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With the popularity of mobile devices, using the traditional client-server model to handle a large number of requests is very
challenging. Wireless data broadcasting can be used to provide services to many users at the same time, so reducing the
average access time has become a popular research topic. For example, some location-based services (LBS) consider using
multiple channels to disseminate information to reduce access time. However, data conflicts may occur when multiple
channels are used, where multiple data items associated with the request are broadcasted at about the same time. In this
article, we consider the channel switching time and identify the data conflict issue in an on-demand multichannel
dissemination system. We model the considered problem as a data broadcast with conflict avoidance (DBCA) problem and
prove it is NP-complete. We hence propose the frequent-pattern-based broadcast scheduling (FPBS), which provides a new
variant of the frequent pattern tree, FP∗-tree, to schedule the requested data. Using FPBS, the system can avoid data conflicts
when assigning data items to time slots in the channels. In the simulation, we discussed two modes of FPBS: online and
offline. The results show that, compared with the existing heuristic methods, FPBS can shorten the average access time by 30%.

1. Introduction

With advances in wireless communications technologies,
mobile devices deeply affect our daily lives, such as note-
books, smart phones, and tablets. Users can easily access
various information services, such as online news, traffic
information, and stock prices. Recently, wireless data dissem-
ination becomes a popular topic [1–3], which can transmit
information to a number of users simultaneously. In compar-
ison with the conventional end-to-end transmission (or
client-server) model, wireless data dissemination can make
use of wireless network channels to reduce the delivery time
for obtaining information. Wireless data broadcasting is
well-suited to the location-based services (LBS) in an asym-
metric communication environment, where a large number
of users are interested in popular information such as news
[4], traffic reports [5], and multimedia streams [6, 7].

In general, wireless data dissemination can be classified
into two modes: push-based and pull-based (on-demand).

In push-based wireless data dissemination environments
[8–10], data items are disseminated cyclically according to
a predefined schedule. In fact, the access pattern of data
items may change dynamically, and the broadcast frequency
of popular data items may be lower than the broadcast fre-
quency of unpopular data items. Such a case will result in
a poor average access latency. In view of this, pull-based
wireless data dissemination [11–13] that disseminates data
items timely according to the received requests was
proposed to overcome the aforementioned drawback. In
the pull-based mode, the users first upload their demand
information to the server through the uplink channel, and
then, the relevant information will be immediately arranged
into the broadcasting channels for disseminating data to
users. In wireless data dissemination environments, a way
of judging the quality of a scheduling approach is to measure
the access time of the generated schedule. The access time is
a measured time period from starting tuning the channels to
obtaining all the requested information. Thus, it is
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important to have a better broadcasting schedule for shorter
access time.

1.1. Motivation. In early literature, some conventional
works [14–16] focus on how to maximize the bandwidth
throughout or minimized the access time in single channel
environments. Recently, with the advance on antenna
techniques, most of works [17–19] has shifted their focus
on the similar issues in multiple channel environments.
In general, a multichannel wireless data dissemination sys-
tem can provide a more network bandwidth and a shorter
access time for data dissemination than a single-channel
wireless data dissemination system can.

However, one new issue, data conflict [20–22], emerges
while each client retrieves data items on multiple channels
with channel switching in push-based broadcasting environ-
ments. Two types of conflicts may occur in multichannel
dissemination systems. The first type of conflict is that two
required data items are allocated on the same time slot of
different channels, so the client cannot download the
required data items simultaneously. The second type of con-
flict occurs if two required data items are allocated on the t
and ðt + 1Þ time slots of different channels, respectively. In
such a scenario, the client cannot download both required
data items during the time period ½t, t + 1�. The 1st conflict
type is obvious. The reason of the 2nd conflict type is that
switching from any channel to a different channel takes
time. A client cannot download data at time slot t + 1 from
one channel if it was downloading data item from another
channel at time slot t, because a time slot is already the smal-
lest unit for data retrieving. Note that a client is allowed to
access one channel at one time.

Such a data conflict issue makes a client miss its
needed data items during the time period for channel
switching, thereby leading to a worse access time. On the
one hand, some works [20–22] provide some solutions
from the client’s point of view. These solutions can make
each client schedule itself for retrieving the data items on
channels efficiently. On the other hand, only one work
[13] provides a server-side scheduling algorithm with con-
sideration of the data conflict issue in on-demand multi-
channel environments. The provided algorithm considers
the associations between data items and requests while
allocating data items on multiple channels and this pro-
vides a conflict-free schedule.

Most broadcast scheduling techniques in on-demand
multichannel data dissemination environments do not con-
sider the time requirement for channel switching, thereby
leading to data conflicts or long access time. This phenome-
non motivates us to propose a more efficient server-side
scheduling method with conflict avoidance using frequent
pattern mining technique, thereby shortening the average
access time.

1.2. Contribution. In this study, we discuss how to shorten
the average access time on a multichannel wireless data
dissemination environment under the data conflict condi-
tions. The contributions of this work are listed as follows:

(1) Identify the data broadcast with conflict avoidance
(DBCA) problem in on-demand multichannel wire-
less data dissemination environments and prove the
considered DBCA problem is NP -complete

(2) We propose a heuristic approach, frequent-pattern-
based broadcast scheduling (FPBS), for providing
an approximate schedule in polynomial time.
Inspired by frequent-pattern tree (FP-tree), we
suggest a new tree, FP∗-tree, for FPBS to schedule
the requested data items with the consideration of
channel switching

(3) We analyze the time complexity and average access
time of FPBS in both average case and worst case

(4) We verify the performance of FPBS which achieves a
shorter average access time in comparison with the
existing method, UPF [13]

The rest of this paper is organized as follows. Section 2
gives the background and reviews related research in the
literature. Section 3 defines the DBCA problem and proves
that the DBCA problem is NP -complete. Section 4
explains the proposed approach with examples and algo-
rithms in detail. In Section 5, we discuss the time complexity
and access time of the proposed approach in worst case.
Section 6 presents the experimental simulation results and
validates the correctness and effectiveness of the proposed
methods in various situations. Finally, we conclude this
work in Section 7.

2. Related Work

In the multichannel dissemination environments, many
related research works focused on data scheduling to
improve the access time performance [17, 18] from the
perspective of spectrum utilization. Yee et al. [17] proposed
a greedy algorithm to find the best way to distribute data
items into the channels, allowing users to access requested
data in a limited time. Zheng et al. [18] considered the data
access frequency, data length, and channel bandwidth into a
model and proposed a two-level optimization scheduling
algorithm (TOSA) to find an appropriate schedule. They
also showed that the schedule of TOSA is approximate to
the best average time. Yi et al. [19] proposed a method to
allow replicating multiple copies of a data item in a broad-
casting channel. If there are multiple copies of a popular data
item in the channel, the average access time can be effec-
tively reduced.

In addition to the above methods, some works consid-
ered the priority of incoming queries and found ways to
reduce the access time [12, 14, 15, 23]. Lu et al. [14]
proposed some algorithms to schedule data for maximum
throughput request selection (MTRS) and minimum latency
request ordering (MLRO) problems in a single-channel
environment and proved that both problems are NP

-hard. Xu et al. [15] proposed a SIN-α algorithm with a set
of priority decisions based on the ratio of the length of the
expiration time over the amount of information. Lv et al.
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[23] proved that minimizing access time in the broadcasting
scheduling of multi-item requests with deadline constraint
in a single-channel environment is an NP -hard problem.
The authors provided a profit-based heuristic scheduling
algorithm to minimize the request miss rate (or delivery
miss rate) considering the access frequency of data. Liu
and Su [12] focused on reducing the demand for the loss rate
and shortening the access time. Two kinds of algorithms,
most popular first heuristic (MPFH) and most popular last
heuristic (MPLH), were proposed to solve the problems
and they also analyzed differences between the online ver-
sion (the user demands continuously come in the system,
so the scheduling task needs to wait until it starts receiving
information of the demands) and offline version (the system
already has all the information of demands).

Some works had found that the dependency between
requested data items may greatly influence the performance
of multichannel data broadcasting. Lin and Liu [24] considered
the dependencies among data items as a directed acyclic graph
(DAG). They proved that finding the best schedule preserving
dependencies between each data item is anNP -hard problem
and proposed some heuristics for the problem. Qiu et al. [25]
proposed a three-layer on-demand data broadcasting (ODDB)
system for enhancing the uplink access capacity by introducing
a virtual node layer. Each virtual node can merge duplicated
requests and help the server reduce huge computational load,
there by improve the broadcasting efficiency.

Lu et al. [20–22] firstly defined two types of well-known
data conflicts in multichannel broadcast applications. They
proved the client-side retrieval scheduling problem is NP

-hard and provided some client-side data retrieval algo-
rithms for helping clients to retrieve data within multiple
channels efficiently. Liu et al. [26] firstly proposed a server-
side heuristic data scheduling algorithm, dynamic urgency
and productivity (DUP), for on-demand multichannel sys-
tems with consideration of the request conflict (or request
overlapping) issue and the dependency between requests
for scheduling at the request level and giving higher priori-
ties to the requests which are close to their deadlines. Such
an approach provided a counteracting effect to the request
starvation problem and improved the utilization of broad-
casting bandwidth. However, they did not consider two
types of data conflicts. He et al. [13] proposed a server-side
heuristic scheduling approach, most urgent and popular
request First (UPF), with the consideration of two types of
data conflicts in on-demand systems. Except for UPF
method, the hardness of data scheduling problem consider-
ing two types of data conflicts from the server perspective
is seldom discussed.

The comparisons of the existing works and this paper are
summarized in Table 1. In this work, we propose a new
server-side heuristic scheduling approach for providing a
conflict-free multichannel data broadcast service with a
better performance on the average access time.

3. Problem Description

The length of a broadcasting cycle is an important factor
which is normally predefined in the wireless data dissemina-

tion applications. Most of existing data scheduling strategies
focus on investigating how to efficiently schedule data items
in each broadcasting cycle. To validate the performance of a
scheduling strategy, average access time (or average latency),
is the commonly and widely used metric. If the average
access time is shorter, users generally can obtain all the
requested data in a shorter time, meaning that the used
scheduling strategy is more efficient. In the following subsec-
tions, we will describe the considered system model, define
the considered scheduling problem, and then prove the
hardness of this problem.

3.1. System Model. In this work, the considered on-demand
multichannel data dissemination system is shown in
Figure 1 and we only consider the one-hop broadcasting sce-
nario. The considered data dissemination system uses ∣C ∣ +2
antennas with orthogonal frequency division multiplexing
(OFDM) technique [27] to provide ∣C ∣ downlink broadcast
channels, 1 downlink index channel, and 1 uplink request
channel, where C = fc1, c2,⋯, c∣C∣g and ∣C ∣ >1. The down-
link index channel and request uplink channel are denoted
as cindex and cuplink , respectively. Each user device has two
antennas with one for receiving data over the downlink
broadcast channels and one for transferring requests via
the uplink request channel. We assume that each user device
can only access one channel at one time. We assume that all
the channels are nonoverlapping, synchronous and discre-
tized into fixed-duration slots. The broadcasting server puts
the requests coming from the uplink channel into a buffer
with first-come-first-serve (FCFS) strategy and handles all
the received requests in a batch manner. In this work, we
only focus on the efficiency of (application-layer) data/
packet scheduling for users to retrieve the requested data
items by accessing the downlink channels.

We assume that all the requested data items are in a
dataset D = fd1, d2,⋯, djDjg, where jDj is the size of D, and
the length of a broadcasting cycle is L = jDj in default. Sup-
pose that there are n queries, Q = fq1, q2,⋯, qng, and each
query qi requests k data items from the dataset D, where i
= 1, 2,⋯, n and k = 1, 2,⋯, ∣D ∣ . We let qi = fdi1, di2,⋯,
dikg and all the data items have the same data size, where
dij ∈D, j = 1, 2,⋯, k, and ∪n

i=1qi ⊆D. Thus, the system has
to arrange the requested data items into jCj broadcasting
channels. Note that each time slot on a broadcasting channel
can contain at most one data item and data replication is
only allowed on different channels. That is, multiple copies
of one data item may be placed within a broadcasting cycle.
Suppose L is the cycle length, each index It at time slot t
records the informations about all the data items in time slot
t ′ and the corresponding requests of these data items, where
t ′ is obtained by

t ′ =
t + 2ð Þ mod L, if t + 2 > L,
t + 2, otherwise:

(
ð1Þ

When a client tunes in the channel, it will access the
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index channel in advance until obtaining information about
the first required data item.

3.2. Problem Formulation. The considered scheduling prob-
lem can be treated as a mapping M that data items associ-
ated with all the queries to ∣C ∣ broadcasting channels. For
each data item dij ∈D associated with a query qi ∈Q, let
posðqi, dijÞ = ðcij, pijÞ be the position of data item dij in the

broadcast, where cij is the channel number, 1 ≤ cij ≤ jCj, and
pij is the location of dij on that channel, 1 ≤ pij ≤ jDj. Such a
mapping M : Q ×D⟶ℕ ×ℕ is a 1-to-1 mapping.

Since there are multiple channels and each user can only
tunes into one broadcasting channel at one time instance,
each user may switch channels many times for retrieving
all the requested data items on different channels. In general,
channel switching is a relatively fast operation (in the micro-
second range) [28, 29]. For simplicity, we follow the similar
assumptions about channel switching in [22], and each
channel switching takes one time slot in the considered data
dissemination environment. Figure 2 shows an example of
the channel switching. However, channel switching may
cause a new problem, data conflict, in multichannel wireless
data dissemination systems. For example, if one of requested

data items for request qi is placed at the previous, the same,
or the later location of a scheduled data item which is also
associated with qi on different channels, a data conflict
occurs. An example of data conflicts is presented in
Figure 3. The data conflict may result in a longer access time
and can be defined as Definition 1.

Definition 1 (data conflict). For a query qi, two requested
data items dij and dij′, 1 ≤ j ≠ j′ ≤ k , if cij ≠ ci

j′, the conflict

occurs when pij = pi
j′ or jpij − pi

j′ j = 1.
Let locimin denote the minimum value of all the loca-

tions of the data items associated with qi and lociMax is
the maximum value of all the positions of the data items
associated with qi. In other words, locimin = min1≤j≤kpij
and lociMax = max1≤j≤kpij. The access time of query qi, acc
ðqiÞ, can be defined as ∣lociMax − locimin ∣ , while the search
starts from the beginning of the broadcasting cycle. The
average access time for a mapping M is thus accM =
∑n

i=1 accðqiÞ/n.
In summary, the problem we want to solve in this work

is data broadcast with conflict avoidance (DBCA) problem
which can be defined as follows.

Table 1: Comparisons of related works and the proposed method.

Related works System model Criterion Method Data popularity Request dependency Channel switching Data conflict

[17–19] On-demand Latency Server-side No No No No

[12, 14, 15] On-demand Latency Server-side Yes No No No

[21] Push-based Latency Client-side No No Yes Yes

[22] Push-based Throughput Client-side No No Yes Yes

[23] On-demand Request miss rate Server-side Yes No No No

[24, 25] On-demand Latency Server-side No Yes No No

[26] On-demand Latency Server-side Yes Yes No No

[13] On-demand Request miss rate Server-side Yes Yes Yes Yes

Our work On-demand Latency Server-side Yes Yes Yes Yes

Data broadcast
server/edge server
Wireless access point

Dataset
Request
buffer

Scheduler

Downlink channels

Download data items
q1
q2
q3

Data channel c1

Index channel cindex

Uplink channel cuplink

Send requests
q1 = (d1, d2, d3)

Send requests
q2 = (d3, d5)

Send requests
q3 = (d2, d4)

Data channel c2

I1 I2 I3 I4

d1 d2

d3 d5

d3 d4

Figure 1: The considered on-demand multichannel wireless data dissemination environment.
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Definition 2 (DBCA problem). Suppose all the notations are
defined as above. The DBCA problem is to find a mapping
M : Q ×D⟶ f1,⋯, jCjg × f1,⋯, Lg such that

(1) there is no data conflict for each query in the map-
ping, i.e., w.r.t. query qi, for each pair of data items
dij and dij′, 1 ≤ j ≠ j′ ≤ k, we have ∣pij − pi

j′ ∣ >1 when

cij ≠ ci
j′; and

(2) the average access time of M, accM =∑n
i=1accðqiÞ/n,

is minimized.

3.3. NP-Completeness. To the best of our knowledge, most of
the existing works only considered the schedules without
data replication in a broadcasting cycle. They did not discuss
and analyze the schedules with conflict avoidance problem
on multichannel dissemination environments in detail.
Conversely, our proposed approach, FPBS, considers a
multichannel dissemination environment which allows
replicating data items on different channels of a broadcast-
ing cycle. In such a scenario, we investigate the data con-
flict problem and propose a new approach to avoid this
problem. In this subsection, we will prove DBCA problem
is NP -complete.

In the definition of DBCA problem, the first objective
indicates that the broadcasting schedule avoids the data
conflict problem. The second objective is to minimize the
average access time. Since the server has no prior knowledge
about the coming requests, the process for scheduling the
broadcasting is made in an online fashion. We first look
at the offline version of the DBCA problem in the follow-

ing and it refers to conflict-free data broadcasting with
minimum average latency (CDBML) problem and define
it as below.

Definition 3 (CDBML problem). Instance: There are jCj data
broadcasting channels with cycle length L, a set of jDj data
items D = fd1,⋯, djDjg, and a set of n requests Q = fq1,⋯,
qng. Each request qi, 1 ≤ i ≤ n, is associated with k data items,
di1, di2,⋯, dik, where dij ∈D, 1 ≤ j ≤ k ≤ jDj. Any two data
items associated with two different requests are different,
and every data item needs an unit time ut to be broadcast.
Let locimin and lociMax be the start time and finish time of qi,
respectively.

Question: Does there exist a mapping M : Q ×D⟶
f1,⋯,∣C ∣ g × f1,⋯, Lg such that

(1) For two data items dij and dij′ associated with qi, ∣p
i
j

− pi
j′ ∣ >1 and

(2) the average access time, ∑n
i=1 ∣ lociMax − locimin/n ∣ , is

minimized

In the definition of CDBML problem, the first objective
indicates that the broadcasting schedule avoids the data con-
flict problem. The second objective is to reduce the average
access time and all of the data items associated some request
qi should be broadcasting before the end of the broadcasting
cycle. Wi is an indication function used to present if a
request is served or not. To show further that the CDBML
problem is NP -complete, we consider a special case of it,
where the number of data items associated with each request
is the same and equal to the number of channels. That is, we
consider the case k = jCj. The data items associated with
different requests are all different. The following gives the
definition of the decision problem for the above special case.

Definition 4 (CDBMLρ problem). Instance: There are jCj
data broadcasting channels with cycle length L, a set of jDj
data items D = fd1,⋯, djDjg, a set of n requests Q = fq1,⋯,
qng, and an integer h. Each request qi, 1 ≤ i ≤ n, is associated
with jCj data items, di1, di2,⋯, di∣C∣, where dij ∈D, 1 ≤ j ≤ jCj
≤ jDj. Any two data items associated with two different
requests are different, and every data item needs an unit time
ut to be broadcast. Let locimin and lociMax be the start time and
finish time of qi, respectively.

Question: Does there exist a mapping M : Q ×D⟶
f1,⋯, jCjg × f1,⋯, Lg such that

(1) For two data items dj
i and dj

i′ associated with qi, ∣p
i
j

− pi
j′ ∣ >1 and

(2) ∑n
i=1accðqiÞ/n ≤ h, where accðqiÞ = jlociMax − lociminj

To show that the CDBMLρ problem is NP-complete, we
reduce the minimizing mean flow time in unit time open

: Access slot

: Channel switching

: �e empty slot

…

…

…

…

…

…

: �e requested data items of qi

Channel c3

Channel c2

Channel c1

dj
i

d3
i

d1
i

d2
i

Figure 2: An example of channel switching, where the data items
di1, d

i
2, and di3 are requested by qi.
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Figure 3: An example of the data conflict problem.
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shop (MMUOS) scheduling [30] problem with preemption
(O ∣ pi,j ∈ f0, 1g ; pmtn ∣ ΣCi) to the CDBMLρ problem.
[30] has proved such a problem (O ∣ pi,j ∈ f0, 1g ; pmtn ∣ Σ
Ci) is NP -hard by the reduction from the graph coloring
problem, and thus, the CDBML problem is NP -hard. The
MMUOS problem is defined as follows.

Definition 5 (MMUOS problem). Instance: Given m
machines, a set of n jobs J = fJ1, J2,⋯, Jng, a set of jOj unit
operations O = fo1, o2,⋯, ojOjg, and an integer T . Each job

Ji, 1 ≤ i ≤ n, consists of m unit operations oji , where o1i , o2i ,
⋯, omi . The jth operation, 1 ≤ j ≤m, has to be processed on
the jth machine. Job Ji will be processed in a window defined
by a release time ri and a finish time ci.

Question: Does there exist a mapping M : Q ×D⟶
f1,⋯,∣C ∣ g × f1,⋯, Lg such that

(1) For operations oji and o
j
i′in job Ji,MðojiÞ ≠Mðoji′Þ and

(2) ∑n
i=1Ci/n ≤ T , where Ci = ∣ci − ri ∣

Theorem 6. The CDBML ρ problem is NP -complete.

Proof. It is easy to see that the CDBMLρ problem is in
NP , since validating the existence of an given conflict-
free schedule simply needs polynomial time. In order to
prove the CDBMLρ problem is NP -hard, a reduction
from the MMUOS problem can be made. Suppose that I ′ is
an instance of the MNUOS problem. A corresponding
instance I of the CDBMLρ problem can be constructed from
I ′ as follows:

(1) An unit operation time is equal to the unit time slot
to broadcasting a data item

(2) Let a job Ji correspond to a request qi, 1 ≤ i ≤m
and operations oji in Ji be the data item dj

i associ-
ated with qi

(3) Let m machines be the jCj data broadcasting
channels (i.e., m = ∣C ∣ )

(4) Let Ji’s release time ri be qi’s start time locimin in the
schedule

(5) Let Ji’s finish time ci be qi’s finish time lociMax in the
schedule

(6) Let integer T be the integer h in CDBMLρ problem.

(7) Let the unit time ut′ in MMUOS problem be three
times of ut in CDBMLρ problem (ut′ = 3 ∗ ut)

According to the last step of the construction, the first
objective of MMUOS problem can be equivalent to the first
objective of CDBMLρ problem and the above construction
can be done in polynomial time. It is straightforward to
show that there is a solution for an instance I ′ of the
MMUOS problem if and only if there is a solution for the

instance I of the CDBMLρ problem since the reduction is
a one-to-one mapping for the variables from the MMUOS
problem to the CDBMLρ problem. Hence, the CDBMLρ
problem is NP -complete.

Thus, we can conclude the following theorem.

Theorem 7. The CDBML problem is NP -complete.

4. Frequent-Pattern-Based
Broadcast Scheduling

In this section, we propose an approach, the frequent-pat-
tern-based broadcast scheduling (FPBS), to shorten the
average access time per user for the DBCA problem. In
FPBS, we construct a new tree with the frequent patterns
of queries. This tree is named as FP∗-tree. FPBS includes
four stages: (1) sorting requested data items, (2) construct-
ing the FP∗-tree’s backbone, (3) constructing the FP∗
-tree’s accelerating branches, and (4) schedule mapping.
In the following, the proposed method will be introduced
with a running example in detail.

4.1. Stage 1: Sorting Requested Data Items. We consider a
running example which uses two data broadcasting channels
c1, c2 and an additional index channel cindex. The data
dissemination server receives five queries q1 = fd2, d5, d7g,
q2 = fd2, d3, d4g, q3 = fd1, d3, d6g, q4 = fd1, d3, d4, d5g, and
q5 = fd2, d5, d8g and then derives the access frequency f d j

of each data item dj in these queries. After that, the server
sorts all the data items in each query according to the
descending order of their access frequencies and also derives
the statistical average access frequency f qi of each query qi.
For example, f q1 = ð f d2 + f d5 + f d7Þ/∣q1 ∣ = ð3 + 3 + 1Þ/3 =
2:33. Hence, the final result is presented in Table 2.

The detailed process, FPBS StatisticAndSort ðQÞ, for the
first stage is presented in Algorithm 1. Line 2 and Line 3 ana-
lyze the received query set Q, derive the statistical informa-
tion, and save it as a temporary set S. The operations from
Line 4 to Line 6 sort every requested data item of each query
according to the access frequency of the data item. As the
example shown in Table 2, the orders of requested data
items in queries q4 and q5 change after the sorting. Line 7
and Line 8, respectively, store the results in two lists, lis
tSortedWithSize and listSortedWithFre, in different orders. Finally,
the process returns these two lists at Line 9 for the use in fol-
lowing stages.

4.2. Stage 2: Constructing the FP∗-Tree’s Backbone. After
deriving some statistical information and the sorting result
in Table 2, the system starts to create the backbone of a
FP∗-tree. In this stage, the system will always select the
query which requests the most number of data items to be
inserted into the FP∗-tree in advance. If there are multiple
queries which request the same number of data items, the
system will select the one which has the maximum average
access frequency f qi . Thus, the system select q4 as the first

query to construct the backbone of a FP∗-tree and the result
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is shown in Figure 4(a). After adding q4 to the FP∗-tree, the
system will update the statistical information of unhandled
queries, as shown in Table 3.

After updating the statistical information, the system will
select the next query to handle in the same way. In the
previously mentioned, both q1 and q3 request 2 data items
so the system will compare the remaining average access
frequencies of q1 and q3 (f q1 = 2, f q3 = 2) and both values

are the same. Then, the query which comes into the system
first will be selected, so q1 becomes the next one in this step.
Note that the numbering of q1 is smaller than q3’s and it
means that q1 comes into the system earlier. Thus, the han-
dling priority of the remaining queries is q1 ⟶ q3 ⟶ q5.
While adding data item d2 into the FP∗-tree, the system
needs to consider the relations between d2 and the other
queries. In this case, q2 and q3 also request the data item
d2. The system then checks the other data items which are
in the request list of both queries and have been added into
the FP∗-tree. Since the level of d4 is larger than d3’s level, the
system will insert d2 as d4’s child. Such a way can avoid
increasing the access time of q4 which has been handled.
After handling d2, the system handles d7 in the same way
and the result of FP∗-tree is shown in Figure 4(b). The
system then updates the statistical information which is
presented in Table 4.

The next query which will be handled is q3. Since there
are no other queries relating to the requested data item d8,
the system needs to add d8 after d2 according to the order
of q3’s requested list. However, d2 is also requested by q1,
and thus, d2 already has one branch and the position is occu-
pied by d7. Therefore, d8 can only be scheduled in the level
(time slot) after d2 and d7. In this case, the system creates
a new branch of d2 and inserts an empty node between d2
and d8. Note that an empty node is a node without saving
any data item. After handling q3, the results are shown in
Figure 4(c). The last query is q5, and there are no other
queries relating to d6. Hence, the system has to add d6 after
d1 according to the order of q5’s requested list. However, d1
is also requested by q4, and thus, d6 needs to be scheduled
after d4. In this case, the system creates a new branch of d1
and inserts an empty node between d1 and d6. Finally, the
construction of FP∗-tree’s backbone is finished and the
result is shown in Figure 4(d).

Algorithm 2 presents two functions for the backbone
construction. FPBS CreateBackbone ðSÞ describes the main
process of an FP∗-tree’s backbone construction and FPBS
AddNodeForBackbone ðT ,Np, dÞ is the function of adding

a node during the backbone construction. From Line 3 to
Line 5, the operations initialize an empty FP∗-tree T and
create a sorted query table Qtable with the derived sorted
result in the stage 1. The operations from Line 6 to Line 8
handle each requested data item of the first query in the
sorted query set. The first query is the most important and
has maximum number of requested data items. As shown
as the above example in Figure 4(a), the query q4 is the first
to be handled. At Line 9, the remaining information of
unhandled queries and data items in the query table Qtable
will be updated. From Line 10 to Line 17, the operations
continuous inserting the unhandled data items of Qtable into
the backbone of T . At Line 13, the operation finds the right
position of T ’s backbone to insert the unhandled data item
with the consideration of query dependency and the order of
data items. The operations from Line 21 to Line 35 presents
the detailed process of adding a data node to the backbone of
T . Note that the operation, T :isOverloadðN temp:slot + 1Þ, at
Line 26 is used to avoid scheduling data items out of ∣C ∣
data broadcasting channels. Figures 4(c) and 4(d) are the
running examples for such operations.

4.3. Stage 3: Constructing the FP∗-Tree’s Accelerating
Branches. After the construction of FP∗-tree’s backbone,
the system starts to create the accelerating branches to opti-
mize the schedule. The purpose of constructing the acceler-
ating branch is to increase the chance of each user getting
the requested data item earlier after switching channels.

In this stage, we propose two different ordering rules,
request-number-first and frequency-first, to insert data items
in the FP∗-tree’s accelerating branches. The priority of a
query for the insertion of FP∗-tree is decided by following
values: number of requested data items, average access
frequency, and arrival time. With request-number-first rule,
the system will select the query which requests the maxi-
mum number of data items to handle first. If multiple
queries request the maximum number of data items, the
system will select the one of them that has the maximum
average access frequency. If multiple queries has the maxi-
mum average access frequency unfortunately, the system
will select the query according to its arrival order.
Conversely, with frequency-first rule, the system will first
select the query which has the maximum average access
frequency. If multiple queries has the maximum average
access frequency, the system will select the one of them that
requests the maximum number of data items. If multiple
queries requests the maximum number of data items unfor-
tunately, the system will select the query according to its
arrival order. Note that the construction of the FP∗-tree’s
backbone always follows the request-number-first rule in
our design. The system can use different rules only when
constructing accelerated branches of the FP∗-tree.

Since different orders of handling queries and data items
make the process constructs different accelerating branches
of FP∗-trees, we will compare the performance results of
different schedules generated by using different rules. By
default, the system uses frequency-first rule to select the
query for constructing the FP∗-tree’s accelerating branches.
Due to limitations on space and the similar process, we only

Table 2: The sorted result of requested data items.

Query Requested data items Sorted result f qi
q1 d2, d5, d7 d2, d5, d7 2.33

q2 d2, d3, d4 d2, d3, d4 2.67

q3 d2, d5, d8 d2, d5, d8 2.33

q4 d1, d3, d4, d5 d3, d5, d1, d4 2.5

q5 d1, d3, d6 d3, d1, d6 2
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introduce the proposed approach with frequency-first in
detail. In this example, the system follows the frequency-
first rule and gets the following handling sequence: q2 ⟶
q4 ⟶ q1 ⟶ q3 ⟶ q5. Note that the value of f qi is shown
in Table 2.

The system first handles query q2 and q2’s sorted
requested data items are d2, d3, and d4. Hence, the system
sequentially schedules d2, d3, and d4. When scheduling d2,
the system temporarily inserts d2′ into level (or slot) 1 and
the position is a right child of the root. Then, the system
searches d2 in the backbone and check whether p2 > p2′
and p2 − p2′ > 1 or not. In this case, p2 > p2′ and p2 − p2′ =
4 > 1 is hold, so d2 can be inserted into the position of d2′.

For the next requested data item d3, the system inserts
d3′ after d2 in the accelerating branch and then checks
whether the position is legal or not in the same way. In
this case, d3 can be inserted into the position of d3′. For
the last requested data item d4 by query q2, the system
tries to temporarily insert d4′ after d3 in the accelerating
branch. However, the system can find d4 in the backbone
that p4 − p4′ ≤ 1. Thus, d4 can not be inserted into the
accelerating branch. After handling q2, the result of FP∗
-tree is shown in Figure 5(a).

For the next query q4, the system will do nothing in the
accelerating branch. The reason is that q4 is the first query
handled in the backbone and the schedule, d3 ⟶ d5 ⟶

1. Function FPBS StatisticAndSort ðQÞ
Input: a set of queries (clients) Q;
Output: two lists of sorted queries with sorted requested data, listSortedWithSize, listSortedWithFre;

2 create a temporary set S⟵ ϕ;
3. S⟵ StatisticDataFrequency(Q)
4 for each query q in Q do;
5. sortRequiredDataByFrequency(q, S)
6 end;
7 listSortedWithSize ⟵ sortQuerySetByQuerySize(S)
8 listSortedWithFre ⟵ sortQuerySetByAverageFrequency(S)
9 return listSortedWithSize, listSortedWithFre;
10 end;

Algorithm 1:Deriving the statistical information and sorted result.
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Figure 4: Constructing the backbone of a FP∗-tree step-by-step: (a) add q4, (b) add q1, (c) add q3, and (d) add q5.

Table 3: Updated result after handling q4.

Query
Unhandled data

items
Items added in FP∗-tree’s

backbone
f qi

q1 d2, d7 d5 2

q2 d2 d3, d4 3

q3 d2, d8 d5 2

q4 ∅ d3, d5, d1, d4 0

q5 d6 d3, d1 1

Table 4: Updated result after handling q1.

Query
Unhandled data

items
Items added in FP∗-tree’s

backbone
f qi

q1 ∅ d5, d2, d7 0

q2 ∅ d3, d4, d2 0

q3 d8 d5, d2 1

q4 ∅ d3, d5, d1, d4 0

q5 d6 d3, d1 1
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d1 ⟶ d4, has been optimized. Go on the next step, q1 is
going to be handled and q1’s requested data items are d2,
d5, and d7. Since d2 has been inserted into the accelerating
branch, the system skips d2 and tries to insert d5 in this step.
According to the order of q1’s requested list, d5 needs to be
inserted after d2. In the accelerating branch, node d2 already
has a child, so the system creates a new branch of d2, inserts
an empty node as d2’s right child, and then add temporary
d5′ after the empty node. Since there is no d5 whose p5 >
p5′ in the backbone, it is legal to insert d5 at the position
of d5′. For the last requested data item d7 in q1, d7 is inserted
in the same way. The system inserts d7′ after d5 in advance
and check whether the backbone contains d7 or not. Since
p7 > p7′ and p7 − p7′ = 2 > 1, it is legal to insert d7 at the posi-

tion of d7′. After handling all the requested data items in q1,
the result of FP∗-tree is shown in Figure 5(b)

After handling q1, the system will start to handle q3. The
sorted requested data items are d2, d5, and d8. Since d2 has
been scheduled at the first slot (level) in the accelerating
branch, the system skips d2 in this step. The next data item
d5 also has been scheduled in the accelerating branch while
handing the previous query q1. Hence, the system only needs
to handle d8 for q4. According to the requested list of q4, d8
needs to be inserted at a position that is after d2 and d5. In
the accelerating branch, p5 > p2 so that d8 will be inserted
under the d5. Since d5 already has a branch, the system
creates a new branch of d5, inserts an empty node after d5,
and tries to inserts a temporary d8′ after the empty node

1: Function FPBS CreateBackbone ðSÞ
Input: a sorted set of queries (clients) S;
Output: a basic FP∗-tree T ;

2: create a empty FP∗-tree T and the root R of T ;
3: set S into a query table Qtable;
4: let q⟵ S.first()
5: let a temporary pointer Ncurr ⟵ R;
6: for each requested data d in q do;
7: Ncurr ⟵ FPBS AddNodeForBackbone ðT ,Ncurr , dÞ;
8: end;
9: update Qtable;
10: while Qtable contains any unhandled required data do
11: qun ⟵ the query with the maximum number of unhandled data items in Qtable;
12: for each unhandled requested data d′ in qun do;
13: Nd p ⟵ find the other queries which also needs data d′ and then choose one of the handled data nodes whose slot is
maximum in T

14: FPBS AddNodeForBackbone ðT ,Nd′ p, d′Þ;
15: end;
16: update Qtable;
17: end;
18: return T ;
19: end;
20: Function FPBS AddNodeForBackbone ðT ,Np, dÞ

Input: an FP∗-tree T , the parent node Np, and a new data item d;
Output: an added node Nd ;

21: create a new node Nd with data item d
22: if Np has children then
23: create an empty node Ne;
24: Np.addChild(Ne);
25: let a temporary pointer N temp ⟵Ne;
26: while T .isOverload(N temp.slot+1) do
27: create an empty node Ne;
28: Np.addChild(Ne);
29: N temp ⟵Ne;
30: end;
31: N temp.addChild(Nd);
32: else
33: Np.addChild(Nd);
34 end;
35: return Nd ;
36: end;

Algorithm 2: Functions used for the FP∗-tree’s backbone construction.
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(at p8′ = 5). However, C = 2 and the bandwidth has been
occupied by d2 and d6 at slot p8′ = 5. Then, the system will
insert an empty node again and try to add a temporary d8′
at position p8′ = 6. Then, the system starts to find d8 in the
backbone and check whether p8 > p8′ and p8 − p8′ > 1 or
not. In this case, p8 − p8′ = 1, so it is illegal to place d8 at
the position of d8′ and the system removes all the empty
nodes after d5 in the accelerating branch. Hence, the final
FP∗-tree is shown in Figure 5(c).

Algorithm 3 presents the pseudocodes for the func-
tions of accelerating branch construction. FPBS
CreateAcceleratingBranch ðT , SÞ is the main function for
constructing accelerating branch. The process calls the
subfunction FPBS AddNodeForAcceleratingBranch ðT ,
Ncurr, dÞ to insert a data item into the accelerating branch
of T at Line 6. Such a process is similar to the function
FPBS AddNodeForBackbone ðT ,Np, dÞ in the backbone
construction. The operation at Line 7 calls another sub-
function FPBS RangeSearch ðT ,NpÞ to check whether
the inserted data item is in the search range (or levels))
or not. The insertion will be illegal if the same data item
in the backbone of T locates at one of search levels. If
the insertion is illegal, the inserted nodes (including the
data item and empty node(s)) will be deleted at Line 47.

4.4. Stage 4: Schedule Mapping. After finishing stage III, the
system will map every slot (or level) of FP∗-tree into the
broadcasting channels using the breadth-first-search (BFS)
strategy. The final results are shown in Figure 6. Note that
the maximum number of data items in each slot (level) is
the number of channels, ∣C ∣ . The mapping process is
described as the operations before Line 24 in Algorithm 4.
From Lines 25 to 29, the process schedules the index items
in index channel and the result is shown in Figure 6. Accord-
ing to the indexing rule defined in (1), the index I1 records
the information about who requests the data items in slot
3 and the index I6 records the similar information corre-
sponding to the data items in slot 1.

Consider the example of Table 1, for the request q2 = f
d2, d3, d4g, the final schedule in Figure 6 generated by the

proposed FPBS shows that the user can retrieve all the
requested data items d2, d3 (on c2), and d4 (on c1) within 4
time slots including a channel switching. If there is no accel-
erating branch, the user needs 5 time slots to retrieve data
items d2, d3, and d4 on c1. This result shows that the
proposed FP∗-tree can indeed reduce the access time.

5. Analysis and Discussion

In this section, we analyze the performance of FPBS in terms
of time complexity, space complexity, and access time.

5.1. Time Complexity. Suppose that the notations are defined
as above and the FP∗-tree is denoted as T , then, the time
complexity of the T ’s construction will be OðnkÞ. The idea
of FP∗-tree design comes up from the FP-tree and only
one difference between them is that FP∗-tree needs to
add an empty node when creating a new branch except
for the root node. In the last stage of the proposed method,
schedule mapping needs to maps all the data nodes of T to
the broadcasting channels and ∣T ∣ ≤nk, so the time com-
plexity of schedule mapping is also OðnkÞ. Due the to
nature of the FP∗-tree which is evolved from FP-tree, FPBS
costs OðnkÞ in both average case and worst case. In sum-
mary, FPBS provides a polynomial algorithm for solving
the DBCA problem.

5.2. Space Complexity. After discussing the time complexity
of FPBS, we start to analyze the space complexity of FPBS.
In this part, we only consider the temporary space for FPBS
process. In the stage 1 of FPBS process, the system uses a
OðnkÞ size table to store the sorted requests and the statisti-
cal information. In the stage 2, the system uses the obtained
sorted table to construct the backbone of an FP∗-tree and it
also costs OðnkÞ space. In the stage 3, the system constructs
accelerating branches of the FP∗-tree and it costs Oðnk′Þ
space, where 1 ≤ k′ ≤ k. In the last stage, the system just
maps the FP∗-tree to the channels and only costs Oð1Þ addi-
tional temporary space for traversing the FP∗-tree. That is,
the temporary space complexity during the scheduling
process is OðnkÞ.
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Figure 5: Constructing the accelerating branch of the FP∗-tree step-by-step: (a) add q2, (b) add q1, and (c) add q5.
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1: Function FPBS CreateAcceleratingBranch ðT , SÞ
Input: an FP∗-tree T and a sorted set of queries (clients) S
Output: a final FP∗-tree T

2: let a temporary pointer Ncurr ⟵ R;
3: create a temporary list listq and a temporary node N temp;
4: for each query q in S do
5: for each requested data d in q do
6: N temp ⟵ FPBS AddNodeForAcceleratingBranch ðT ,Ncurr , dÞ;
7: Ncurr ⟵ RangeSearch ðT ,N tempÞ;
8: listq.add ðNcurrÞ;
9: if Ncurr .slot >T .slot then
10: delete the path of listq in T ;
11: break;
12: end
13: end
14: listq.clear();
15: end
16: return T ;
17: end
18: Function FPBS AddNodeForAcceleratingBranch ðT ,Np, dÞ

Input: an FP∗-tree T , the parent node Np, and a new data item d
Output: an added node Nd

19: create a new node Nd with data item d;
20: if Np has children then

21: if Np has a child Nd′ with d then

22: return Nd′;
23: else
24: create an empty node Ne;
25: Np.addChild(Ne);
26: let a temporary pointer N temp ⟵Ne;
27: while T .isOverload(N temp.slot+1) do
28: create an empty node Ne;
29: Np.addChild(Ne);
30: N temp ⟵Ne;
31: end
32: create a new node Nd with data item d;
33: N temp.addChild(Nd);
34: end
35: else
36: create a new node Nd with data item d;
37: Np.addChild(Nd)
38: end
39: return Nd ;
40: end
41: Function FPBS RangeSearch ðT ,NpÞ

Input: an FP∗-tree T and a search node Nd
Output: a result node Nd within the search range

42: int Nume ⟵ the number of Nd ’s ancestors which are empty;
43: int startSlot⟵N temp.slot −Nume+1;
44: int endSlot⟵N temp.slot +1;
45: for i⟵ startSlot to endSlot do
46: if find a node N temp that has the same data as Nd does at level i of T then
47: delete the path that contains Nd and all the empty connected ancestors of Nd ;
48: return N temp;
49: end
50: end

Algorithm 3: Continued.
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5.3. Access Time. In wireless data dissemination environ-
ments, access time (or latency) is an important metric for
validating the efficiency of scheduling. In FPBS, the system
always first selects the request, whose size and average access
frequency are maximum, and then schedules it in the back-
bone of FP∗-tree. We then treat is as the base of schedule.
That is, the access time for a request qi can be formulated
as Theorem 8.

Theorem 8. Suppose that F is the maximal frequent item-
set in the first-scheduled request, t̂ is the minimum cost for
channel switching, and �twait is the average waiting time
from tuning into the channel to receiving the first required
data item for a request, the access time for a request qi can
be expressed as

acc qið Þ =
�twait + ∣qi∣ + σ1t̂ + σ2, if qi ⊆Fð Þ∨ qi ∩F =∅ð Þ,
�twait + ∣qi ∩F ∣ + ∣qi \F ∣ + σ1t̂ + σ2, otherwise,

(

ð2Þ

whereσ1 is the frequency of channel switching and σ2 is
the frequency of occupied slot (empty node in the FP∗-tree)
skipping.

Proof. With the use of index channel in FPBS, the average
waiting time can be reduced efficiently. If qi ⊆F , it means
that all the required data items for qi can be obtained before
the end of broadcasting all the data items in F . In such a
case, the access time for qi will be �twait + ∣qi ∣ +σ1 t̂ + σ2,
where ∣qi ∣ +σ1 t̂ + σ2 ≤ ∣F ∣ . If qi ∩F =∅ (is equivalent to ∣
qi ∩F ∣ = 0), it means that qi and F are two disjoint sets.
In this case, the data items requested by qi only can be allo-

cated after the first-scheduled maximal frequent item-set, so
the access time for qi will be �twait + ∣F ∣ + ∣ qi ∣ +σ1 t̂ + σ2.
However, the time ∣F ∣ can be merged into the average wait-
ing time �twait until accessing the first data item requested by
qi. Otherwise, for the case of ∣qi \F ∣ >0, qi and F are two
partially overlapping. It means that some required data
items for qi will be scheduled after F . Hence, the access time
for qi will be �twait + ∣qi ∩F ∣ + ∣ qi \F ∣ +σ1 t̂ + σ2, where ∣qi
∩F ∣ + ∣ qi \F ∣ +σ1 t̂ + σ2 ≥ ∣F∣.

After discussing the general case of access time, we also
discuss the worst case in following Theorem 9.

Theorem 9. Suppose all the notations are defined as above.
The worst case of access time will be

accworst = �twait +
[n
i=1

qi

�����
�����: ð3Þ

Proof. In general, the worse case is the scenario that a client
access the channels from the first time slot to the last time
slot. In other words, the worse access time of FPBS will be
the height of the FP∗-tree. According to the design of FPBS
approach, the accelerating branches of FP∗-tree is impossi-
ble to be longer than the backbone of FP∗-tree. Hence, the
height of the FP∗-tree HT will be the height of the back-
bone, ∣

Sn
i=1 qi ∣ . In practice, each client tunes in channel at

random time slot, so the access time in worst case accworst
will be �twait + ∣

Sn
i=1 qi ∣ .

51: return Nd ;
52: end

Algorithm 3: Functions used for the construction of the FP∗-tree’s accelerating branch.
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In FPBS, each data item is not replicated in the FP∗
-tree’s backbone and ∣

Sn
i=1 qi ∣ . In this work, we focus on

minimizing the average access time and the proposed FPBS
approach can effectively shorten the access time of each
request using the accelerating branches. In (2), the terms ∣
qi ∩F ∣ and ∣qi \F ∣ are uncertain since the relation
between request qi and the maximal frequent item-set F is
unpredictable. Hence, FPBS focus on minimizing the fre-
quencies of channel switching or occupied slot (empty node
in the FP∗-tree) skipping, such as σ1 and σ2 in (2). This prob-
lem is solved by FP∗-tree using the accelerating branches in
our proposed approach. In other words, FPBS is proposed
for effectively make the upper bound of access time be tigh-
ter. Thus, the worst case becomes a very rare occurrence.

6. Simulation Results

We validate and discuss the performance of FPBS in terms of
average access time by running the experimental simulations
in different scenarios. The unit of time is a time slot. All the
simulations are written in C++ and executed on a Windows
7 server which is equipped with an Intel (R) Core (TM) i7-

3770 CPU @ 3.4GHZ and 12G RAM. We use Quandl data-
bases [31] to extract the U.S stock prices and then use the
obtained stock dataset as the input of our simulation.

We assume that the maximum number of channels is 10
(∣C ∣ = 2, 3,⋯, 10) in the simulation. Therefore, we assume
that one of the channels is the uplink for receiving the
request and the remaining 10 channels are used as the
downlink broadcasting channel. The detailed parameters of
our simulations are shown in Table 5.

In the simulations, FPBS is conducted in online and off-
line modes. In the online mode, the system will use a buffer
to keep the information of queries and request data items.
When the buffer becomes full, the system will start to sched-
ule data into the broadcasting channels. The scheduled data
items will be removed from the buffer and new user
demands are continuously coming in the buffer. It means
that the FP∗-tree and schedule may change during the
simulation. Conversely, we assume that the system in the
offline mode schedules the data after storing all the
requested information in the buffer.

Note that there are two selecting strategies during sched-
uling process of FPBS, request-number-first and frequency-

1: Function FPBS ScheduleMapping ðT , S,∣C ∣ Þ
Input: an FP∗-tree T , a sorted query set S, and the munber of channels ∣C ∣
Output: a scheduled channel set Schannel and a index channel Ichannel

2: let a list listhandling ⟵ T .root.children;
3: let a temporary list listnext ⟵∅;
4: create a data channel Schannel with ∣C ∣ data broadcasting channels (or rows);
5: create an index channel Ichannel ⟵∅;
6: int i;
7: while listhandling is not empty do
8: i⟵ 1; /∗i is used as a pointer to the current channel∗/
9: for each node N in listhandling do
10: if N is an empty node then
11: break;
12: else if N .parent is an empty node then
13: insert N into Schannel whose slot N .slot is not occupied;
14: else
15: insert N into the ith channel;
16: end
17: if N is not a leaf node then
18: add N ’s children into listnext;
19: end
20: i⟵ i + 1;
21: end
22: copy every node of listnext to listhandling;
23: listnext.clear();
24: end
25: for j⟵ 1 to T .height() do
26: for i⟵ 1 to ∣C ∣ do
27: Use S to check who requests the data item in the slot determined by (1) and channel Ci of Schannel and then update this
information to Ichannel½j�;
28: end
29: end
30: return Ichannel, Schannel;
31: end

Algorithm 4: The function used for the schedule mapping

13Wireless Communications and Mobile Computing



first. Request-number-first strategy is to select the query
according to the length of its requested data items first and
then selecting the query according to its average access fre-
quency if multiple queries request same number of data
items. Frequency-first strategy is to select the query accord-
ing to its average access frequency first and then select the
query according to the length of its requested data items if
multiple queries have the same average access frequency.
Hence, we discuss the above two strategies in online and off-
line modes, respectively.

To the best of our knowledge, none of existing works
model the optimal performance of the multi-item request

scheduling simultaneously considering the channel switch-
ing and dependencies between different requests over multi-
channel dissemination environments. Only [13] provides a
heuristic algorithm, UPF, to discuss the similar problem.
This is the reason that we choose UPF as the comparative
baseline in the simulations.

6.1. Size of Dataset. In the first simulation, we discuss the
performance of FPBS with different sizes of dataset in terms
of average access time. Note that the size of dataset indicates
the number of different data items stored in the dataset.
Figure 7 shows the results in three different cases if the

Table 5: Simulation parameters.

Parameter Default value Range (type)

Size of dataset, ∣D ∣ 500 100, 300, 500, 700, 900

Number of users 5000 —

Maximum number of requested data items, qmax 10 2, 4, 6, 8, 10

Number of downlink broadcast channels, ∣C ∣ 6 2, 3, ⋯, 10

Size of buffer 3000 500, 1000, ⋯, 4500
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Figure 7: Effect of the different sizes of dataset with different number of channels: (a) ∣C ∣ = 3, (b) ∣C ∣ = 6, and (c) ∣C ∣ = 9:
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number of channels ∣C ∣ = 3, ∣C ∣ = 6, and ∣C ∣ = 9, respec-
tively. In the ∣C ∣ = 3 channels environment, as shown in
Figure 7(a), UPF can outperform the online FPBS
approaches, FPBS-Fre-Online and FPBS-Rn-Online, if the
size of dataset, ∣D ∣ , is smaller than 800. The offline FPBS,

FPBS-Fre and FPBS-Rn, can always have a better perfor-
mance than UPF does in all different sizes of dataset.

The results depicted from Figures 7(a)–7(c) show that
UPF has similar performances in different number of chan-
nels environments and the trends of UPF’s average access
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Figure 8: Effect of the different number of channels with different sizes of dataset: (a) ∣D ∣ = 100, (b) ∣D ∣ = 300, (c) ∣D ∣ = 500, (d) ∣D ∣ = 700
, and (e) ∣D ∣ = 900.
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time are always linear increasing. According to the results in
Figures 7(b) and 7(c), we can know that both of online and
offline FPBS approaches can outperform UPF in different
sizes of datasets when ∣C ∣ ≥6. Additionally, the frequency-
first strategy, FPBS-Fre, always has the best performance in
different scenarios.

6.2. Number of Channels. In this part, we discuss the perfor-
mance of FPBS in different scenarios that the number of
broadcasting channels is set from 2 to 20 and the results
are shown in Figure 8. The results indicate the existing
method, UPF, is not suitable to multiple channel (C ≥ 4)
broadcasting environments and UPF cannot dynamically
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Figure 9: Effect of the different number of requested data items with different sizes of dataset: (a) ∣D ∣ = 100, (b) ∣D ∣ = 300, (c) ∣D ∣ = 500,
(d) ∣D ∣ = 700, and (e) ∣D ∣ = 900.

16 Wireless Communications and Mobile Computing



schedule data items with the consideration of each user’s
requests. That is to say, in comparison with the proposed
approach, UPF can not utilize these channels if C ≥ 4.
Figures 8(a) and 8(b) show that UPF has a stable perfor-
mance in the broadcasting environments with different
number of channels when the size of dataset is small
(∣D ∣ ≤300). Conversely, the results from Figures 8(c)–8(e)
show that the average access time of UPF is unstable and
becomes a slightly increasing trend when the size of dataset
becomes large (∣D ∣ ≥500). The possible reason for this result
is that UPF aims to minimize the request miss rate, not the
average access time. There may be a trade-off between min-
imizing the request miss rate and the average access time.

Figures 8(a) and 8(b) shows the results of each approach
in small dataset. FPBS in the offline mode, FPBS-Fre and
FPBS-Rn, can have a better performance since the system
consider all the requests while constructing the FP∗-tree.
According to the results in Figures 8(c)–8(e), the
frequency-first strategies, FPBS-Fre and FPBS-Fre-Online,
have better performances than the request-number-first
strategies, FPBS-Rn and FPBS-Rn-Online, when the size of
dataset becomes large (∣D ∣ ≥500).

6.3. Number of Requested Data Items. If the number of
requested data items becomes larger, the possibility of data

dependency between each query becomes higher. In this
subsection, we consider the effect of the different number
of requested data items on the average access time. As shown
in Figure 9, one can observe that all the FPBS-based
approaches can outperform UPF when the maximum num-
ber of requested data items qmax is smaller than 11. When
qmax is 2, all the FPBS-based approaches have similar perfor-
mances on the average access time. As the value of qmax
increases, the average access time in all the FPBS-based
approaches also increases linearly.

According to the result in Figure 9, we can know that the
frequency-first strategies are better than the request-
number-first strategies since the performances of FPBS-Fre
and FPBS-Fre-Online are more smoothly increasing than
the performances of FPBS-Rn and FPBS-Rn-Online. In
addition, FPBS-Fre can has the best performance and its
trend is almost parallel to the trend of UPS’s performance.

6.4. Buffer Size. In the last simulation, we discuss the effect of
the different size of buffer on the average access time for
comparing two proposed online approaches, FPBS-Rn-
Online and FPBS-Fre-Online. We also consider the trend
of performance in some scenarios that the number of chan-
nel is, respectively, set to 3, 6, and 9.
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Figure 10: Effect of the different size of buffer with different number of channels: (a) ∣C ∣ = 3, (b) ∣C ∣ = 6, and (c) ∣C ∣ = 9.
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The result in Figure 10 indicates that both FPBS-Rn-
Online and FPBS-Fre-Online can have shorter average
access time as the size of buffer increases. In an environment
providing small number (C = 3) of channels, as shown as
Figure 10(a), FPBS-Fre-Online can has a slightly better per-
formance than FPBS-Rn-Online does when the buffer can
store more than 2500 data items. The results in
Figures 10(b) and 10(c) show that FPBS-Fre-Online is much
better than FPBS-Rn-Online with different size of buffer
when the number of channels increases (C ≥ 6).

6.5. Open Issues. In this subsection, we summarize some
remaining issues (or potential challenges) in on-demand
multi-channel data dissemination systems as follows:

(i) Hardware constraint: although the minimum cost t̂
for channel switching is normalized as one time slot
in FPBS, it is difficult to implement a broadcasting
system that meets this condition due to hardware
limitations

(ii) Cross-layer system design: in this paper, we design a
server-side data scheduling for serving the multi-
item requests. For wireless networks, the time-
varying and uncertain nature of wireless channels
can be considered in the scheduling. Thus, the server
needs a new cross-layer system design to simulta-
neously access the request information in the applica-
tion layer and channel information in the physical
layer and then schedule data items more efficiently

7. Conclusion

In this paper, we investigate and formulate an emerging
problem, DBCA, in multichannel wireless data dissemina-
tion environments. We also prove that the DBCA problem
is NP -complete. Then, we present a heuristic scheduling
approach, FPBS, to avoid data conflicts on multiple broad-
casting channels. In FPBS, we use frequent patterns of
requested data items to build a FP∗-tree for extracting the
correlation between each received request. Thus, data con-
flicts can be avoided. During the construction of FP∗-tree’s
accelerating branch, adding empty nodes at appropriate
positions makes the user client have sufficient time to switch
the channel for obtaining the required data. We not only
analyze that FPBS can be done in polynomial time but also
present the upperbound of access time of a request which
is related to size of dataset. According to the simulation
results, FPBS is much better than the existing work, UPF,
in most of cases.
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