
Research Article
An Improved Simulated Annealing Particle Swarm Optimization
Algorithm for Path Planning of Mobile Robots Using
Mutation Particles

Jianzhang Lu and Zhihao Zhang

Chongqing University-University of Cincinnati Joint Co-op Institute, Chongqing University, Chongqing 400000, China

Correspondence should be addressed to Zhihao Zhang; 20186101@cqu.edu.cn

Received 30 September 2021; Revised 3 November 2021; Accepted 6 November 2021; Published 6 December 2021

Academic Editor: Deepak Gupta

Copyright © 2021 Jianzhang Lu and Zhihao Zhang. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Artificial intelligence technology has brought tremendous changes to human life and production methods. Mobile robots,
UAVs, and autonomous driving technology have gradually entered people’s daily life. As a typical issue for a mobile robot,
the planning of an optimal mobile path is very important, especially in the military and emergency rescue. In order to
ensure the efficiency of operation and the accuracy of the path, it is crucial for the robot to find the optimal path quickly
and accurately. This paper discusses a new method and MP-SAPSO algorithm for addressing the issue of path planning
based on the PSO algorithm by combining particle swarm optimization (PSO) algorithm with the simulated annealing (SA)
algorithm and mutation particle and adjusting the parameters. The MP-SAPSO algorithm improves the accuracy of path
planning and the efficiency of robot operation. The experiment also demonstrates that the MP-SAPSO algorithm can be
used to effectively address path planning issue of mobile robots.

1. Introduction

1.1. The Purpose and Significance of the Research. As modu-
lar and intelligent thinking gradually penetrates into busi-
ness and traditional manufacturing, the application of
cutting-edge technologies has become much more efficient,
and a large number of digital and intelligent high-end tech-
nology products have entered human daily life with lower
cost and higher quality. The mobile robot, the object of this
thesis, is a microcosm of this change. Path planning is the
key to the autonomous control module of a robot. The path
planning problem is an NP-hard problem, which allows the
robot to automatically calculate the best path from the start
point to the end point in minimum time [1]. To solve the
path planning problem, two issues need to be tackled. One
is to build an environment model that can simulate the
robot’s working scenario, and the other is to establish the
rules for the robot to search the path in the environment
model and find the optimal path for the robot in the envi-

ronment model. In this way, the path planning problem
for robots is transformed into a combinatorial optimization
problem. The common path planning methods include
swarm intelligence algorithm, graph search algorithm, RRT
algorithm, Artificial Potential Field algorithm, BUG obstacle
avoidance algorithm, and incremental heuristic algorithm.
Swarm intelligence algorithm is a popular category in
current research, and the more mature algorithms include
particle swarm optimization algorithm and ant colony algo-
rithm, although the particle swarm optimization algorithm
is relatively simple in implementation. However, compared
to other algorithms, there are problems such as premature
convergence and more likely to fall into local optimal solu-
tions. To address these shortcomings [2], this paper com-
bines particle swarm optimization algorithm and simulated
annealing algorithm, introduces the concept of mutation
factor, and proposes a new robot path planning scheme
for path planning under a known environment model.
Compared with the traditional classical particle swarm
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optimization algorithm, this algorithm can effectively avoid
premature convergence, improve the efficiency of the algo-
rithm, and provide a new idea for robot path planning.

1.2. Mobile Robot Path Planning Problem. According to the
different perception degrees of robot to its own environment
model, common path planning methods are divided into
global path planning with a known environment model
and local path planning methods using sensor, SLAM radar,
and other technologies. This paper mainly studies the global
path planning algorithm under the known environment
model. Similar to the research of Katrakazas et al. [3] on
path planning for mobile robot, the global path planning
for robots should include the following problems:

(1) How to implement path planning in actual robot
tasks

If the path planning strategy violates the hardware
structure and dynamics of the robot, the path planning strat-
egy is inaccurate. This can be achieved through personalized
modeling of the environment model and personalized
adjustment of path planning strategy for different robots.

(2) How to obtain the optimal solution of path planning

There are many paths from the start point to the end
point, but due to the efficiency and power of the robot, it
is necessary to find a feasible optimal path.

(3) How to avoid collision between the robot and obsta-
cles on the planned path

The robot may deal with a variety of situations when per-
forming tasks. Collision with obstacles in the environment
will have a certain impact on the robot and surrounding
obstacles. Collision will also adversely affect the execution
path of the robot, thereby reducing work efficiency.

1.3. Development Trend of Robot Path Planning Algorithm.
Some works are focused on the path planning to solve the
above problems. Figure 1 shows some of the algorithms used
in path planning.

The key to building an environment model is to make
the state of robot in the environment model consistent with
the real environment; the path planning algorithm focuses
on optimizing the robot path based on the known environ-
ment model. For the second point, robot path planning
algorithm has attracted the attention of many experts and
scholars. There are also many solutions and achievements
in this field. Roberge et al. combine genetic algorithm and
particle swarm optimization algorithm to solve the path
planning problem of UAV in a complex three-dimensional
environment [4]. Mo and Xu proposed a global path plan-
ning method, which combines BBO, PSO, and approximate
Voronoi boundary network (AVBN) in a static environment
[5]. Yu and Rus proposed a centralized algorithm framework
to solve the multirobot path planning problem in a general
two-dimensional continuous environment [6]. Li et al.
developed an effective Improved Artificial Potential Field-

based Simultaneous Forward Search (Improved APF-based
SIFORS) method in a known environment [7]. Jiao et al.
performed an improved quantum particle swarm optimiza-
tion algorithm to solve the path planning model [8].
Tharwat et al. proposed a new chaos particle swarm optimi-
zation algorithm to optimize the control points of Bezier
curve [9]. Li et al. proposed a new adaptive learning mecha-
nism to select the most suitable search strategy adaptively in
different stages of the optimization process, which improves
the searchability of particle swarm optimization algorithm
[7]. Das et al. performed an improved particle swarm opti-
mization (IPSO) algorithm combined with differential dis-
turbance velocity (DV) algorithm to determine the optimal
path of multirobot in a clutter environment [10]. Zeng
et al. aimed to propose a particle swarm optimization
(PSO) algorithm based on nonhomogeneous Markov chain
and differential evolution for path planning of intelligent
robot when encountering obstacles in the environment [11].

We can see particle swarm optimization has not only
strong local searchability but also global exploration ability.
Moreover, the proportion of local search and global search
can be controlled by adjusting the parameters. Therefore, it
is suitable to be used as a path optimization algorithm for
mobile robot.

2. Establishment and Optimization of
the Model

2.1. Establishment of Environmental Model. The application
problem discussed in this paper needs to simulate the envi-
ronment with obstacles and give a visual expression of the
improved algorithm, so a direct and specific environment
model is needed. For the path planning algorithm, the solu-
tion is only limited to the two-dimensional plane space of
the robot movement, so a two-dimensional space model is
established.

2.1.1. Polygon Obstacle Environment Model. When the envi-
ronment model is a two-dimensional space, a polygonal
obstacle environment is the clearest and most direct repre-
sentation of obstacles [12]. The image displayed by this envi-
ronment model can be regarded as the top view of the two-
dimensional obstacle environment in a three-dimensional
space (as shown in Figure 2). It can not only clearly display
the state of the obstacle environment and facilitate the
adjustment of the obstacle environment but also prepare
for the optimization path of the visualization algorithm.

2.1.2. Improvement of Polygon Obstacle Environment Model.
In the actual process of robot movement, due to the limita-
tion of its own mechanical structure, the robot cannot fully
adapt to the movement of the edges and corners of obstacles.
Therefore, considering the protection of the robot itself and
the needs of practical application, the polygon obstacles were
regarded as a noncontact space containing multiangle obsta-
cles in the environment model, and it is stated that as long as
the mobile body does not enter the space, it is regarded as
effective movement and can be realized in the path; The
noncontact space is built following the principle of
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minimum enclosing circle, and the space of the obstacle is
defined as the minimum circular space that can completely
cover the obstacle. To find the minimum enclosing circle,
we need to get the vertices of the obstacle and form the point
set P. By iterating in P, we can find three vertices, so as to
determine a minimum circle that completely covers all the
vertices of the obstacle. Let these three points be p1ðx1, y1Þ,
p2ðx2, y2Þ, and p3ðx3, y3Þ. Then, the midpoint of the line l1
with p1ðx1, y1Þ, p2ðx2, y2Þ is

xmid, ymidð Þ = x1 + x2
2 , y1 + y2

2
� �

: ð1Þ

The equation of the vertical line l1 is A1x + B1y = C1,
where

A1 = −B = x2 − x1,

B1 = A = y2 − y1,

C1 = −B ∗ xmid + A ∗ ymid =
x22 − x21
� �

+ y22 − y21
� �

2 :

ð2Þ

Two midperpendicular lines are obtained using the
above-mentioned method, and their intersection point is
the center of the minimum enclosing circle, and the noncon-
tact space that completely covers the obstacle can be
obtained, as shown in Figure 3.

If the result of the robot entering the obstacle space
occurs in the loop iteration of the algorithm, the violation
is output and marked with “∗” as shown in Figure 4.

2.2. Basic Particle Swarm Optimization Algorithm

2.2.1. Overview of Particle Swarm Optimization Algorithm.
Particle swarm optimization (PSO, hereinafter referred to
as “PSO”) is a kind of evolutionary computing technology,
which affects the simple behavior of individuals through
the sharing of information among individuals in the group.
It simulates the evolution process of the group from disorder
to order in the space via iteration and obtains the optimal
solution. By controlling the inertia parameter, acceleration
parameter, and fitness algorithm, the group behavior can
be influenced and converged to the desired direction. On
the premise that the computing platform supports large-
scale parallel computing, particle swarm optimization has
higher efficiency and faster computing speed. Compared
with other evolutionary algorithms, particle swarm optimi-
zation has the advantages of high accuracy, fewer iterations,
and rapid convergence. It is a mature and feasible solution to
apply particle swarm optimization algorithm to the path
planning of robots.

2.2.2. Equations of the Basic Particle Swarm Optimization
Algorithm. The core of particle swarm optimization algo-
rithm lies in two equations velocity update equation and
position update equation. In each iteration, each particle
updates its position and velocity according to the velocity
update equation and the position update equation and

Dijkstra algorithmAnt colony algorithm Greedy algorithm

PSO algorithmBUG algorithmAPF algorithm A⁎ algorithm
Development trend of robot path

planning alogrithm

Figure 1: The development of path planning algorithm.
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updates the individual optimal solution and the global
optimal solution. Through several iterations, the particle
swarm in the solution space converges to the optimal solu-
tion and finally converges to the optimal solution.

Velocity update equation

vi = ω × vi + c1 × rand ðÞ × pbesti − xið Þ
+ c2 × rand ðÞ × gbesti − xið Þ: ð3Þ

Location update equation

xi = xi + vi: ð4Þ

In the equations, vi is the velocity of the particles,w is the
weighted inertia, and xi is the location for the particles. pbesti
is the local optimal solution:gbesti is the global optimal solu-
tion. rand ðÞis a random number between 0 and 1, and c1 and
c2 are learning factors. Usually, c1 = c2 = 2.

2.2.3. Defects of Basic Particle Swarm Optimization
Algorithm. The basic particle swarm optimization algorithm
has the advantages of fast convergence speed, few adjust-
ment parameters, and simple implementation. The speed
displacement model and the small amount of calculation
have attracted the attention of many researchers. However,
with more and more research, researchers have gradually
found the defects of particle swarm optimization algorithm.
The defects of particle swarm optimization are mainly man-
ifested in two aspects: (1) the accuracy of particle swarm
optimization is not high. Since the PSO only uses the global
optimal solution and local optimal solution in each iteration,
it does not use all the information of each iteration. There-
fore, even if the convergence speed of PSO is fast, it is diffi-

cult to guarantee the accuracy of the algorithm. (2) Local
optimization, premature convergence, and the inability to
find the global optimal solution are likely to occur in the
search process of particle swarm optimization. This may be
because the particle swarm optimization algorithm cannot
get a complete proof of convergence in theory [13]. For
more complex multimodel function optimization, the global
optimal solution may not be obtained; in addition, if the
parameter selection is wrong, particles quickly lose diversity,
and the global optimal solution cannot be obtained.

In order to solve these problems, Zhou et al. proposed an
improved adaptive PSO algorithm, where the Bezier curve
was incorporated and larger control parameters were used
to improve the smoothness and efficiency of path planning
[14]. The adaptive particle swarm optimization algorithm
based on simulated annealing (SAPSO) proposed by Yan
et al. has also achieved good results [15].

However, the current PSO algorithm still has the prob-
lems of slow convergence and is easy to fall into local opti-
mal solution, so its application in robot path planning is
not ideal.

For example, the particle swarm algorithm is applied to
the optimized environment model, and the following results
are obtained (Figure 5):

It can be seen that the path planning result is not ideal,
obviously not the optimal path, and even if the number of
iterations is increased, the result will not be significantly
improved.

In order to solve the above problems, this paper puts for-
ward the following improvements in the algorithm and its
practical application: firstly, by incorporating the concept
of mutation factor in simulated annealing algorithm and
genetic algorithm, on the improvement of parameters, the
paper tries to deal with the linear differential decreasing of
weighted inertia, optimize the convergence factor and accel-
eration factor, and make a comparison. A Simulated Anneal-
ing Particle Swarm Optimization Algorithm with Mutation
Particles (MP-SAPSO) was proposed in the paper, and
Figure 6 illustrates the basic flow of the MP-SAPSO.
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Figure 4: Flow chart of space violation judgment.
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2.3. Improvement and Optimization of PSO Algorithm
(Simulated Annealing Particle Swarm Optimization Algorithm
with Mutation Particles). Aiming at the shortcomings of
premature convergence of traditional particle swarm opti-
mization, this paper incorporates the concept of population
mutation factor in simulated annealing algorithm (SA) and
genetic algorithm [16], assembles the optimization for
adaptive annealing particle swarm optimization algorithm,
and adjusts the original parameters and application
parameters in order to apply to the actual path planning
application. The following will be divided into two parts,
algorithm and parameters, to introduce the kernel logic.

2.3.1. For the Optimization of the Algorithm

(1) The Combination of Simulated Annealing (SA) and
Particle Swarm Optimization (PSO). Simulated annealing
algorithm (SA) is one of the best algorithms for solving the
local optimal solution in deep learning [17]. The algorithm
is derived from the crystal cooling process. If the tempera-
ture drops too fast, an amorphous with high energy will be
produced, and if the temperature drops slowly, regular crys-
tals with high density and low energy will be formed. Com-
bined with the actual results of the algorithm, the noncrystal
corresponds to the local optimal solution, and the regular
crystal corresponds to the global optimal solution.

In simulated annealing, the process of applying energy to
the amorphous to form crystal can be understood as jump-
ing out of the local optimal solution and then continuing
to search. The Metropolis algorithm, which is used to accept
the new state by probability instead of using the standard
rules, is a great choice for the local optimal solution in par-
ticle swarm optimization [18].

In each iteration of PSO, the value of each particle is
evaluated, and the best choice α of each particle in the group
is recorded, which will be compared with the global optimal
particle β recorded at this time. If it is better than β, it is
replaced and the next iteration is carried out. For this
optimization method, we choose to add probability. For
each particle I in the nth iteration, it has the optimal solu-
tion substitution expectation E and the substitution toler-
ance τ, where

E = e− α ið Þ−β ið Þð Þ/α ið Þ,

τ = rand ðÞ × nmax − n
nmax

,
ð5Þ

random rational numbers with rand ðÞ being (0,1).
If E > τ, the replacement of the particle optimal solution

is accepted, otherwise it is rejected.
The convergence trend after optimization is shown in

Figures 7 and 8.
It can be seen from the curve that the introduction of

“annealing” probability can effectively reduce the number
and time of searching for the local optimal solution, and at
the same time, it can quickly jump out of the local optimal
solution.

(2) The Embodiment of Population Variation in PSO.
Although SA algorithm can reduce the time and times of
falling into the local optimal solution, it cannot change the
trend of large-scale particles gathering in the local optimal
solution. Therefore, the premature convergence characteris-
tic of the particle swarm algorithm cannot be fundamentally
changed solely from the probability.
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Considering that particle swarm optimization is also a
branch of swarm intelligence, it can also be applied to the
treatment of swarm intelligence. So we think of the classic
genetic algorithm. The algorithm processing process of
genetic algorithm is shown in Figure 9.

Since a single particle does not have many characteristics
of chromosome, it consumes too much computational
power for calculation, which deviates from the application.
So we only use the mutation module to optimize the popu-
lation [19]. When the state difference between the nth itera-
tion and the n − 1 iteration is less than the limit n, record
once. When the number of times reaches n1, the population
variation of particle swarm is simulated. In the application of
path planning, the inherent attributes of particles are posi-
tion ðx, yÞ and velocity ðvÞ.

So we reinitialize the particles of population mutation
and bring them into the next iteration to simulate the muta-
tion, as shown in Figure 10.

Specifically, in the mathematical model, we set the ran-
domly selected particles from the original particle swarm
number L as mutation particle swarm L1 and reinitialize
the velocity and position of each particle i.

Particle ið Þ:position = create random solution modelð Þ,
↓

x, yð Þ = x0, y0ð Þ,
v = v0:

ð6Þ
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Substituting the mutation particle swarm into the
traditional particle swarm, the comparison is shown in
Figures 11 and 12.

We can interpret from Figures 11 and 12 that the addi-
tion of mutation particles not only changes the state of being
trapped in the local optimal solution for a long time but also
successfully updates the global optimal solution even in the
later iteration. At the same time, the global optimal solution
obtained has a better evaluation value, which is more effec-
tive in the obstacle environment model.

2.3.2. Adjustment and Introduction of Parameters. In the
particle swarm optimization, not only the algorithm needs
to be improved, but also the adjustment of parameters is
indispensable. The characteristics of particle swarm optimi-
zation requires discretion on the selection of parameters.
Attention needs to be paid first to the global search and to
the local search, so as to avoid premature local optimal solu-
tion and premature convergence. For the optimization of
particle swarm optimization parameters, we try two optimi-
zation strategies.

(1) Linear Differential Decreasing: Optimization Strategy of
Weighted Inertia w. Larger weight inertia is conducive to
global search, and smaller weight is conducive to local search
[20]. At the same time, due to the aggregation property of
particles, the rate of reducing the search range of obstacle
environment is proportional to the number of iterations.
So for W, linear differential decreasing can satisfy this func-
tion relation.

dw
dt

= 2 ⋅ wmax −wminð Þ
t2max

⋅ t,

ðwm

w tð Þ
dw = 2 ⋅ wmax −wminð Þ

t2max

ðt
0
πτ,

w =wmax −
wmax −wmin

t2max
⋅ t2,

ð7Þ

wheretis the number of iterations.

(2) Convergence Factor: Acceleration Factor c1 and c2 Opti-
mization Strategy. In order to ensure the convergence, Clerc

and Kennedy introduce a convergence factor K [21] and
cancel the introduction of weighted inertia:

Vi = K Vi + φ1 × rand ðÞ × pbesti − xið Þ½
+ φ2 × rand ðÞ × gbesti − xið Þ�,

K = 2
2 − φ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 − 4φ

p���
��� ,

φ = φ1 + φ2, φ > 4:

ð8Þ

For the comparison of the two strategies, we also substi-
tute into the obstacle environment model to observe the con-
vergence curve and the final result, as shown in Figures 13
and 14.

In terms of convergence speed, although the two strate-
gies are faster than the traditional PSO, the application of
convergence factor makes the convergence speed not limited
by the number of iterations, resulting in the fact that muta-
tion particles cannot directly reflect the role, and the curve
presents the trend of premature convergence (lack of fluctu-
ations about the approximate solution). In contrast, linear
differential decrement has a better search process and is
compatible with the optimization of mutation jump out of
local optimal solution. So we finally adopt the linear differ-
ential decreasing scheme.

3. Simulation Results of Path Planning

3.1. Algorithm Parameter Setting. In order to reflect the
superiority of the MP-SAPSO algorithm over the traditional
PSO algorithm, we apply them to the same environmental
model for path planning and solution and analyze the
results.

The parameter settings of the two algorithms are shown
in Table 1.

In view of the uncomplicated environment model, the
adjusted number of iterations is 100 times, and the popula-
tion size is 150 times, which can reflect the convergence pro-
cess and tend to be stable. At the same time, we know that
when the inertia weight is within [-4, 4] and the learning
coefficient is within [1.25, 2], the results can converge
quickly and the global optimal solution can be obtained
relatively easily [15]. In order to dynamically adjust the iner-
tia weight, we introduced a damping coefficient of 0.8 to
effectively make the inertia weight as superior as possible
in the iteration [20]. To ensure convergence, we set the con-
stant φ to 4.1 and then calculate the convergence factor K to
0.729 (Table 2) [21].

3.2. Results and Analysis

3.2.1. Analysis of Path Results. By substituting MP-SAPSO
into the obstacle environment model and drawing the
abscissa of the particle swarm as the global optimal solution,
we get the simulation results of path planning for the
specified starting point and end point, as shown in
Figures 15 and 16.

Mutation
particle

Gather

The (n+1)th 
iteration

The nth
iteration

Reinitialize

Figure 10: Simulation of mutation process.
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As can be seen from Figure 15, the traditional particle
swarm optimization fell into premature convergence, caus-
ing the calculation to stop in the early iteration. The conver-
gence result shows a steep drop and several invalid
iterations; in the 20th iteration, it was basically the same as
the final result, and no optimization route planning was car-
ried out. More importantly, the planned route does not
achieve the result of crossing the obstacle model but finally
shows the route out of the model.

It can be seen from Figure 16 that after MP-SAPSO is
applied, the convergence of PSO is continuous. In the 30th
iteration, PSO successfully jumps out of the local optimal
solution, realizes the optimization function of mutation par-
ticle, and obtains the result that is more in line with the best
route (through obstacles).

3.2.2. Algorithm Complexity Analysis. Since the core calcula-
tion process of the traditional PSO algorithm needs to

update the position of each individual in each iteration of
the particle swarm, we can get

T nð Þ =O Imax × Psizeð Þ, S nð Þ =O Imax × Psizeð Þ: ð9Þ

Compared with MP-SAPSO, we found that the mutation
factor needs to judge individual particles after a single itera-
tion, and the substitution expectation E for this iteration
needs to be calculated. Both have no effect on the number
of iterations and the calculation of the population size.
Therefore, the traditional PSO algorithm has the same
complexity as the MP-SAPSO algorithm, and the introduc-
tion of parameters does not affect the solution time and
the required calculation space.

3.2.3. Analysis of Algorithm Superiority. In order to fully
prove the superiority of the MP-SAPSO algorithm from
the perspective of statistical analysis, we use the method of
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running the algorithm multiple times to extract data, use the
two algorithms to solve the set environment model for mul-
tiple paths, and calculate the output cost function. After
analysis, the preliminary results are shown in Table 3.

Since the final iteration will tend to stabilize and fluctu-
ate and the standard deviations of the two algorithms in
multiple experiments are known, the cost function results
of the two algorithms can be sorted again by the approxi-
mate normal distribution, and the paired-sample T-test is
used for statistical analysis (Table 4).

Table 2: Algorithm complexity analysis.

Algorithm Time complexity T nð Þ Spatial complexity S nð Þ
Traditional PSO O Imax × Psizeð Þ O Imax × Psizeð Þ
MP-SAPSO O Imax × Psizeð Þ O Imax × Psizeð Þ
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Figure 14: Convergence factor optimization.

Table 1: Parameter setting.

Parameter Description
Traditional

PSO
MP-SAPSO

Imax
Maximum number

of iteration
100 100

Psize Population size 150 150

w Inertia weight 1 1

wdr
Inertia weight
damping ratio

0.8 0.8

c1
Personal learning

coefficient
1.5 \

c2 Global learning coefficient 1.5 \

φ Constant \ 4.1

K Convergence factor \ 0.729
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Figure 13: Linear differential decreasing w optimization.
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It can be seen that P < 0:001, so the reduction in the out-
put value of the cost function is very much related to the
application of MP-SAPSO. It is proved that MP-SAPSO
reduces the value of the cost function, which further reflects
the advantage of MP-SAPSO to plan more accurate and
better paths easily.

3.3. Advantages and Further Research of the Algorithm.
Compared with the traditional particle swarm optimization
algorithm, the MP-SAPSO algorithm can obtain the valid

path in the obstacle environment more accurately. The sim-
ulated annealing algorithm (SA) is combined with the con-
cept of population mutation factor in genetic algorithm to
solve the premature convergence problem of traditional par-
ticle swarm algorithm. When there are multiple routes, the
algorithm can jump out of invalid iterations and find more
feasible routes. This helps the robot to improve the accuracy
of path selection in obstacle environments. According to the
complex calculation and statistical analysis, it can be con-
cluded that after several rounds of experimental verification,
the MP-SAPSO algorithm does not significantly increase the
calculation time compared with the traditional algorithm,
and the calculation space does not take up too much. The
reduction of the cost function is proved to be significantly
correlated with the application of the improved algorithm
by the paired-sample t-test. This proves the superiority of
the present algorithm to the traditional algorithm.

Although the establishment of the obstacle environ-
ment can avoid the influence of the edges and corners of
the obstacle itself on the path selection of the robot, many
specific environmental parameters (obstacle size, robot
size) are not taken into consideration, including the dis-
cussion in a three-dimensional space. Therefore, further
research and exploration are needed for more complex
obstacle environments.
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Figure 15: Simulation results of traditional particle swarm optimization.
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Figure 16: MP-SAPSO optimization results.

Table 3: Statistical analysis.

Algorithm Best cost Average cost Standard deviation

Traditional PSO 8.6559 8.6790 0.0054

MP-SAPSO 7.6826 7.7608 0.0079

Table 4: Paired-sample T-test analysis.

Paired-sample
T-test

Standard
deviation

Mean value of
standard error

P
(significance)

PSO_ MP-SAPSO 0.0030 0.0004 9.4306E-125
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4. Conclusion

In this paper, an improved particle swarm optimization
algorithm MP-SAPSO is proposed to solve the robot path
planning problem. In building a mathematical model,
considering the complexity of the obstacle model, and to
facilitate the operation in practical application, we build
the untouchable space as the obstacle environment model,
which is easy to operate in practical application. At the same
time, MP-SAPSO can make a better path planning strategy
in the obstacle environment by screening the result of
annealing probability and introducing mutation particles;
by introducing linear differential decreasing inertia weight
w, the convergence speed is not affected by the introduction
of the new algorithm. Finally, without sacrificing the effi-
ciency of the algorithm, the accuracy of path planning and
the efficiency of robot operation are improved.

The simulation results show that compared with the
existing methods, the application of this algorithm can make
the robot find a better mobile path faster. It has a great appli-
cation prospect in application scenarios such as UAV, rescue
robot, cleaning robot, and military robot that need to ensure
operational efficiency and accuracy. However, due to the
simple design of the model, the complex situation in the
actual application scenario is not covered in this paper.
Some real parameters are not available, and the research of
some specific application scenarios needs to be further deep-
ened to strengthen the ability of this algorithm to deal with
specific problems, which will be further explored in future
research.
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