be applied to different
types of mines with different properties.

In this paper, the model is solved using the actual mine
data from open pit mines, and the results have practical sig-
nificance and value for mining enterprises. Through statisti-
cal analysis, it is obtained that the variable cut-off grade
changes within a polyhedron. The analysis of the robust per-
formance results shows that when the actual survey data
deviates from the expected value, the robust optimization
model built in this paper can be used to obtain the optimal
solution, and even if the parameters are disturbed, the solu-
tion of the model is still stable. In conclusion, the robust
optimization model proposed in this paper has stability
and optimality.

Additionally, the sensitivity analysis was performed on
the model, and the influence on the objective function value
imposed by the parameter such as mining capacity, the
change of the mining site, and the cut-off grade was obtained.
Through the rational integration and allocation of resources,
the production and logistics planning of open-pit mines can
make more decisions that are reasonable.

In future research, we will continue to study in-depth
changes in ore grades, hoping that there will be break-
throughs in big data analysis, and explore more static or
dynamic influencing factors that may affect the entire mine
production and logistics system, hoping to bring more
profits to related enterprises in the mine supply chain.
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