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As a transportation way in people’s daily life, highway has become indispensable and extremely important. Traffic flow prediction is
one of the important issues for highway management. Affected by many factors, including temporal, spatial, and other external
ones, traffic flow is difficult to accurately predict. In this paper, we propose a graph convolutional method. And the name of our
model proposed is the hybrid graph convolutional network (HGCN), which comprehensively considers time, space, weather
conditions and date type to achieve better predicted results of traffic flow at highway stations. Compared with baselines
implemented by various machine learning models, all metrics of our model are reduced dramatically.

1. Introduction

With economic growth and the infrastructure improvement,
people’s lives and work are no longer limited to a specific city.
The social activities interact with multiple cities have become
the most basic requirement of people’s daily life. As a bridge
between two cities, highway undoubtedly plays a leading role
in people’s lives and work. If a road is closed occasionally or
traffic jam happens owing to an accident on the highway or
the bad weather conditions, respectively, people’s travel or
work plans will be seriously affected [1]. As a mean of traffic
management, highway traffic flow prediction can help the
government and relevant departments to make road plan-
ning and to dispatch vehicle to prevent traffic congestion
[2]. Because highway traffic prediction not only has the
temporal and spatial characteristics but also is affected by
external factors, insufficient consideration of influencing fac-
tors is one of the important challenges faced by the traffic
flow prediction of highway toll stations. The combination
of temporal and spatial can be termed as spatiotemporal
characteristics. External factors include weather conditions
and date type. For example, people are more willing to take
a road trip in fine weather. Especially in weekend or holiday,

the demands of folks enjoying travel sharply increase. So,
how to effectively use these factors on historical data has
become the focus of highway traffic flow prediction.

In this paper, based on deep learning, a graph convolu-
tional method is proposed for highway traffic flow predic-
tion. It that name hybrid graph convolutional network
(HGCN) is a combination of the graph convolutional net-
work (GCN) and feedforward neural network (FNN). HGCN
can effectively extract the non-Euclidean spatial features of
the highway network and comprehensive consideration of
the weather type and date type of the toll stations to get better
prediction. The rest of this paper is organized as follows. At
Section 2, we describe related work with our research. Then,
at Section 3, we demonstrate the process of our model build-
ing. Next, at Section 4, we introduce several experiments to
describe that our model has more accurate prediction effects.
Finally, at Section 5, we summarize our work and discuss the
direction of future work.

2. Related Work

The traffic flow of highway toll stations is a vital metric for
people’s daily travel or government decision-making. With
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the development of Internet of Things (IOT) and big data,
people can obtain more types of data for analysis and
research on highway traffic tasks [3–5]. Traffic flow predic-
tion is one of the most important tasks in the Intelligent
Transportation System (ITS) [6–11]. Methods commonly
used in traffic flow prediction can be roughly divided into
three categories.

The first type of methods is based on traditional statistical
perspective. autoregressive integrated moving average model
(ARIMA) [12, 13] and vector autoregressive models (VAR)
[14] are the representative model of traditional statistical
methods. At the same time, KARIMA [15] and SARIMA
[16] based on the ARIMA algorithm are also such statistical
learning methods. However, these methods have certain lim-
itations. Because these algorithms cannot consider nonlinear
factors of traffic flow, they are impossible to accurately esti-
mate the traffic flow of highway toll stations.

The second type of methods is based onmachine learning
algorithms. By acquiring nonlinear features from the data,
these models more conform to the problem of traffic flow
prediction of highway toll stations under the real condition.
Compared with statistical methods, models based on
machine learning can get more accurate prediction results.
Many representative models for traffic flow prediction of
such methods are proposed like support vector regression
(SVR) [17], Bayesian model [18], boosting technology [19],
and K-nearest neighbor model (KNN) [20, 21]. Although
learning nonlinear features, these models have a strong
dependence on the processing of input raw data. Good
feature processing can bring ideal prediction results and vice
versa. Therefore, shallow machine learning models cannot
obtain better prediction results.

The third type of methods is based on deep learning.
Recently, recurrent neural networks (RNNs) and convolu-
tional neural networks (CNN) are two main adopted models
of deep learning algorithms. Among [22–27], RNN models
are generally used to deal with temporal series, because
RNN models can extract temporal feature from data very
well. In particular, long short-term memory (LSTM), as a
variant of RNN models, effectively avoids the problems of
gradient explosion and gradient disappearance during the
process of training by adding gating mechanism and is widely
used in traffic flow prediction. Works [28–33] employ variant
RNN models to predict traffic flow. In addition, the CNN
network is good at obtaining the spatial characteristics of a
two-dimensional matrix in the Euclidean space. So, many
studies such as [34–36] use CNN models to obtain spatial
feature of the highway network to get better prediction for
traffic flow. In order to consider more comprehensively,
combined CNN and RNN models like [37–39] are proposed
considering the spatiotemporal characteristics of traffic
prediction. On the other hand, because the limitation of the
graph convolutional network (CNN) that is not good at deal-
ing with the problems in non-Euclidean space, GCN has
become the most popular technology for traffic flow predic-
tion problems. [1, 37] are the typical example of using GCN
to learn spatial correlation features to predict traffic flow.

However, in fact, the factors they considered were insuf-
ficient. Temporal characteristics and external factors, includ-

ing weather conditions and date types, have a great influence
on the prediction accuracy of traffic flow. Therefore, we pro-
pose a graph convolutional method, which belongs to the
third type of methods. Our model is a combination of the
graph convolutional network (GCN) and feedforward neural
network (FNN) and is named hybrid graph convolutional
network (HGCN). Our model not only can effectively extract
the non-Euclidean spatial features of the highway network
but also learn temporal feature of traffic flow and external
features of toll stations, and then our model gets a better pre-
diction of traffic flow.

3. HGCN Model and Its Construction

3.1. Feature Engineering. Because the traffic flow prediction
problem of highway toll stations is affected by many factors,
it is necessary to consider multiple factors extracted from
input raw data. These features are defined as follows.

Definition 1(highway network): In this paper, we useG =
ðV , EÞ to represent the highway network structure. Here, V
= ½V1, V2,⋯, VN � represents highway toll stations, N repre-
sents the total number of toll stations, E = ½ðV1, V2Þ, ðV2,
V3Þ,⋯, ðVi, V jÞ,⋯�, Vi,V j∈V , indicates whether there is
an edge between two toll stations, and i and j are a positive
integer.

In our work, we regard highway network as an undi-
rected graph according to actual bidirectional highway roads.
In addition, the prediction of highway toll station traffic flow
is not only related to the spatial relationship of toll stations
but also related to temporal characteristics. For example,
the traffic flow of a station has a certain periodicity. In week-
days, it will have relatively similar volumes, and in weekends
or holidays, it will increase. Therefore, it is necessary to con-
sider the influence of the temporal features on the traffic flow
at the highway toll station. The temporal features can be
defined as follows.

Definition 2 (historical traffic flow of highway toll sta-
tions): On the day t, the temporal features of a certain toll sta-
tion can be represented by the vector SVi

t :

SVi
t =

T1

T2

⋯

Tk

⋯

Td

2
666666666664

3
777777777775
, Vi ∈ V , ð1Þ

where SVi
t represents the features of highway toll station

Vi on the day t, d represents the length of the historical time
window, k ≤ d represents a day in historical time window,
and Tk represents the traffic flow of the highway toll station
on day t − k.

In addition to spatiotemporal characteristics, the predic-
tion of traffic flow at highway toll stations also faces external
factors. According to the analysis for the traffic flow data of
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highway toll stations, the external factors include weather
conditions and date type [19]. For example, in extreme
weather conditions such as heavy snow, heavy fog, and
downpour, the highway may be closed. Besides, people are
more willing to travel or go on a road trip on sunny days.
Especially on weekends and holidays, the number of people
traveling increases obviously. Therefore, we take external
characteristics of traffic flow into the model. Then, the exter-
nal characteristics can be defined as follows.

Definition 3 (external factors): On the day t, external fac-
tors can be represented by the vector PVi

t :

PVi
t = WVi

t ,Dt , Vol
Vi
t

� �T
, Vi ∈ V : ð2Þ

WVi
t represents the weather conditions at the Vi toll

station on day t, Dt represents the date type of day t, and
VolVi

t represents the traffic flow of the highway toll station
adjacent to the Vi on the t day. The calculation of these
parameters can refer to our previous work [21]. In order to
explain the weather condition type and date type characteris-
tics in more detail, we define them as formula (3) and
formula (4).

WVi
t =

1, extremweather

0, otherwise

(
, ð3Þ

where WVi
t represents the weather conditions at the Vi

toll station on day t, and there are two values for this param-
eter. When this parameter equals 1, it represents extreme
weather condition including heavy snow, heavy fog, down-
pour, and hurricane. When this parameter equals 0, it repre-
sents other weather conditions. In the other hand, we divide
the date into three types include holidays, weekends, and
others. The specific definition is as follows.

Dt =

0, otherwise

1, if t is a holiday

2, if t is a weekend

8>><
>>: : ð4Þ

3.2. Graph Construction. How to effectively construct a high-
way network graph has a great influence on extracting the
spatial characteristics of the associated toll stations. Neigh-
borhood will directly affect the prediction effect of traffic flow
at highway toll stations. Therefore, we constructed our high-
way network graph based on the following three principles.

3.2.1. Connectivity Principle. This principle guarantees the
completeness and correctness of the highway network graph.
It means that there will be no isolated nodes or subgraphs in
the highway network graph. That is, there is always a path
from any node Vi to any node V j in the graph. We set this
principle because in actual situations, any two toll stations
on the highway are always reachable, and there is no isolated
toll station.

3.2.2. Neighborhood Principle. This principle explains how to
select neighbor nodes. The edge in the graph taken from any
toll station Vi to its neighbor toll station V j does not pass
through other toll stations. Because we believe that adjacent
toll stations in the highway network have higher spatial cor-
relation, and at the same time, it will have a greater impact on
the traffic flow of its adjacent toll stations, we look for the
nearest toll stations on the highway network as the neighbor
node of toll station Vi.

3.2.3. Bidirection Principle. This principle stipulates that the
highway network graph we construct is an undirected graph.
That means, toll stations Vi and V j are connected, and vice
versa. This principle is set to conform to the real situation
of the highway network.

According to the above three rules, we use the adjacency
list to construct our highway network, as shown in Figure 1.

In the example of Figure 1, the arrow represents starting
toll station Vi, and its neighboring toll station V j is con-
nected. For example, Anyang is selected as the starting toll
station, and its neighboring toll stations include Anyangbei,
Anyangdong, Aanyangnan, and Anyangkaifaqu. However,
it is worth noting that the arrow only represents the connec-
tion relationship between the starting toll station and its
neighboring toll stations.

3.3. Model Structure. After processing features, the traffic
flow prediction problem of highway toll stations can be
expressed by formula (5).

TV
t =

TV1
t

TV2
t

⋯

TVi
t

⋯

2
666666664

3
777777775
= F G, SVt , P

V
t

� �
: ð5Þ

TV
t represents the traffic flow of all highway toll stations

on day t. SVt represents the historical traffic flow of all high-
way toll stations on day t. PV

t represents the external factors
on the day t. F represents the method including feature
engineering and graph convolutional method proposed in
this paper. The specific structure of the model is shown
in Figure 2.

For this method F, input is the raw data, and output is the
prediction result of traffic flow at highway toll stations. The
detailed process of F can be divided into three parts, includ-
ing feature engineering, GCN, and FNN.

In the feature engineering part, raw input data including
highway toll stations network and traffic flow of highway toll
stations are needed for extracting spatiotemporal and exter-
nal factors. First, in order to extract spatial features, we con-
struct an undirected graph G by using the highway toll
station network. Then, we obtain historical traffic flow based
on traffic data of highway toll stations and add weather con-
ditions and date type factors. Through the above processing,
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our feature engineering part finally output the spatial feature
G and the temporal and external factor matrix X.

In the GCN part, we use the GCN model to extract the
spatial characteristics of the highway network and to obtain
the influence factors of spatial relationship between toll sta-
tions. Using the approximated 1st order Chebyshev polyno-
mial expansion, GCN proposed by [40] not only reduces
the number of parameters but also increases the prediction
accuracy. Using GCN, we can obtain the relationship among
neighboring nodes and learn the impact of different nodes
on the toll station to be predicted. Considering the influence
of neighboring nodes, our model can make more accurate
predictions. Therefore, in this part, two layers of GCN are
used to extract spatial features. The input feature dimension
of the first layer of GCN is the same as that of the feature
matrix X. The specific formulas of the GCN layer can be
defined as follows.

X 1ð Þ = Relu ~D
−1
2~A~D

−1
2XW

� �
,

X 2ð Þ = Relu ~D
−1
2~A~D

−1
2X 1ð ÞW

� �
:

ð6Þ

X represents feature matrix including the temporal fea-
ture of traffic flow at highway toll stations and external fac-
tors, ~A = A + IN , A is the adjacency matrix of the highway
network G, IN represents identity matrix of size N , and ~Dii

=∑ j
~Aij, i, j ≤N . The weight matrix W is a learnable param-

eter. Xð1Þ and Xð2Þ represent the output of the first layer and

the second layer, respectively, and the dimension of their
feature is 64.

In the FNN part, the feedforward neural network (FNN)
is used to comprehensively consider three influencing fac-
tors. Through nonlinear transformation and weighted sum-
mation on the input feature matrix Xð2Þ extracted by GCN,
the FNN part gets the predicted result of highway toll sta-
tions. In this part, we use a three-layer neural network struc-
ture, corresponding to the input layer, hidden layer, and
output layer. The specific structure of the network is shown
in Figure 3.

In order to extract more features, the number of neurons
in the input layer is 128, and the number of neurons in the
hidden layer is the same with the input layer. Finally, the
number of neurons in the output layer is one, and the output
of the output layer represents prediction result of traffic flow
at highway toll stations. In order to clearly illustrate process
in the FNN part, we defined some formulas as follows.

M 1ð Þ = Relu X 2ð ÞW1 + b1
� �

,

M 2ð Þ = Relu M 1ð ÞW2 + b2
� �

,

M 3ð Þ =M 2ð ÞW3 + b3:

ð7Þ

Here,M∗ represents the output of each layer in FNN part,
and Mð3Þ represents the result of prediction of traffic flow at
highway toll stations. W∗ and b∗ represent weighted matrix
and bias, respectively, and both are learnable parameters.

Anyangbei

Anyang

Jichang

Anyang Null

Anyangbei Anyangdong Anyangnan Anyangkaifaqu Null

Nansanhuan Zhengan Zhengzhounan Null

Figure 1: Adjacency list of the highway network.

Prediction

GCN FNN

Feature
engineering

Figure 2: Network traffic flow prediction method.
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4. Evaluation

4.1. Settings. The experimental data comes from a real appli-
cation system, which is the Henan Highway Management
System [13]. In the experiment, we used weather and traffic
flow data on highway toll stations fromMay 2017 to Septem-
ber 2017. The total amount of data is approximately more
than 20000. From September 16, 2017 to September 30,
2017 as our testing set and the rest of data as our training
set, we choose d = 7, that means we use 7 days of historical
traffic flows of highway toll stations as the temporal feature.
Due to the large amount of traffic flow, the system stores
the traffic flow in the HBase database. Our system uses three
servers to build the HBase database that its version is 1.6.0,
each of which server have 4 cores CPU, 22GB RAM, and
700GB storage. Meanwhile, the machine configuration used
for model training is Intel (R) Core (TM) CPU i7-9750
2.59GHz, 16GB RAM, 1TB storage, and one NVIDIA
GeForce GTX 1660 Ti.

In addition, our experiment is supported by common
machine learning software, including python 3.6, pytorch
1.7.0, torch-geometric 1.6.1, and sklearn 0.23.2. In the experi-
ment, we compared HGCN with several other models, includ-
ing gradient boost regression tree (GBRT) [19] and KNN [21]
model on the prediction accuracy of highway toll stations. To
evaluate the prediction effect of our model, three metrics, root
mean square error (RMSE), mean absolute percentage error
(MAPE), and mean absolute error (MAE), are used in our
experiments. Their formulas are defined as follows.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
y∧i − yið Þ2

s
,

MAPE =
100%
n

〠
n

i=1

ŷi − yi
yi

����
����,

MAE =
1
n
〠
n

i=1
ŷi − yij j:

ð8Þ

Here, ŷi represents the predicted value of traffic flow, yi
represents the ground truth value of traffic flow, �y represents
average predicted value, and n represents the number of
samples.

4.2. Experiments. Two experiments are designed to verify the
effectiveness of our feature engineering and the prediction
effect of the HGCN model for predicting traffic flow at high-
way toll stations.

4.2.1. Experiment 1:Feature Engineering Effects. In this exper-
iment, we compare two variant models based on HGCN,
HGCNnoE, and HGCNnoT. Here, HGCNnoE means that in
the feature Engineering part, the model does not consider
external factors (abbr. for noE). In addition, HGCNnoT
ignores the temporal features in the feature engineering part
(abbr. for noT). In this case, we use three different models to
predict the traffic flow of 269 highway toll stations, and the
comparison result of models can refer to Figure 4.

128 128 1

Input

X
(2)

Hidden Output

Prediction

Figure 3: FNN model structure.
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Figure 4: MAPE in different factors.

Table 1: prediction performances of different parameters in a model.

HGCN HGCNnoE HGCNnoT

RMSE 682.393 894.616 948.247

MAE 403.861 446.829 500.227

MAPE (%) 23.185 22.232 29.218
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In Figure 4, we use aMAPE distribution chart to compare
the prediction effect among different models. First of all, we
can see that the distribution chart has the right-skewed attri-
bute as we expect. In the chart, the more concentrated the
density is on the left of the chart, the better the prediction
accuracy would be. It can be seen from the figure that the
density of the HGCN model on the left is more concentrated
than other models. This phenomenon indicates that our
HGCN model has obtained better prediction results on the
problem of highway traffic flow prediction at toll stations;
so, weather conditions and date types will affect the predic-
tion accuracy. Therefore, it is very necessary to add weather
conditions and date type features to the model to improve
the prediction accuracy.

We have carried out traffic predictions on all stations on
the highway and constructed Table 1 on the experiment
results. From Table 1, we can see that the HGCN model is
better than the other two models in RMSE and MAE. While
MAPE of HGCN is slightly lower than HGCNnoE, the differ-
ence between the two models is less than 1%, and we can
regard them as being at the same level. It may be the cause
that weather factors mislead our model. Especially for toll
stations with a small amount of traffic flow, weather condi-
tions have little effect on the prediction of traffic flow. By
comprehensively analyzing RMSE, MAE, and MAPE, our
model HGCN brings more accurate predictions.

The result of three metrics also confirmed that it is neces-
sary to consider temporal and external factors to predict the
traffic flow of highway toll stations. By considering temporal
characteristics and external factors, our model can better
learn the historical relationship of traffic flow and the influ-
ence of external factors to obtain better prediction results.

4.2.2. Experiment 2: Prediction Effect Comparison with
Machine Learning and Deep Learning Models. In this exper-
iment, we use HGCN to predict the traffic flow of all 269
highway toll stations in Henan Province and compare the
accuracy with other models. We have selected 2 typical toll
stations to show the prediction results of the traffic flow.
The traffic flow of the first toll station is about more than
10,000 vehicles per day, and the traffic flow of another toll
station is about 4,000 to 8,000 vehicles per day. The experi-
mental comparison results are shown in Figure 5.

From Figure 5, we can clearly see that HGCN can better
fit the ground truth of the traffic flow at those highway toll
stations than other models. Obviously, by using GCN to
obtain the spatial factors of the highway network, our model
has a higher prediction accuracy. At the same time, we can
see from Table 2 that, in the toll station of Zhengzhouliulin,
compared with the LSTM model, our model HGCN has
greatly reduced from 5.651 to 3.683 in MAPE metric. And
on another toll station, our model is also better than other
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Figure 5: The comparison of prediction accuracy with other models.

Table 2: Prediction performances of different models.

HGCN GBRT KNN LSTM HGCN GBRT KNN LSTM
Zhengzhouliulin Zhongyuanxilu

RMSE 1194.719 387.864 387.864 387.864 387.864 998.137 1231.851 895.941

MAE 956.928 346.011 346.011 346.011 346.011 993.786 1226.910 724.597

MAPE (%) 3.683 5.469 5.469 5.469 5.469 8.545 10.549 6.110
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models including GBRT, KNN, and LSTM in metrics RMSE,
MAE, and MAPE. This experiment clearly shows, because
our model uses GCN to consider the spatial relationship of
toll stations and uses the FNN model to comprehensively
consider the characteristics of temporal-spatial and external
factors; so, the HGCN model we proposed can get more
accurate prediction result of traffic flow.

5. Conclusion

In this paper, we propose a convolutional method HGCN
based on a deep learning algorithm to predict the traffic flow
of highway toll stations. For solving insufficient consider-
ation of influencing factors of traffic flow, our work can be
divided into two parts. First, in order to better fit the traffic
flow prediction problem of highway toll stations, we consid-
ered spatiotemporal and external factors including weather
conditions and date type. Then, by using GCN to extract spa-
tial features, our model fully considers the non-Euclidean
attributes of the highway network. Our model obtains a more
accurate prediction of the traffic flow at highway toll stations.
In the future, we will dynamically adjust the graph structure
of GCN and take the distance between toll stations into the
highway network structure as an edge attribute in order to
comprehensively consider the influence of different distance
among toll stations for traffic flow prediction.
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