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Recognizing signals is critical for understanding the increasingly crowded wireless spectrum space in noncooperative
communications. Traditional threshold or pattern recognition-based solutions are labor-intensive and error-prone.
Therefore, practitioners start to apply deep learning to automatic modulation classification (AMC). However, the
recognition accuracy and robustness of recently presented neural network-based proposals are still unsatisfactory, especially
when the signal-to-noise ratio (SNR) is low. In this backdrop, this paper presents a hybrid neural network model, called
MCBL, which combines convolutional neural network, bidirectional long-short time memory, and attention mechanism to
exploit their respective capability to extract the spatial, temporal, and salient features embedded in the signal samples.
After formulating the AMC problem, the three modules of our hybrid dynamic neural network are detailed. To evaluate
the performance of our proposal, 10 state-of-the-art neural networks (including two latest models) are chosen as
benchmarks for the comparison experiments conducted on an open radio frequency (RF) dataset. Results have shown that
the recognition accuracy of MCBL can reach 93% which is the highest among the tested DNN models. At the same time,
the computation efficiency and robustness of MCBL are better than existing proposals.

1. Introduction

Wireless networks are currently undergoing dramatic devel-
opment. With the increase of both the number and diversity
of wireless devices, their spectrum demand is increasing too
[1]. At the same time, the spectrum is not fully utilized due
to the shortage of the knowledge about the spectrum usage.
Therefore, monitoring and understanding the use of spec-
trum resources play an important role in improving and
standardizing the use of precious radio frequency spectrum.
To achieve this goal, realizing efficient modulation recogni-
tion is critical for detecting and utilizing wireless signals.
However, modulation recognition usage in such a complex
wireless systems need distributed sensing in a wide fre-
quency range, leading to the flooding of a large volume of
spectrum data. Extracting meaningful modulation informa-
tion from a large amount of data requires more advanced
algorithms. This paves the way for new innovative spectrum
access schemes and the development of novel identification

mechanisms about the radio environment [2]. Therefore,
Automatic Modulation Classification (AMC) based on
machine learning, and in particular deep learning, has been
one of the practitioners’ focus in wireless communications.

AMC plays a critical role in understanding the signals
transmitted in an interested area in non-cooperative com-
munications [3]. Traditional modulation recognition algo-
rithms, including maximum likelihood hypothesis [4] and
statistical pattern recognition, are labor-intensive in their
feature extraction process, and their recognition accuracy
severely relies on the prior knowledge about the signals [5].
Moreover, the accuracy and robustness of these two types
of methods can be extremely low when limited or nonrepre-
sentative features are adopted for recognition.

To enable a fully automatic feature extraction, several
deep neural network- (DNN-) based proposals have been
put forward recently, including back propagation (BP) neu-
ral network [6], convolutional neural network (CNN) [7],
long short-term Memory (LSTM) [8], CGDNet [9], and
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ECNN [10]. However, extensive experiments on the open
dataset [11] have shown that the recognition accuracy of
existing proposals is still unsatisfactory (in Section III) since
they cannot fully capture the temporal-spatial characteristics
of the signals. Moreover, under low signal-to-noise ratio
(SNR), the recognition accuracy of these proposals could
be extremely low.

In this backdrop, we introduce a robust and cost-efficient
hybrid dynamic neural network structure which is motivated
by the architecture proposed in [12]. The model is called
multilevel attention CNN Bi-LSTM (MCBL), which com-
bines CNN and Bi-LSTM to exploit their respective capabil-
ity in automatic spatial and temporal feature extraction.
Moreover, in order to improve the efficiency of the model,
a multilevel attention mechanism is integrated into the neu-
ral network to dynamically extract and pay attention to the
salient features included in both the input signal samples
and the features extracted by the neural network. Our main
contributions are threefold:

(1) A hybrid dynamic neural network that combines
CNN, Bi-LSTM, and attention mechanism is put for-
ward to conduct AMC

(2) A global attention mechanism is integrated in our
recognition model to improve the training efficiency
and prevent model overfitting

(3) Extensive experiments are conducted on the open
dataset to compare our proposal with 10 other neu-
ral networks include two latest deep learning models
that can be utilized for the same purpose. Results
have shown that our proposal outperforms other
counterparts in recognition accuracy

The reminder of this paper is organized as follows. Sec-
tion II summarizes the related work. Section III introduces
the framework and details the algorithm design. Section IV
introduces the experimental settings and analyzes the
results. Section V briefly concludes this work.

2. Related Work

2.1. Traditional ML Methods for Modulation Recognition.
Previous research work in wireless communication related
to modulation recognition is mainly based on signal process-
ing tools for communication [13], such as cyclostationary
feature detection [14], sometimes combined with traditional
machine learning techniques (e.g., decision tree [15], sup-
port vector machine (SVM) [16], and naive Bayes [17]). It
turns out that the design of these professional solutions is
very time-consuming, because they usually rely on manual
extraction of expert features and require a lot of domain
knowledge.

2.2. Deep Learning for Modulation Recognition. Motivated
by the remarkable success of deep learning, especially convo-
lutional neural networks (CNN), the image recognition,
speech recognition, machine translation, and other aspects
have made great progress. Wireless communication engi-

neers have recently used similar methods to improve the
state of the technology in the modulation recognition task.
One of the pioneers of domain names is O’shea et al. [3],
who proved that CNN is trained on inphase and
quadrature-phase (IQ) data in the time domain better than
the traditional AMC methods obviously. Besides, they have
implemented a CNN-based modulation recognition frame-
work, named VT-CNN2, which consists of two convolu-
tional layers and two dense layers and is tested on an
publicly available dataset [18]. Tara et al. have put forward
a model called CLDNN which combined the advantages of
CNN, LSTM, and DNN to improve recognition accuracy
[19]. In addition to the CNN-based model, LSTM architec-
ture with time-correlated amplitude and phase information
can achieve superior classification accuracy [7]. Njoku
et al. proposed a CGDNet composed of a shallow convolu-
tional network, a gated recurrent unit and a deep neural net-
work which can incur a low computational complexity and
reach high accuracy on DeepSig dataset [9]. Kim et al.
extended the input size to 4 ×N by copying and concatenat-
ing the data in reverse order to enhance the classification
accuracy [10]. Wang et al. introduced a federated learning-
(FL-) based AMC (FedeAMC) whose advantage is low risk
of data leakage without sever performance loss. Results dem-
onstrated that the gap of FedeAMC and CentAMC is less
than 2% [20]. Besides, Fu et al. proposed a lightweight
AMC module called DecentAMC using model aggregation
and lightweight design. Simulation result shows that the
DecentAMC substantially reduced the storage and computa-
tional capacity requirements of the model [21].

3. System Model

This section first presents the AMC problem; then, we intro-
duce the overall structure of the MCBL model; afterwards,
the three modules in the model are separately detailed.

3.1. Problem Statement and Basic Idea. The essential differ-
ences between different modulation modes lie in their action
modes for base-band signal amplitude, phase, and frequency
which will be reflected by the modulated signals and the
derived features [22, 23]. Therefore, feature extraction has
always been the core of AMC. Traditional feature extraction
based on pattern-recognition is labor-intensive, time-con-
suming, and domain-knowledge-dependent [24]. Recently,
DNN-based AMC has been popular due to their unique
capability for automatic feature extraction as mentioned
above, but their accuracy and latency is still unsatisfactory
when applying to complicated and diversified modulation
modes [25, 26]. To promote the recognition accuracy and
the computation efficiency, this paper develops a framework
utilizing CNN and Bi-LSTM as the pattern-digger and mul-
tilevel attention to select the salient feature for classifying
different modulation modes.

The inphase and quadrature-phase (IQ) data of modu-
lated signal is intended as a two-dimensional image and is
adopted as the input data as existing efforts do [27]. Existing
efforts usually classify different modulation modes through
extracting the spatial or temporal features from the input
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IQ data. However, experimental results have shown that
relying solely on the features in one domain could not
achieve high accuracy (refer to Section III). This motivates
us to develop our hybrid DNN framework, called MCBL.

3.2. Model Architecture.MCBL network contains three mod-
ules: ① CNN-based spatial feature extraction (CSFE) mod-
ule, ② Bi-LSTM-based temporal feature extraction (BTFE)
module, and ③ multilevel attention-based salient features
extraction (MSFE) module. The overall structure of the
MCBL network is shown in Figure 1.

Inspired by ECNN [10], before training the module, the
whole dataset S is extended as 2 × 2N by copying data and
concatenating in reverse order to improve the recognition
accuracy:

Sψ =
sI,0 ⋯ sI,N−1 sI,N−1 ⋯ sI,0

sQ,0 ⋯ sQ,N−1 sQ,N−1 ⋯ sQ,0

" #
: ð1Þ

Then, the data is divided into two subsets:

S = s1, l1ð Þ,⋯, sa, lað Þf g, ~s1,~l1
� �

,⋯, ~sb,~lb
� �n on o

, ð2Þ

where li and~l j are the labels of the i-th training sample si and
the j-th testing sample ~sj,respectively, and a and b are the
number of training and testing samples, respectively.

Based on a set of training samples fs1, s2,⋯, sag, CSFE
module builds a few spatial feature maps. Then, these feature
maps are treated as the inputs of the BTFE module for tem-
poral feature extraction. Afterwards, MSFE weights the tem-
poral features and the input samples to determine the salient
features.

The MCBL algorithm is trained in a supervised manner.
In the training phase, each training sample and its true label
are put into the network during the forward propagation,
and the parameters are updated through back propagation.
In the testing phase, f~s1,~s2,⋯,~sbg are inputted into the net-
work to obtain their predicted value f~lp1,~lp2,⋯,~lpbg. Finally,
the predicted labels are compared with the true labels to
obtain the recognition accuracy. The target of each step in
training process can be expressed as

min 1
a
L ϕ Sð Þ, l1, l2,⋯, lað Þð Þ, ð3Þ

where L is the loss function, and ϕðSÞ represents the
function of the MCBL model.

3.3. CSFE Module. A CNN model is designed in the CSFE
module to achieve automatic spatial feature extraction from
the inputs [28]. Each input data sample is treated as a two-
dimensional image. The CNN model contains three convo-
lutional layers: Conv1, Conv2, and Conv3, and ReLU func-
tion is used as the unit activation function. The structure
of the CSFE module is shown in Figure 2.

The number of convolutional kernels in Conv1, Conv2,
and Conv3 is 16. The size of each convolutional kernel is

(1, 3), (1, 5), and (1, 7), respectively. The size of feature
map that CSFE module gets is ðp, q, cÞ, in which p and q
are the dimension of the feature map, and c is the number
of channels.

Zero padding method is adopted to fill zero on the data
edge before each convolutional, in order to ensure the data
dimension match. More importantly, the dropout method
is utilized to prevent overfitting of the network. Before enter-
ing Bi-LSTM, we performed a dimensional transformation
of the data to ensure that it meets the dimensional require-
ments of the BTFE model. The new feature dimension is
(p × q, c).

3.4. BTFE Module. The DNN model for extracting temporal
feature embedded in a signal sample is Bi-LSTM since it
could better capture overall information of time series data
than LSTM [29]. The structure of the adopted Bi-LSTM net-
work is shown in Figure 3.

As shown in Figure 3, each feature map extracted by
CSFE module is transformed into c time series, and the
length of each series is p × q. Bi-LSTM is a special category
of LSTM for processing sequential data [30, 31]. Benefited
from a specific LSTM memory cell mechanism, Bi-LSTM
effectively solves the exploding and vanishing gradient prob-
lem of traditional RNN during training process. Specifically,
Bi-LSTM combines a LSTM network that moves from the
beginning of the sequence and a LSTM network that moves
in the opposite direction. In this way, both previous and
future information can be utilized in the output layer [32].

The output of BTFE module fy1, y2,⋯, y2ng is the
extracted temporal feature sequence. Because of the output
vectors of the Bi-LSTM layers are processed by connecting
the forward LSTM and backward LSTM, the output dimen-
sion of BTFE module is 2n, in which n is the output dimen-
sion of forward LSTM.

3.5. MSFE Module. The attention mechanism [33] is selected
to focus on part of the input related content and ignore other
content. On the one hand, it can make the results more
accurate, and on the other hand, it can solve the problem
of high computational complexity. For now, attention is
widely used in Natural Language Generation (NLG), dia-
logue systems, multimedia description (MD), text classifica-
tion, recommendation systems, sentiment analysis, and
other tasks [34, 35]. In MCBL, a multilevel attention mech-
anism is included to extract the salient feature, which con-
tains two parts, i.e., attention block and global attention
block.

The timing feature sequence yðtÞ and input data sðtÞ are
adopted to calculate the element product with the attention
factor. For an image, the attention mechanism is to make
the network pay attention to the dominant characters, such
as the contrast of pixels in color, intensity, and texture
[36]. In the signal series considered here, the salient charac-
ter refers to the contrast between continuous signal data, i.e.,
the change trend embedded in the data. For a specific data
fragment, the higher the probability that it contains the fea-
ture for identifying the sample’s modulation type (salient
feature), the larger its attention factor (between 0 and 1) will
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be. Thus, the attention block can dynamically pay attention
to salient information and ignore irrelevant background
information.

(1) Attention block: the timing feature sequence yðtÞ is
put into the dense layer and then the multiply layer,
as shown in Figure 4(a). Let AðtÞ be the attention
factor, which indicates the importance of the current
feature. Then, we have

A tð Þ = σ W tð Þ × y tð Þ + b1ð Þ,
z tð Þ = y tð Þ × A tð Þ,

ð4Þ

where σ represents the ReLU function, WðtÞ is the weight
vector of the Dense module, b1 represents the offset of the
attention module, and yðtÞ is the timing feature sequence
processed by BTFE module.

This method uses AðtÞ and yðtÞ to conduct element
product. Therefore, it can weight all input timing features

Modulated signal IQ time series
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Figure 1: The architecture of MCBL network.
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sequence one by one and pay attention to salient temporal
features extracted by BTFE module dynamically.

(2) Global attention block: the input data sðtÞ are put
into a dense layer and two convolutional layers
(Conv4, Conv5). The number of convolutional ker-
nels in Conv4 and Conv5 is 16 and 1, respectively.
The size of the convolutional kernels is (1, 3). Conv5
is adopted to compress the number of channels;
thus, the output result can match the dimension of
zðtÞ. The formula to calculate the global attention
factor GAðtÞ is

GA tð Þ = σ W tð ÞConv4 ×W tð ÞConv5 × s tð Þ + b2
� �

,

h tð Þ = z tð Þ × GA tð Þ,
ð5Þ

where σ is the ReLU function,WðtÞConv4 andWðtÞConv5 rep-
resent the weight vectors of Conv4 and Conv5, b2 is the off-
set of the global attention block, GAðtÞ refers to the global
attention factor at moment t, zðtÞ is the output of the atten-
tion block, and hðtÞ is the salient features after feature selec-
tion at time t to the whole modulated signal sequence. By
calculating element product with the global attention factor
GAðtÞ and zðtÞ, the network can dynamically select salient
features from a global perspective. Besides, since the weight
of irrelevant feature maps is 0, a large number of feature
maps are removed, and this method can effectively solve
the overfitting problem caused by the background noise in
data samples.

3.6. Algorithm Description. The pseudocode in Algorithm 1
describes the MCBL model in algorithm manner. It takes
the modulation signal data as the input while outputs the
trained MCBL model and the recognition results. Algo-
rithm 1 contains 3 parts, i.e., data preprocessing shown from
steps 1 to 5, model training shown from steps 6 to 21, and
model testing from steps 22 to 25. In part 1, each inputted
signal series is reordered in the reverse order in steps 2-4,
and then the reversed series is concatenated at the tail of
the original series in step 5. In part 2, the MCBL model is
trained utilizing the training set until the loss function is
lower than the thresholds. The weights update process in
conducted from steps 18 to 20. In part 3, the testing data is
feed into the trained MCBL model to evaluate its recognition
performance.

4. Experiments and Results Analysis

After introducing the adopted dataset, we show the experi-
mental settings for comparing MCBL model with 10 other
DNN models. Then, the results are analyzed with different
parameter settings.

4.1. Dataset. All experiments are conducted on the
RML2016.10b, aka., “DeepSig” dataset, which was collected
and opened to the public by DeepSig [11]. The dataset con-
tains 10 modulation modes: 8 digital modulations (BPSK,
QPSK, 8PSK, 16QAM, 64QAM, GFSK, CPFSK, and
PAM4) and 2 analog modulations (WB-FM and AM-
DSB). Note that during the generation of the data samples,
the influence of the transmission environment and devices
is taken into consider. Each data sample is attached with a
SNR value that ranges from -20 dB to 18 dB, with an interval
of 2 dB. The dataset simulates real-time radio communica-
tion signals using different modulations in various SNRs.
The transmitted data includes voice and text formats. For
digital modulation, a block randomizer is used in the device
to calculate the bits. Therefore, the GNU channel model
block is used to generate the dataset, and the 128 sample
window technology is used to cut into the time series. Dur-
ing data acquisition, a number of error effects are added in
channel environment, such as time varying multipath fading
of the channel impulse response, random walk drifting of
carrier frequency oscillator and sample time clocks, and
additive Gaussian white noise.

The dataset contains 1,200,000 data samples, and the
number of each modulation type under a single SNR is
6,000. Each data sample contains the inphase data and
quadrature-phase data with a size of 2 × 128. The constella-
tion diagrams of 10 modulated signals under different SNRs
are shown in Figure 5. 70% of the data is adopted for train-
ing, and the remaining 30% is used for testing.

4.2. Experimental Settings. In order to improve the training
efficiency, a dynamic learning rate is adopted. When val_loss
does not decrease within 30 epochs, or the learning rate is
reduced to the minimum learning rate 0.000001, the training
process will be early terminated. The number of training
epochs is set to 2000, and the batch size is 1024. To prevent
overfitting, each layer adopts the Dropout technique, and the
dropout rate is set to 0.6.

MCBL is trained from scratch with randomly initialized
weights using adaptive moment (Adam) optimizer. The

D
ense

M
ultiply

y (t) z (t)

(a) Attention block

D
ense

Conv4

Conv5

M
ultiply

S (t) h (t)

z (t)

(b) Global attention block

Figure 4: The structure of the attention blocks in MCBL.
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Input: Modulation signal dataset
Output: MCBL model, Recognition rate, Confusion matrix
1: Part 1: Data preprocessing
2: fori = 0⟶N − 1do
3: ~S½i�⟵ S½N − 1 − i�
4: end for
5: Sψ ⟵ ½S, ~S�
6: Part 2: Model training
7: W, b⟵ 0(Initialization);
8: whileloss = ð1/aÞLðϕðSÞ, ðl1, l2,⋯, laÞÞ decrease within 30 epochs do
9: fort = 0, 1, 2⋯ do
10: f ðtÞ⟵ σðWCSFE × sðtÞ + bCSFEÞ

//WCSFE and bCSFE are the weights and bias of CSFE module, and σ is the ReLU activation function
11: yFWðtÞ⟵ σðWBTFE × f ðtÞ + bBTFEÞ

//WBTFE and bBTFE are the weights and bias of BTFE module
12: Y ⟵ ½yFW , yBW �
13: AðtÞ = σðWðtÞ × yðtÞ + b1Þ

//yðtÞ is an element in set Y , and is a vector
14: zðtÞ = yðtÞ × AðtÞ
15: GAðtÞ = σðWðtÞConv4 ×WðtÞConv5 × sðtÞ + b2Þ

//GAðtÞ is the global attention factors
16: hðtÞ = zðtÞ ×GAðtÞ
17: end for
18: fork = 0, 1, 2,⋯do
19: Wkðt + 1Þ⟵WkðtÞ + ∇k

lossðtÞ
20: end for
21: end while
22: Part 3: Model testing
23: Input testing datafð~s1,~l1Þ,⋯, ð~sb,~lbÞg into the model
24: result⟵ Recognition rate, Conf usionmatrix
25: returnresult

Algorithm 1: Algorithm description of the MCBL model.
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Figure 5: Constellation diagrams of 10 modulated signals under different SNRs.
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model is trained with the categorical crossentropy as the loss
function. To obtain the best parameters for training the
model, a brute force technique was employed. Thus, we
applied the model several times until the best parameters
with the best performance were obtained. The specific
parameters used in the model and the output volume of each
layer are shown in Table 1.

4.3. Comparison Benchmark. 10 DNN models are chosen as
comparison benchmarks, i.e., AlexNet [37], CLDNN [19],
VT_CNN2 [18], LSTM [38], ResNet [39], VGG [40],
CNN_LSTM [41], and two latest models ECNN [10] and
CGDNet [9]. All of these algorithms use the same dataset
without any preprocessing.

(1) Traditional CNN structures: AlexNet, ResNet, VGG,
and VT_CNN2. These models contain 5, 18, 19, and
2 convolutional layers, respectively, to extract the
features and two dense fully connected layers. Their
kernel sizes are (1, 3), (1, 3), (1, 7), and (1, 5), respec-
tively. In order to prevent model overfitting, the
dropout technique is adopted in each layer. Besides,
the activation function is ReLU

(2) Hybrid neural networks: CGDNet [9], ECNN [10],
CNN_LSTM [41], and CLDNN [19]. CGDNet con-
tains 2 convolutional layers, GRU, and DNN, to
improve the recognition accuracy and reduce com-
putation time, its kernel size is (1,6), and its activate
function is ReLU. Besides, ECNN contains 3 types of
network blocks to extract the features for improving
the accuracy. CNN_LSTM contains 3 convolutional
layers to extract spatial features and LSTM layers to
extract temporal features. CLDNN consists of a
three-layer CNN and a dropout layer to extract fea-
ture and prevent overfitting: a LSTM network of
250 layers and a DNN of 256 units. The convolu-
tional layers of CLDNN make use of 50 filters of size
1 × 7 and the ReLU activation function

(3) DNN: This DNN contains 3 dense layers of size 256,
64, and 32, and each layer is followed by dropout
layer. The dropout ratio is 0.5. The dense layers
adopt ReLU as the activation function

MCBL and all the baseline models are trained on the
same platform which equipped with Intel(R) Core (TM)
i5-8300H CPU @ 2.30GHz, 8GB DDR4 RAM, and NVIDIA
GeForce 1060 8GB, and the programming environment is
Python 3.7, Tensorflow 2.7, and PyCharm, to make a fair
comparison.

4.4. Comparison Metrics. There are 4 comparison bench-
marks commonly used which are accuracy, precision, recall,
and F1-score, respectively. For a multiclassification problem,
the distinguish of a particular class and all other classes can
be regarded as a two-class classification problem. All those
samples that belong to this class are called positive, and all
other samples are called negative. In this way, after deriving
the classification results, we have 4 categories: true positives

(TP) are examples correctly labeled as positives; false posi-
tives (FP) refer to negative examples incorrectly labeled as
positive; true negatives (TN) correspond to negatives cor-
rectly labeled as negative; and false negatives (FN) refer to
positive examples incorrectly labeled as negative [42]. The
calculation formulas for accuracy, precision, recall, and F1-
score are defined as follows.

Accuracy = TP + TN
TP + TN + FP + FN

,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 − score = 2 ·
Precision · Recall
Precision + Recall

:

ð6Þ

After calculating these four metrics for all classes, their
average values are adopted as the metric values of the
adopted DNN model. For example, the accuracy of a model
is ∑g

i=1ai/g, where g is the number of classes, and ai is the
accuracy of the i-th class.

4.5. Recognition Performance Analysis. The comparison
results of the MCBL model and 10 benchmarks with

Table 1: MCBL network parameters.

Layer Output volume Description (or remarks)

Input (2, 256, 1)

Input padding (2, 260, 1) Zero padding (0, 2)

Conv1 (2, 258, 16) (16, (1, 3))

Dropout1 (2, 258, 16) Dropout 0.6

Zero padding1 (2, 262, 16) Zero padding (0, 2)

Conv2 (2, 258, 16) (16, (1, 5))

Dropout2 (2, 258, 16) Dropout 0.6

Zero padding2 (2, 262, 16) Zero padding (0, 2)

Conv3 (2, 256, 16) (16, (1, 3))

Dropout3 (2, 256, 16) Dropout 0.6

Zero padding3 (2, 260, 16) Zero padding (0, 2)

Reshape (520, 16) Dimension transform

Bi_LSTM (100) merge_mode = concat

GA_Dense (2, 256, 64) 64

Dense1 (64) 64

GA_Conv4 (2, 254, 16) (16, (1, 3))

A_Dense (64) 64

GA_Conv5 (2, 252, 1) (1, (1, 3))

Multiply1 (64)

Flatten (504)

Dropout4 (64) Dropout 0.6

GA_Dense2 (64) 512

Multiply2 (64)

Dense2 (10) 10

FC layer (10) Softmax
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different SNR values are shown in Figure 6. From Figure 6,
we can see that MCBL achieves the highest overall recogni-
tion accuracy of 93% across the entire SNR range. At the
same time, for each recognition method, the general trend
is that with the increase of the SNR value, the recognition
accuracy increases. Moreover, MCBL always performs the
best among all recognition models. This is due to the fact
that MCBL is more effective than other models in extracting
and selecting temporal, spatial, and salient features, which
greatly improves its recognition accuracy. Note that the
accuracy of ECNN is close to MCBL when the SNR is higher
than 0dB. However, when the SNR is between -8 dB and
-2 dB, MCBL model’s accuracy is nearly 10% higher than
ECNN model. When the SNR is -4 dB, MCBL can still reach
a recognition rate of 83.32% that is 5% higher than that of
ECNN, indicating that MCBL is more robust than other
methods under low SNR values. When the SNR is lower
than -6 dB, the differences between different modulation sig-
nals are vague and thus increasing the difficulty of distin-
guishing them. The features extracted by different DNN
models tend to be inaccurate, leading to low recognition
accuracy. It can also be seen from Figure 5 that the constel-
lation diagrams of all modulated signals under low SNR are
overlapped and cannot be distinguished.

Table 2 shows the comparison results of MCBL and 5
other models in precision, recall, and F1-score.

It can be seen from Table 2 that the precision, recall, and
F1-score of MCBL is higher than other deep learning models
including the latest model CGDNet. It shows that the classi-
fication and prediction capabilities of MCBL are better than
other the common DNN model.

It can be seen from the Figure 7 that MCBL’s recognition
rate for digital modulation 8PSK, BPSK, CPFSK, GFSK,
PAM4, and QPSK is close to 100% when the SNR is higher
than 0. Moreover, the recognition rates of QAM16 and
QAM64 which are 91.10% and 83.90%, respectively. Thus,
one can say that MCBL can accurately extract and select
temporal, spatial and salient features embedded in the input
data. It can also be seen from Figure 7 that the recognition
rate of WBFM is low. This is because the difference between
the various types of analog modulation is not reflected in the
amplitude and phase. Thus, the constellation of AM-DSB
and WBFM is almost the same in Figure 5. Therefore, a
few WBFM samples are wrongly classified as AM-DSB.
The recognition accuracy of each modulation mode
increases with the increase of the SNR. This is because the
lower the SNR, the larger the proportion of noise in the sig-
nal, and the more irregular the modulation signal will be.
Therefore, the lower the SNR value, the more difficult it is
to identify the signal.

4.6. Computational Complexity. The complexity of a neural
network is divided into time complexity and space complex-
ity [9]. The time complexity is generally measured by
floating-point-operations (FLOPs) which is an indicator that
is often used to gauge the complexity of an algorithm or
model. The space complexity refers to the number of param-
eters or capacity of the network. The number of parameters
and time complexity (in FLOPs) are summarized in Table 3.
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Figure 6: Model performance under different SNR. Note: the
recognition results of ECNN model are from reference [10].

Table 2: Comparison results.

MCBL CGDNet
VT_
CNN2

CLDNN ResNet VGG

Precision 93% 90.03% 86.38% 88.67% 61.0% 86.73%

Recall 92.06% 88.59% 83.61% 86.81% 52.61% 84.67%

F1-score 92.52% 89.30% 84.97% 87.73% 54.49% 85.68%
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Figure 7: Classification accuracy for each modulation type.
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We can see that the number of parameters in the MCBL
model is slightly larger than those in CGDNet, VGG, and
ResNet models. However, the time complexity of MCBL is
lower than these three models, indicating that the spatial,
temporal, and salient features in the data can be extracted
more efficiently by MCBL. Although MCBL does not achieve
the overall lowest space complexity, it achieves the best accu-
racy among all compared models. Its performance can fur-
ther be attributed to the use of the BTFE model and the
MSFE model, compared to VGG which only use convolu-
tional layers. This not only leads to a high number of train-
able parameters but also decreases its time complexity.

4.7. Confusion Matrix. The confusion matrices of the MCBL
model at -8 dB, -4 dB, -2 dB, 2 dB, 6 dB, and 18 dB SNR are
shown in Figure 8. In a confusion matrix, the deeper the
color of the diagonal, the more accurate the classification.
When the SNR is -8 dB, the colored grids are spread in the
confusion matrix, which indicates a low recognition accu-
racy. In addition, most WBFM samples are mi-classified as

AM-DSB. Under -2 dB SNR, the color of confusion matrix
diagonal is deeper than that of the confusion matrix under
-8 dB; however, QAM16 and QAM64 cannot be well distin-
guished. When the SNR value is higher than 0dB, a higher
accuracy can be observed in the confusion matrices in
Figure 8.

4.8. The Impact of Modules and Dropout Rate. To evaluate
the performance of each module, we experiment the MCBL
model with and without each module, respectively. The
results are shown in Figure 9. It can be seen in Figure 9 that
the recognition accuracy of MCBL without CSFE, BTFE, and
MSFE modules (Without_CSFE, Without_BTFE, and With-
out_MSFE, in Figure 9, respectively) is only 60%, 83%, and
85% when the SNR is 18 dB. Moverover, the recognition
accuracy decreases more when the SNR is low. It can be ana-
lyzed from the Figure 9 that each module is helpful to the
improvement of the overall accuracy, and the CSFE module
has the greatest impact on the model.

Table 3: Computational complexity.

CBL CGDNet ECNN
VT_
CNN2

AlexNet CLDNN
CNN_
LSTM

LSTM ResNet VGG DNN

Parameters 278K 124K 43K 314 k 27K 167K 238K 59K 146K 224K 543K

FLOPs 0.00659 g 0.00827 g 0.001315 g 0.00504 g 0.000261 g 0.00768 g 0.00504 g 0.000347 g 0.00336 g 0.0086 g 0.00136 g
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Figure 8: The confusion matrix of MCBL at -8, -4, -2, 2, 6, and 18 dB SNR.
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The dropout technique is adopted in MCBL to prevent
overfitting phenomenon in the training process. The recog-
nition accuracy of the MCBL model with different dropout
rates is shown in Table 4. It can be seen from Table 4 that
with the increase of the dropout rate, the recognition accu-
racy increases first and then decreases. The increase is
brought by the overfitting avoidance capability of the drop-
out mechanism. However, when the dropout is too high,
too much neurons are neglected by the model, and an
underfitting will occur. Generally speaking, the best dropout
rate here is 0.6.

5. Conclusion

A hybrid dynamic neural network model, called multilevel
attention CNN Bi-LSTM (MCBL), is presented in this paper
to achieve automatic modulation recognition. MCBL con-
tains three modules, i.e., CSFE module, BTFE module, and
MSFE module to extract and select the spatial, temporal,
and salient features of the modulated signals effectively. To
evaluate the performance of MCBL network, 10 DNN net-
works are adopted for the comparison experiments on an
open RF dataset. Experimental results have shown that
MCBL’s recognition accuracy is higher than state-of-the-
art proposals. Moreover, the efficiency and robustness of
MCBL are better than other models.

Data Availability

The dataset is downloaded from https://www.deepsig.ai/
datasets. The name of dataset is RadioML.2016.10b.
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