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Aiming at the problem of low statute efficiency of prefix sum execution during the execution of the parallel differential
evolutionary particle filtering algorithm, a filtering algorithm based on the CUDA unfolding cyclic prefix sum is proposed to
remove the thread differentiation and thread idleness existing in the parallel prefix sum by unfolding the cyclic method and
unfolding the thread bundle method, optimize the cycle, and improve the prefix sum execution efficiency. By introducing the
parallel strategy, the differential evolutionary particle filtering algorithm is implemented in parallel and executed on the GPU
side using the improved prefix sum computation during the algorithm update. Through big data analysis, the results show that
this parallel differential evolutionary particle filtering algorithm with the improved prefix sum statute can effectively improve
differential evolutionary particle filtering for nonlinear system states and real-time performance in heterogeneous parallel
processing systems.

1. Introduction

Particle filtering is a sequential Monte Carlo method that
employs particles to approximate the posterior probability
density distribution. In [1], the multi-intelligent coevolution
mechanism is introduced into particle filtering, and the
resampling process is realized by the competition, crossover,
mutation, and self-learning among particles, which effec-
tively solve the problem of particle degradation and particle
scarcity. Literature [2] compared the filtering accuracy of
particle filtering under different search strategies, and the
accuracy of the differential evolutionary particle filtering
algorithm was improved, but the computational complexity
was increased. To address the computational complexity
problem, literature [3–5] proposed a GPU-based particle
filtering parallel algorithm, which effectively combines the
traditional particle filtering algorithm with GPU to make full
use of the performance of GPU parallel computing and accel-
erate the computational speed of the particle filtering algo-
rithm. Literature [6, 7] proposed a GPU-based parallel
optimization design and implementation of particle filtering
to improve the computational speed of the tracking algo-

rithm. Literature [8–10] designed and implemented a parallel
particle swarm optimization algorithm based on CUDA,
which uses a large number of GPU threads to accelerate the
convergence speed of the whole particle swarm. Parallel stat-
ute algorithms are used in the abovementioned literature for
parallel particle filtering algorithms to simplify thread opera-
tions. Prefixes and algorithms are an important primitive for
parallel algorithm programming and are utilized as basic
modules for many different algorithms. Compared to serial
algorithms, CUDA-based parallel algorithms execute single
instruction multithreaded commands, which can perform
more operations and improve the efficiency of algorithm exe-
cution. However, due to the execution mode and memory
access mode of the prefix sum algorithm [11–13], the execu-
tion process is prone to thread division and memory access
conflict phenomena, which cannot effectively utilize the
hardware resources of GPU. Prefix summation contains a
large number of repetitive operations, which are simple but
inefficient. Segmented prefix summation avoids thread repe-
tition but suffers from serious memory access problems,
making the utilization of GPU hardware resources low.
Literature [14] introduces additional instructions and
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demonstrates their application in the construction of efficient
parallel algorithm primitives, such as prefix sums and seg-
mented binary prefix sums. In literature [15], researchers
used parallel segmented prefixes to construct data processing
and optimize them to improve the overall performance of the
algorithm. In literature [16], researchers used GPUs and the
practical parallel particle swarm well to solve the problem
of singular facility locations, demonstrating that particle
swarm optimization is a flexible optimization technique. In
literature [17], several tree data structures are studied for
the prefix sum problem, providing a variety of practical solu-
tions, all of which obtain a good speedup factor.

To address the problem of thread differentiation in the
execution of the differential evolutionary particle filtering par-
allel algorithm, based on CUDA architecture, this paper pro-
poses a differential evolutionary particle filtering algorithm
based on unfolding cyclic prefixes and optimization to remove
thread differentiation and reduce the lag caused by judgment
and branch prediction, which makes the particle filtering algo-
rithm gradually improve the computational performance.

2. Differential Evolutionary Particle
Filtering Algorithm

Differential evolutionary algorithm (DE) is a stochastic paral-
lel direct search algorithm, whose basic idea is to start from a
certain randomly generated initial population, iterate continu-
ously according to certain operation rules, and according to
the fitness value of each individual, keep the good individuals
and eliminate the inferior ones, and guide the search process
to approach the optimal solution. The algorithm has the
advantages of simple structure, easy implementation, no need
for gradient information, fewer parameters, etc., and has a
variety of different search strategies.

The calculation process of the DE-PF algorithm in this
paper is as follows.

Step 1. For the initialization step, sampling is performed at

time k = 0. The resulting N particles fxi0gNi=1 are used as
initial samples, and the distribution of the initial samples is
xi0 ∼ pðx0Þ. All particles have the same initial weights
wi

0 = 1/N . Repeat iterations for T = 1, 2, 3,⋯,N .

Step 2. For the prediction step, setk = k + 1, sample particle

fxikgNi=1 at the current moment through the state transfer

model, and calculate the current measure fyikgNi=1.

Step 3. The weights are calculated and normalized, and after
receiving the measurements in Step 2, each particle needs to
update the weights according to the likelihood function
pðyT jxiTÞ:

wi
t =wi

t−1 ⋅ p yt x
i
t

��� �
: ð1Þ

The normalization process makes the sum of the par-
ticle weights equal to one, and the normalization process
is expressed as

wi
t =

wi
t

∑Nw
i
t
: ð2Þ

Step 4. For differential evolutionary resampling, we have
the following:

(1) g = 1. The initial particle of evolution fxg,ik gNi=1 =
fxikgNi=1

(2) The variation operation is performed on the particle

set fxg,ik gNi=1, and then the crossover operation is per-

formed to obtain the candidate particle set f~xg,ik gNi=1
(3) The fitness value of the candidate particle set f~xg,ik gNi=1

is calculated, and the selection operation is performed,

and the resulting particle set isfxg+1,ik gNi=1
(4) If g < Gmax and σ > σmin, then set g = g + 1; turn to

Step 2; otherwise, go to the next step

Step 5. Arrange the particles in descending order.

Step 6. Count the number of times each particle is copied,
except for its own.

Step 7. Calculate the weighted sum of the weights in Step 4,
except for its own.

Step 8. Eliminate the small particles.

Step 9. For the state output step, the optimized set of parti-

cles is used as a sample of equal weights fxik,wi
k =N−1gNi=1:

Calculated state estimates : xk = 〠
N

i=1
wi

k, xik: ð3Þ

3. Improved Parallel Prefix Sum

The parallel algorithm needs to calculate the cumulative dis-
tribution function (CDF) of the particles when performing
the computation, which is a simple continuous prefix and
operation described as follows:

y n½ � = y n − 1½ � + x n½ �, ð4Þ

wheren = 0, 1,N − 1,y½−1� = 0, andNis the size of the
datay½n�. The sequential computation is very straightforward
and makes parallelization difficult due to the dependencies
between output data. For small prefix sum problems, only
one thread block is used and recursive multiplication is used
to solve the problem. However, parallel particle filtering
requires a longer computation of the prefix sum problem
when the number of particles N = 16, and Figure 1 expresses
the same operation on different particles, i.e., the parallel
way of prefix summation.
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The parallel prefix sum can be understood as the paralle-
lization of the process of summing all the numbers in an
array. In general, the idea of parallelization is based on the
binary statute of “trees,” as shown in Figures 2 and 3. The
implementation of parallel prefix summation can be divided
into two types:

(1) Direct Prefix Sum. Elements are paired with their direct
neighbors to find the sum

(2) Interleaved Prefix Sums. Elements are paired according to
a given span

Based on the problem of idle threads in the parallel oper-
ation of the interleaved prefix sum algorithm, this paper pro-
poses a spread-loop prefix sum method to reduce idle
threads and improve the efficiency of prefix sum execution.

By assessing the interleaved prefix sum method, the
initial value of stride is half of blockDim.x. When ðtid < strideÞ
and then executing subsequent instructions, it means that half
of the threads in the first iteration are idle, which wastes GPU
computing resources and targets a new problem: idle threads.
The performance of the parallel algorithm can still be
improved if all of them can be utilized, which is also pending
the next step to be optimized and improved.

Expanding loops is a technique that is intended to opti-
mize loops by reducing the frequency of branch occurrences
and loop maintenance instructions. In a loop expansion, the
body of the loop is written multiple times in the code, rather
than just writing the body of the loop once and then using
another loop to execute it repeatedly. Any closed loop can
have its number of iterations reduced or removed altogether.
The number of copies of the loop body is referred to as the
loop expansion factor, and the number of iterations becomes
the singular number of iterations divided by the loop expan-
sion factor. In sequential arrays, loop expansion is the most
efficient way to improve performance when the number of
iterations of the loop is known before the loop is performed.
Assuming a thread block length of 1024, the threads

involved in the computation of the statute iterations at 512,
256, 128, and 64 are distributed in different thread bundles
(since each warp can only have 32 threads executing simulta-
neously); then, there is an order of precedence in the SM exe-
cution of these thread bundles, so each step of the statute
iteration needs to be synchronized within the block. Only
when the statute iterates to 32, 16, 8, 4, and 2, the thread bun-
dle execution they are in is not associated with other thread
bundles and no interblock synchronization is needed, while
there is implicit synchronization after each instruction in the
process of thread bundles in SM, so the intrabundle synchro-
nization problem can be solved, making the global array corre-
sponding to the threads get updated in time without affecting
the execution of the next instruction.

In the preceding prefix and computation, each thread
block was responsible for one corresponding data block.

Block 1 Block 2 Block 3 Block 4

g (1) g (2) g (3) g (4) g (5) g (6) g (7) g (8) g (9) g (10) g (11) g (12) g (13) g (14) g (15) g (16)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) Particle parallel sampling process

Block 1 Block 2 Block 3 Block 4 

1+3 = 4 2+4 = 6

1 2 3 4

4+6 = 10

5+7 = 12 6+8 = 14

4+6 = 10

9+11 = 20 10+12 = 22

20+22 = 42

13+15 = 28 14+16 = 30

28+30 = 58

10+42 = 52 26+58 = 84

52+84 = 136

5 6 7

10 26 42 58

8 9 10 11 12 13 14 15 16

(b) Parallel execution process of particle prefix summation

Figure 1: Parallel prefix sum based on unfolding loop improvement.
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Figure 2: Direct prefix sum.
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Now, each thread block is responsible for prefixing and
calculating two data blocks, thus eliminating instruction
consumption and increasing the scheduling of more inde-
pendent instructions to improve performance. The following
is a schematic diagram of the prefix sum with expansion fac-
tors of 2 and 4. There are three scales of expansion, 2, 4, and
8, where a block computes 2 blocks, 4 blocks, and 8 blocks of
data, respectively, adds the adjacent data blocks to the data
block corresponding to the current thread block, and then
sums them, listed as Tables 1–3.

The parallel prefix and method algorithm strength is
low, so the bottleneck in the system may be due to the sched-
uling instructions. The solution is to expand the for loop.
__syncthreads is used for intrablock synchronization. In
the statute kernel function, it is used to ensure that all
threads in each round have written their local results to
global memory before the thread moves to the next round.
During the statute, the number of active threads decreases,
and when there are less than 32 active threads, we will have
only one warp. In a single warp, the execution of instructions
follows the SIMD (single instruction multiple data) pattern;
i.e., when there are less than 32 active threads, there is no
need for synchronization control, and each instruction is
followed by an implicit intrabundle synchronization process
after each instruction. Therefore, it is necessary to solve the
problem of loop control and thread synchronization when

there is only one thread bundle. Based on this, the
thread bundle expansion method with interleaved prefix
sum is proposed.

Through the previous experimental analysis, the iterative
loop below 32 threads is unfolded. In fact, because of the
length limit of the thread block (generally 1024), the number
of loops is determined, so the loop can be fully unfolded, i.e.,
1024, 512, 256, 128, and 64, and calculated, and the only
thing that needs to be noted is that each calculation should
be synchronized afterwards. Table 4 shows the pseudocode
for a fully expanded loop.

4. Experiment and Performance Analysis

In order to verify the basic performance of the parallel
algorithm with the improved prefix sum, the performance
of the algorithm is simulated using a typical one-
dimensional nonlinear system model and compared with
the parallel prefix sum based on the unfolding cycle, parallel
prefix sum based on the thread unfolding cycle, and parallel
prefix sum based on the full unfolding filtering algorithm.
The experimental platform includes the Win10 64-bit
system, Visual Studio 2013 programming software, and
CUDA9.2-based programming framework, where the GPU

10 1 8 –1 0 –2 3 5

0 1

10 –1 11 4 0 –2 3 5

2 3

0 1

21 3 7 –1 6 –2 8 5

0

24 1 7 –1 6 –2 8 5

Figure 3: Interleaved prefix sum.

Table 1: Interleaving prefix and expanding loop (expanding factor
is 2).

if index + blockDim:x < Nð Þd data index½ � + = d data
index + blockDim:x½ �;
__syncthreads();
for int strize = blockDim:x/2 ; strize > 0 ; strize>> = 1ð Þ
{if tid < strizeð Þ
data tid½ � + = data tid + strize½ �;
__syncthreads();

Table 2: Interleaved prefix and loop expansion with a factor of 4.

if index + 3 ∗ blockDim:x < Nð Þ
{int a = d data index½ �;
int a1 = d data index + blockDim:x½ �;
int a2 = d data index + 2 ∗ blockDim:x½ �;
int a3 = d data index + 3 ∗ blockDim:x½ �;
d data index½ � = a + a1 + a2 + a3ð Þ;

Table 3: Interleaved prefix and thread bundle expansion.

if tid < 32ð Þ
{volatile int ∗ vmen = data;
vmen tid½ � + = vmen tid + 32½ �;
vmen tid½ � + = vmen tid + 16½ �;
vmen tid½ � + = vmen tid + 8½ �;
vmen tid½ � + = vmen tid + 4½ �;
vmen tid½ � + = vmen tid + 2½ �;
vmen tid½ � + = vmen tid + 1½ �;

Table 4: Interleaved prefixes and fully expanded.

if index + 7 ∗ blockDim:x < Nð Þ
int a = d data index½ �;
int a1 = d data index + blockDim:x½ �;
int a2 = d data index + 2 ∗ blockDim:x½ �;
int a3 = d data index + 3 ∗ blockDim:x½ �;
int a4 = d data index + 4 ∗ blockDim:x½ �;
int a5 = d data index + 5 ∗ blockDim:x½ �;
int a6 = d data index + 6 ∗ blockDim:x½ �;
int a7 = d data index + 7 ∗ blockDim:x½ �;
d data index½ � = a + a1 + a2 + a3 + a4 + a5 + a6 + a7ð Þ;}
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Table 5: The detailed parameters of the experimental platform.

GPU CPU

GTX1080Ti Intel® Core™ i5-4460

Stream processor unit 3584 CPU Intel® i5-4460

Video memory 11GB Core number 4

Clock frequency 1582MHz Memory 8GB

Memory bit width 352 bits Clock frequency 3.2GHz
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Figure 4: State estimation results of five improved algorithms.
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Figure 5: Particle number curves of the five improved algorithms.
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is GTX1080Ti and the CPU is i5-4460. Detailed parameters
are listed in Table 5.

The one-dimensional nonlinear system model is as
follows:

xk = 1 + sin 0:04πkð Þ + 0:5xk‐1 + uk‐1,

yk =
0:2x2k + vk 1 ≤ k ≤ 30ð Þ,
0:5xk‐2 + vk 30 < k ≤ Tð Þ,

(
8>><
>>: ð5Þ

System noise of the model is uk−1 ∼ Γð3, 2Þ, total observa-
tion time isT = 60, crossover probability isCR = 0:6of the
evolutionary algorithm, and the maximum evolution time is
iteration numberGmax = 10. In this paper, we use the parallel
prefix and expansion factors 2, 4, and 8 (2U-PRPDE-PF, 4U-
PRPDE-PF, and 8U-PRPDE-PF) based on the expansion loop.
In this paper, the comparison experiments are conducted
among the three algorithms, i.e., PF, 8U-PRPDE-PF, warp
unrolling PRPDE-PF, and complete unrolling PRPDE-PF.

4.1. Experimental Analysis of Root Mean Square Error. The
algorithm is simulated RMC = 200 times by independent
Monte Carlo, and the root mean square error of the time
is defined as follows:

LRMSE
k =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

RMC

� �
〠
RMC

j=1
xk,j − �xk,j
� �2

vuut : ð6Þ

xk,j and �xk,j denote the actual and predicted states at the
moment k in the jth simulation, respectively. The measure-
ment noise vk ∼Nð0, 0:001Þ. Figure 4 gives a comparison
of the momentary root mean square error of the five algo-
rithms for the two settings of the particle number N = 100
and N = 200.

The performance of the algorithm state estimation is
basically the same. It can be seen from Figure 4 that the
mean square error of the five improved algorithms, 2U-
PRPDE-PF, 4U-PRPDE-PF, 8U-PRPDE-PF, WU-PRPDE-
PF, and CU-PRPDE-PF, under the same experimental
conditions of the particle number, is reduced relative to the
IIPRPDE-PF algorithm, and all of them can guarantee the
state estimation ability with the accuracy of the algorithm
improved to some extent, indicating that the improved
methods improve the state tracking performance of the
filtering algorithm to some extent.

4.2. Particle Distribution and Calculation Time Experiments.
Figures 5 and 6 show the curves of particle number variation
and computation time of the improved prefix sum algorithm
based on the unfolding cycle for 60 simulation moments.
The comparison of the simulation curves in Figure 5 shows
that the particle numbers of 2U-PRPDE-PF, 4U-PRPDE-
PF, 8U-PRPDE-PF, WU-PRPDE-PF, and CU-PRPDE-PF
decrease gradually and adjust the numbers adaptively with
time. In Figure 6, at the time, it can be seen that the time
of CU-PRPDE-PF is lower than that of the other filters due
to performing full unfolding, fully improving the recursive

0 10 20 30 40 50 60

0.002

0.004

0.006

0.008

0.010

0.012

Ti
m

e

Time step

(a) N = 100

0 10 20 30 40 50 60

0.002

0.004

0.006

0.008

0.010

0.012

22 24 26 28 30 32 34 36 38 40 42

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

0.0065

8 30 32 34 36 38 40 42

Ti
m

e

Time step

2U-PRPDE-PF
4U-PRPDE-PF
WU-PRPDE-PF

CU-PRPDE-PF
8U-PRPDE-PF

2U
-P

RP
D

E-
PF

Time step

(b) N = 200

Figure 6: Time curves calculated by five algorithms.

Table 6: Comparison of filter calculation time for N = 200.

2U-PRPDE-PF 4U-PRPDE-PF 8U-PRPDE-PF WU-PRPDE-PF CU-PRPDE-PF

Time (s) 0.005012 0.004815 0.00462 0.004465 0.00425
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loop, increasing the prefix and execution efficiency, i.e.,
increasing the execution rate of resampling and computation
time consumption, while the time of 2U-PRPDE-PF, 4U-
PRPDE-PF, 8U-PRPDE-PF, and WU-PRPDE-PF is smaller
than that of IIPRPDE-PF with a decreasing trend.

After improving the recursive loop in resampling, the
particles are reduced adaptively, and the computation time
of the parallel filtering algorithm after all five unfolded loops

is relatively reduced and smaller than IIPRPDE-PF. After
unfolding the recursive loop within resampling, the overall
complexity of the algorithm increases, and the time required
for recursive sampling to update the number of particles for
calculation in real time is not enough to offset the time saved
by the reduction of particles when the number of particles is
small, and this situation disappears at the time when the
computation time of the parallel differential evolutionary

Table 8: Six algorithms’ running schedule. Unit: ms.

N IIPRPDE-PF 2U-PRPDE-PF 4U-PRPDE-PF 8U-PRPDE-PF WU-PRPDE-PF CU-PRPDE-PF

210 39.2 37.51 36.35 35.64 33.56 33

211 51.7 50.592 49.011 48 44.2 43

212 76.05 75.888 73.5165 69.2 65 64

213 152.35 139.536 135.1755 136.5 130.21 128

214 250.6 241.536 233.988 225.82 214.18 210

215 493.3 471.648 456.909 448.2 421.62 414

216 972 930.24 901.17 883.6 830.77 816

217 1927.85 1861.296 1803.1305 1748.59 1647.73 1620

218 3753.85 3607.536 3494.8005 3410.6 3208.42 3154

219 7526.55 7215.888 6990.3915 6842 6432.94 6324.8

220 15031 14394.24 13944.42 13662 12847 12631

Table 9: Acceleration ratios of the five algorithms relative to IIPRPDE-PF.

N 2U-PRPDE-PF 4U-PRPDE-PF 8U-PRPDE-PF WU-PRPDE-PF CU-PRPDE-PF

210 1.04505 1.0784 1.09969 1.16806 1.18788

211 1.0219 1.05487 1.07708 1.16968 1.20233

212 1.00213 1.03446 1.09899 1.17 1.18828

213 1.09183 1.12705 1.11612 1.17003 1.19023

214 1.03753 1.071 1.10973 1.17004 1.19333

215 1.04591 1.07965 1.10062 1.17001 1.19155

216 1.04489 1.0786 1.10005 1.17 1.19118

217 1.03576 1.06917 1.10252 1.17 1.19003

218 1.04056 1.07412 1.10064 1.17 1.19019

219 1.04305 1.0767 1.10005 1.17 1.19001

220 1.02042 1.07792 1.1002 1.17 1.19

Table 7: Computation time of the five parallel algorithms.

N
Computation time (s)

CRPF Block CRPF 2U-PRPDE-PF 4U-PRPDE-PF Optimized block CRPF

1024 0.15862 0.1125 0.03751 (2.99x) 0.03564 (3.15x) 0.1461

2048 0.21301 0.1676 0.05 (3.35x) 0.048 (3.49x) 0.1747

3200 0.26709 0.21225 0.0625 (3.396x) 0.06 (3.53x) 0.24

4096 0.32074 0.256 0.075 (3.41x) 0.0692 (3.69x) 0.291

6400 0.44983 0.3672 0.096 (3.825x) 0.0783 (4.689x) 0.4076
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particle filter for all unfolding loops is smaller than that of
the corresponding parallel differential evolutionary particle
filter, which also indicates that the PRPDE-PF sampling of
unfolding loops improves the computation time more signif-

icantly. The filter computation time shown in Table 6 is
obtained by 60 independent Monte Carlo experiments and
taking the average of the running time of each filter for each
experiment, and it can be seen that CU-PRPDE-PF requires
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Figure 7: Schedule of the three algorithm runs.
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Figure 8: Acceleration ratios of five filtering algorithms with circular unfolding relative to IIPRPDE-PF.

Table 10: The parameters of different GPUs.

GPU CUDA cores Base frequency Video memory Memory bit width

GTX1080Ti 3584 1.58GHz 11GB 352 bits

GTX960 1024 1127MHz 2GB 128 bits

GTX950 768 1024MHz 2GB 128 bits

GTX750Ti 640 1020MHz 2GB 128 bits
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the least computation time. Combining the performance
indicators of computational accuracy and computation time
of each filter, the fully unfolded loop filter algorithm CU-
PRPDE-PF has the least computation time and is the best
performance among the five improved filtering algorithms
in this paper.

Also, compared with the three smart optimized parallel
particle filtering algorithms in the article of Wang et al.
[18], the computation time of the improved algorithms
(2U-PRPDE-PF, 4U-PRPDE-PF) and the block parallel par-
ticle smart optimized particle filtering algorithm in this
paper are shown in Table 7, respectively. It can be seen from
the table that among the three intelligent optimized parallel
algorithms, the block parallel particle filtering algorithm

block parallel CRPF has the best performance, followed by
the optimized block parallel; the optimization part increases
the complexity of the algorithm; and the computational
performance decreases compared to the block parallel
algorithm. The algorithms proposed in this paper, 2U-
PRPDE-PF and 4U-PRPDE-PF algorithms, are compared
with the block parallel algorithm, respectively. From
Table 7, it is concluded that the improved 2U-PRPDE-PF
algorithm in this paper has stronger computational perfor-
mance than the block parallel CRPF, and a 3.82x accelera-
tion ratio is obtained as the number of particles grows, and
the 4U-PRPDE-PF algorithm obtains a speedup ratio of
4.689x as the number of particles increases asymptotically,
so the algorithm proposed in this paper has improved
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Figure 10: 4U-PRPDE-PF algorithm in different GPUs.
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performance and can obtain a good speedup ratio compared
to the block parallel algorithm.

Comparison of the runs of the five parallel differential
evolutionary particle filtering algorithms 2U-PRPDE-PF,
4U-PRPDE-PF, 8U-PRPDE-PF, WU-PRPDE-PF, and CU-
PRPDE-PF was based on CUDA cyclic unfolding with
improved prefixes and postimprovement in the same GPU
case. Tables 8 and 9 show the running schedules and
speedup ratios of the five improved algorithms, respectively,
and Figures 7 and 8 correspond to Tables 8 and 9, respec-
tively, where the speedup ratio is defined as the value
obtained by dividing the running time of the original algo-
rithm by the running time of the improved algorithm under
the same particle count condition. Figure 8 shows the values

obtained by dividing the operation time of the original algo-
rithm IIPRPDE-PF by the operation times of 2U-PRPDE-
PF, 4U-PRPDE-PF, 8U-PRPDE-PF, WU-PRPDE-PF, and
CU-PRPDE-PF, respectively. The acceleration ratio of CU-
PRPDE-PF is the largest and remains around 1.19 as the
number of particles increases, while the acceleration ratios
of the other four types of 2U-PRPDE-PF, 4U-PRPDE-PF,
8U-PRPDE-PF, and WU-PRPDE-PF eventually remain at
a certain value as the number of particles increases. Under
GTX1080Ti, the number of particles is 1024; after the direct
unfolding with unfolding factors of 2, 4, and 8, from 39.2ms
to 35.64ms, it can be seen that the direct cyclic unfolding has
a very big impact on the efficiency; this is not only because of
saving the extra thread block running but also because the
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Figure 11: 8U-PRPDE-PF algorithm in different GPUs.
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Figure 12: TU-PRPDE-PF algorithm in different GPUs.
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improvement has more independent memory loading, and
storage operations can produce better performance, with
better hidden latency. The algorithm in this paper has been
improved incrementally to obtain an overall performance
improvement of up to 1.19 times.

4.3. Real-Time Performance of Algorithms on Different GPUs.
Experimental simulations are performed with the above five
improved algorithms based on different GPU conditions.
The whole experimental platform includes the Win10 sys-
tem, Visual Studio 2013 programming software, and
CUDA9.2-based programming framework with i5-4460
CPU, listed as Table 10, running the algorithms on four dif-
ferent GPUs with the number of particles from 210to 220.

The performance experiments of the five improved algo-
rithms in this paper are done based on the same CPU and dif-
ferent GPU conditions. According to the analysis in Figures 9–
13, compared with the IIPRPDE-PF algorithm, the five
improved algorithms of this paper based on IIPRPDE-PF for
cyclic unfolding, 2U-PRPDE-PF, 4U-PRPDE-PF, 8U-
PRPDE-PF, WU-PRPDE-PF, and CU-PRPDE-PF, exhibit
approximately the same growth rate for different GPUs. It is
discussed that the acceleration ratio of the algorithm under
different GPU conditions is basically proportional to the com-
putational power of the GPU itself, and the performance of the
algorithm is optimal under the experimental environment of
GPU GTX1080Ti. In this paper, the performance improve-
ment of GPU computation is limited to the improved prefix
and problem. Based on the direct segmentation prefix and
the improved differential evolutionary particle filtering
algorithm, the overall performance improvement speed of
CU-PRPDE-PF is up to 19% relative to the IIPRPDE-PF
algorithm, and the performance improvement factor of CU-
PRPDE-PF can reach up to 1.45 compared with that of the
original PDE-PR algorithm. The main reason for the limited
performance improvement of the improved algorithm is just
not simply parallel on the GPU and requires complex opera-

tions or even contains quite a few logical judgments. However,
some performance gains can be achieved by prefixing and
incremental improvements.

5. Conclusion

In this paper, we propose a CUDA unfolding loop-based
state estimation method for differential evolutionary particle
filtering to address the problem of inefficient parallel differ-
ential evolutionary particle filtering with parallel execution
threads and improve the execution efficiency of the prefix
sum by unfolding the prefix sum method with an unfolding
loop and a thread bundle. The proposed method uses the
segmented prefixes after the unfolding loop and the
improved resampling and the latest moment of observation
to update the proposed distribution of the optimized particle
filter in real time and adaptively adjusts the number of par-
ticles to be sampled for the particle filter to a smaller number
using differential evolutionary resampling. In addition, for
the execution of the particle filtering algorithm, the prefix
and execution have the problem of inefficient thread execu-
tion, and the GPU does not have the branch prediction capa-
bility, at every branch it performs, so the algorithm removes
the thread bundle differentiation and thread idleness existing
in the parallel prefix by unfolding the loop and unfolding the
thread bundle method, eliminating the lag caused by the fail-
ure of judgment and branch prediction, further improving
the overall computational performance. The current CUDA
compiler cannot do this optimization for us and requires
artificially unfolding the loop within the kernel function,
which can greatly improve the kernel performance. The pur-
pose of unfolding the loop in CUDA is twofold: to reduce
instruction consumption and to increase the performance
by adding more independent scheduling instructions to
reduce fragmentation. Simulation results show that the par-
allel differential evolutionary particle filtering algorithm with
this unfolding loop can effectively improve intelligent
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Figure 13: CU-PRPDE-PF algorithm in different GPUs.
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optimal particle filtering for nonlinear system states and
real-time performance. Finally, experimental simulations
show that the algorithm with the improved prefix sum can
achieve the best speedup factor of 1.19 relative to the
IIPRPPDE-PF algorithm and 1.48 relative to the PDE-PF
algorithm under GTX1080Ti, and the experimental data
show that the overall performance of the algorithm under
different GPUs is proportional to the GPU. The experimen-
tal data show that the overall performance of the algorithm
under different GPUs is proportional to the GPU computa-
tional power, which indicates that the improved algorithm
in this paper has universal applicability.

Data Availability

The data used to support the findings of this study are
included within the article.
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