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The Internet of Vehicles (IoV) is the extension of the Internet of Things (IoT) technology in the field of transportation systems.
Ride-sharing is one of intelligent travel applications in IoV. Ride-sharing is aimed at taking passengers with similar itineraries and
time arrangements to travel in the same car according to a certain matching rule. To effectively integrate transport capacity
resources and reduce the number of cars on the road, ride-sharing has become a popular and economical way of travel. The
matching and optimizing of drivers and passengers are the core contents of a ride-sharing application system. This paper
mainly studies the dynamic real-time matching of passengers and drivers in IoV, considering the main factors such as travel
cost, car capacity, and utility. The matching problem is formulated in a ride-sharing system as a Role-Based Collaboration
(RBC). A new utility method for the matching optimization of ride-sharing is present. In this paper, we establish a model for
simulating the assignment of ride-sharing with the help of the Environments-Classes, Agents, Roles, Groups, and Objects
(E-CARGO) model. The objective function and formal definitions are proposed. The utility and time of optimal matching
are obtained by using the Kuhn-Munkres algorithm on the revenue matrix. The experimental results show that the proposed
formal method based on the E-CARGO model and utility theory can be applied in the ride-sharing problem. Numerical
experiments show that the matching time cost increases with the increase of the number of drivers and passengers participating
in the ride-sharing system. When the number of drivers and passengers is different, one-to-many matching takes the least time,
and one-to-one matching takes more time. When the number of drivers and passengers is the same, the time cost of one-to-one
matching increases sharply with a certain value (bigger than 800). Compared with other matching methods, the time spent by
the one-to-many method is reduced by 30%. The results show that the proposed solution can be applied to the matching and
pricing in a ride-sharing system.

1. Introduction

The Internet of Vehicles (IoV) is a huge and interactive net-
work composed of vehicle locations, speed, routes, and other
information. Through the Internet technology, all vehicles
can transmit all kinds of information to the central process-
ing unit. This vast vehicle information can be analysed and
processed in the computer technology, so as to calculate
the best route of different vehicles, timely report the road
conditions, and arrange the signal lamp cycle. Ride-sharing
is one of the representatives of intelligent travel applications
in IoV.

With the development of economy, the number of pri-
vate cars is increasing in cities. Although it is convenient
for travel with the increase of urban car, it also brings a
series of problems, such as traffic congestion, excessive con-
sumption of oil resources, and environmental pollution.
Traffic congestion in cities is a universal phenomenon. In
order to solve traffic congestion and environmental pollu-
tion problems, the matching and optimizing problems have
been researched extensively in a ride-sharing system. Tech-
nologies such as IoV and GPS real-time positioning provide
support and guarantee for ride-sharing application systems.
Data sharing is privacy-preserved towards passengers and
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drivers in IoT [1, 2]. The economic aspects of shared mobil-
ity systems have attracted more and more applications and
attention [3]. Ride-sharing travel services have been proved
to be an effective way, which could make full use of traffic
resources, alleviate the shortage of parking spaces, reduce
environmental pollution, and optimize social benefits [4].
In addition, ride-sharing travel services allow passengers
and drivers to share the travel cost, which is also consider-
able. With the continuous progress of mobile Internet
technologies and the popularity of Internet mobile devices,
ride-sharing travel, which is simple, safe, flexible, efficient,
and economical, will be more popular in the future.

Ride-sharing travel refers to a travel mode. The passen-
gers with the same or similar travel paths are assigned to
travel together in the same vehicle according to a matching
mode. The passengers share the travel cost together in a cer-
tain driving interval. A ride-sharing application system
mainly considers to complete the optimal pricing strategy
and vehicle scheduling strategy in combination with geo-
graphical locations and time information [5]. In a ride-
sharing application system, it matches the passenger sending
the ride request with the nearby driver whose car has vacant
seats. The passenger sends the ride request including the
departure place, time, and destination for traveling. Then,
the ride-sharing application system returns the approximate
fee to the passenger according to a certain pricing rule. After
accepting and confirming the fee, the passenger can be
match to a nearby driver. In case of one driver and many
passengers, when the driver’s car still has vacant seats, some
passengers with similar paths will be assigned to travel
together according to a certain matching strategy. After the
completion of the ride-sharing travel, passengers will pay a
certain fee. If it is a single passenger mode, only a single pas-
senger can be match to a single driver at the ride-sharing
time. As the driver can only match one passenger’s request
each time, the next matching will be carried out only after
the passenger is delivered to the destination.

A driver may only pick up one passenger or may be
willing to pick up two or more passengers when there
are vacant seats. Similarly, each passenger may choose to
take a driver’s car alone or share it with other passengers.
An effective incentive mechanism [6] can attract more and
more passengers and drivers to participate in a ride-
sharing system. A cost-sharing mechanism [7, 8] for
ride-sharing can solve the problem of vehicles with no
passengers in a ride-sharing system. Furthermore, effective
and incentive mechanisms can improve the service level of
sharing systems [9]. The existing riding-share relationships
between the drivers and passengers are shown in Table 1.
No matter which travel mode was selected, the matching

method of passengers and drivers is the core of a riding-
sharing system.

From the perspective of leaders, utility theory is a theory
used by leaders in decision-making. From the perspective of
consumers, utility theory refers to the satisfaction of con-
sumers from consuming certain goods, which is the core of
consumer behavior theory.

In riding-share travel, the passengers’ satisfaction can be
expressed by their utility. The utility function is used to
quantify the satisfaction [10]. The actual utility function
describes the quantitative relationship between the utility
obtained by passengers and their travel choices in ride-
sharing. In addition, the utility function can measure the sat-
isfaction of passengers in different travel choices.

Many problems have been formalized and solved in
collaboration [11–13]. Role-Based Collaboration (RBC) was
initially proposed to support natural collaboration through
computer-based systems. The E-CARGO model is proposed
by Canadian scholar Professor Zhu, which denotes Environ-
ments—Classes, Agents, Roles, Groups, and Objects. We
concentrate on the online dynamic matching problem
between passengers and drivers. A utility method for the
matching problem of ride-sharing was proposed. In this
paper, the method combines RBC and the E-CARGO model
[14–17] to model the matching of the ride-sharing problem.
Agents, roles, groups, and the relationship between them are
defined. The ride-sharing optimization problem is formal-
ized as a group role assignment (GRA) problem. The formal
definitions and objective function are present. Under the
constraints of vacant seats and acceptable flexible time, the
optimization matching scheme is obtained by maximizing
the revenue of a ride-sharing system. On the distance profit
matrix, Kuhn-Munkres algorithm [18–20] is used to obtain
the optimal matching matrix and time based on GRA.

GRA constructs a group by assigning roles to its mem-
bers or agents to achieve its highest performance. In the pro-
posed model, a driver is regarded as a role, and a passenger is
regarded as an agent. In the system, current agents and roles
are our focus. The problem is to find a role assignment
matrix that makes the group workable, where each agent is
assigned at most one role. In this situation, GRA seeks to
find a matching matrix with the maximum revenue of the
revenue matrix for a ride-sharing system.

According to the matching strategies and core factors
affecting passengers’ choice of travel in a ride-sharing
application system, the specific contributions of this paper
are shown as follows.

(1) We propose a new utility method for the ride-
sharing matching based on the E-CARGO model

Table 1: The ride-sharing relationships between drivers and passengers.

One passenger Many passengers

One driver One-to-one matching between drivers and passengers
One-to-many matching between drivers and passengers according

to passengers’ routes and time

Many drivers
One passenger transferring to different drivers’ car

according to his travel routes
One-to-one or one-to-many matching for many times, respectively,

according to the routes and time of passengers and drivers
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with utility and seat number constraints. We for-
mulate the matching problem in ride-sharing
application system as a RBC problem. To better
understand the GRA process, we develop a match-
ing model, in which drivers can be match to more
than one passenger in a flexible time

(2) This is the first paper that considers the utility
between passengers and drivers in terms of matching
and pricing based on the E-CARGO model. This
paper contributes a novel way to study the matching
problem in ride-sharing from the perspective of util-
ity. When the number of drivers and passengers is
the same, the utility of one-to-one matching between
drivers and passengers is approximately equal to
one-to-many matching. When the number of drivers
and passengers is different, the utility of one-to-one
matching is the least

(3) The experiments present that the utility has an
impact on the revenue in a ride-sharing system.
The advantages of the proposed method in terms
of economic efficiency, matching incentives are dem-
onstrated in the numerical experiments. The results
show that our solutions are practical in terms of
matching optimization and predicting behaviors

The rest of the paper is organized as follows. The related
works are introduced in Section 2. The E-CARGO model,
travel utility, model formulation, and algorithm analysis
are introduced in Section 3. It formally specifies the ride-
sharing problem with the E-CARGO model and utility the-
ory. Experiments and analyses are illustrated in Section 4.
This paper concludes and points our further research in
Section 5.

2. Related Works

Travel cost can be reduced through cost-sharing in a ride-
sharing system. Travelers who do not own private cars make
travel more convenient by ride-sharing. Ride-sharing ser-
vices may be provided by private car owners or public service
providers. Gong et al. [21] propose the technique which has
been introduced to realize the privacy-preserving distributed
service recommendation. If the ride-sharing application sys-
tem is private, the provider can get commission or advertis-
ing revenue. If it is a public system, there may be a social
goal, such as reducing pollution and traffic congestion. How-
ever, no matter what the nature of the ride-sharing system is,
it is necessary to complete the matching of drivers and pas-
sengers. Generally speaking, there are some specific objec-
tives to be considered in the matching, such as minimizing
the vehicle mileage or the travel time or maximizing the
number of participants or revenue in a ride-sharing system.
High success matching rate will stimulate more participants
to participate in ride-sharing. In this paper, the modeling
and matching methods in ride-sharing are proposed.

The application system of ride-sharing travel generally
requires passengers to provide departure time. In the area
of obtaining participants’ time preference, Long et al. [22]

present a ride-sharing problem with travel time uncertainty
and propose a matching model considering travel time
uncertainty. Due to various uncertain factors, the passen-
gers’ time preference cannot always be satisfied. Lopez
et al. [23] propose a new formal attack model. Their research
shows that people are more concerned about the guarantee
of travel time. In addition to the time factor, other factors
will also affect the success of matching between passengers
and drivers. The data uploading in ride-sharing systems suf-
fers novel challenges on privacy preservation [24]. For
example, people may prefer to share a car with familiar peo-
ple. Women feel more secure when taking a female driver’s
car. In short, the more restrictions on potential passengers
when choosing coriding partners, the more difficult it will
be to find a successful match for a passenger [25]. Unlike
the aforementioned preference, this paper proposed a utility
method to measure participants’ preference, which is more
universal.

If a driver has enough flexible time, he may be willing to
provide services for multiple passengers. The driver can pick
up passengers one by one or take more than one passenger
at the same time. With assigning many passengers to a
driver, the ride-sharing application system will provide a
feasible optimal route to minimize the travel cost. Javier
et al. [26] propose and construct a mathematical model for
real-time high-capacity ride-sharing. The model can be
extended to a large number of passengers and trips and
dynamically generate optimal routes according to online
demand and vehicle locations. Calvo and Fabio [27] propose
an integrated system for the organization of a ride-sharing
service, in which there is an optimization module solving
heuristically the specific routing problem. This paper com-
bines the E-CARGO model with utility theory to establish
travel matching model, improve the utilization of available
seat capacity, maximize platform revenue, and rationalize
resource matching.

When people choose to travel together, they consider not
only the time factor but also hope to share the travel cost and
reduce the cost through ride-sharing. Therefore, many
scholars have studied the cost sharing methods in ride-
sharing. Wang et al. [28] have studied various cost sharing
strategies. They provided the necessary conditions for cost
sharing strategies to maintain participation or reduce cars.
In literature [29], considering the difference of travel dis-
tance, a cost sharing method in proportion to distance is
proposed. The cost is apportioned in proportion to the dis-
tance. Kleiner et al. [30] proposed a method to determine
the driver’s compensation based on the auction mechanism.
In this method of determining remuneration, it is necessary
to take into account the evaluation of drivers. For drivers,
the cost they are willing to pay is between the cost of driving
a private car alone and the cost of taking a taxi. The higher
the compensation and commission for the driver is, the lon-
ger the acceptable length of the detour in the driver’s mind.

There are also studies focusing on pricing policy in ride-
sharing systems. Sun et al. [31] point out that there are fewer
restrictions on the access to the ride-sharing market and less
strict supervision on pricing. They present the impact of
labor supply elasticity on market labor supply from the
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perspective of supply and demand in economics. Cachon
et al. [32] study the surge pricing strategy. The provider is
paid a fixed commission at a dynamic price. It is concluded
that all stakeholders can benefit from the platform with self-
scheduling ability under the surge pricing strategy. These
papers focus on pricing policy but ignore the utility of pas-
sengers in a ride-sharing system. When the more utility of
passengers is obtained, they will be willing to pay more for
a certain route of their travel.

In terms of matching for dynamic ride-sharing systems,
Wang et al. [33] introduce some mathematical methods to
establish stable matches. They consider the stability of
ride-sharing matches and propose optimization approaches.
Peng et al. [34] propose a stable matching model for the
ride-sharing. The objective function of the model is mini-
mizing travel cost of the passengers. They also illustrate the
main factors affecting the successful matching rate. Zkan
[35] researches the interplay between pricing and matching
decisions of a ride-sharing firm. He proves that the opti-
mization matching strategies effect on the performance of
a ride-sharing application system. A utility method for
the matching optimization of ride-sharing based on the
E-CARGO model is proposed, which describes a real sce-
nario in a ride-sharing problem and considers the overall
system’s utility.

3. Methodology

3.1. E-CARGO Model. The E-CARGO model is proposed by
Canadian scholar Professor Zhu based on the research and
discussion of role collaboration theory [36–38]. The E-
CARGO model has been applied in assignment problems
and recommendation systems. It is the research and exten-
sion of the basic theory of role distribution. The experiment
shows that this method is efficient and reliable. The E-
CARGO model is suitable for modeling social systems and
economic systems with the formal analysis. In this paper,
the engineering theory method based on role collaboration
and the E-CARGO model is abstracted, and the ride-
sharing application is modeled.

In the E-CARGO model, a system ∑can be described as
a nine-tuple ∑ : ≔ hC,O, A,M, R, E,G, S0,Hi, where C is a
set of classes, O is a set of objects, A is a set of agents, M is
a set of messages, R is a set of roles, E is a set of environ-
ments, G is a set of groups, S0 is the initial state of the
system, and H is a set of users. In such a system, A and H
and E and G are tightly coupled sets. A user and his agent
can play a role together. Each group works in the same envi-
ronment, and the environment has a normative effect on the
groups. In the E-CARGO model, each agent plays only one
role at a time.

Many problems in reality can be formalized and speci-
fied with the E-CARGO model [39–41]. Firstly, the problem
is decomposed into subproblems, and the roles and agents
are determined. Secondly, the relationships and constraints
between roles and agents are described by constraints.
Thirdly, agents are assigned to roles and groups. The assign-
ment results are evaluated through the evaluation criteria.
Then evaluation and assignments are performed circularly

to meet evaluation criteria indicators. Finally, the final
assignment scheme is determined. In the following ride-
sharing model, we focus on agents (A) and roles (R). The
following formal definitions can be taken as a part of the
E-CARGO model.

3.2. Travel Utility. In the utility theory, utility refers to the
satisfaction that customers get in the process of exchanging
goods. Utility function is often used to model different con-
sumption behaviors and measure social welfare or satisfac-
tion of a consumer [42]. The utility function is used to
identify different customers’ behavior [43]. Passengers usu-
ally consider travel experience and actual conditions to select
travel modes. In the utility theory, passengers always choose
the trip modes that can maximize their personal utility.

The drivers and passengers in a ride-sharing system can
be regarded as participating agents. When the utility
obtained by each participating agent is strictly greater than
that obtained without participating, and no other protocol
provides greater utility for all agents, it can be regarded as
that all agents spontaneously participate in the system game.

Passengers prefer to travel with acquaintances or similar
age people. Due to objective factors affecting travel mode
such as travel cost, convenience, and time, there is great ran-
domness to a certain extent. In the utility function, we
mainly consider the following core factors:

(i) Expenses incurred in a driver to passenger matching
with a profit matrix

(ii) Time cost

(iii) Cost of privacy protection

(iv) Cost due to lack of reputation

We assume that the relationship between utility and core
factors and attributes is linear. The utility function can be
established with RBC as follows:

U = αQ i, j½ � × T i, j½ � + βCt − γCp − δCr , ð1Þ

where α,β,γ, and δ are the weight coefficients of the core
factors. When the drivers’ revenue increases, the drivers’
utility also increases. When passengers’ payment increases,
the passengers’ utility decreases. There is a negative correla-
tion between the passengers’ travel utility and the travel cost.
The weight coefficient value α in the driver utility function is
bigger than that in the passenger utility function. There is a
positive correlation between the drivers’ travel utility and
revenue.

We assume that all pick-up arrangements are completed
within an acceptable time range. Therefore, there is little
difference in the utility weight coefficient value β of time cost
in the driver and passenger utility functions. Passengers pay
more attention to privacy and reputation. Therefore, the
weight coefficients γ and δ of privacy cost and reputation
cost are bigger than those of drivers under the same cost.

3.3. Model Formulation. In a ride-sharing system, it is neces-
sary to consider the acceptable time range, profit income,
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and vacant seats for vehicle scheduling matching and trans-
fer modes. In order to save travel cost and time, passengers
may transfer.

Definition 1. Role R. In a ride-sharing system, a driver role is
defined as R : ≔ < n, I, Ac, Ap,No,Q1 > , where n is the
identification of the driver role; I : ≔ <Min,Mout > denotes
the message set processed by the driver roles of the ride-
sharing system, where Min expresses the incoming messages
andMout expresses the outgoing messages; Ac expresses a set
of agents who are currently playing this role, that is, a set of
passengers who are matched to the drivers; Ap expresses a
set of agents who are potential to play this role, that is, a
set of passengers that may be matched; No expresses a set
of objects that can be obtained by the agent playing this role,
mainly including traveling passengers on the way together;
and Q1 expresses the minimum evaluation value required
for the agent to play this role, i.e., travel revenue. In the
ride-sharing system, role R represents a car driver who will
be matched to passengers.

Definition 2. Agent A. In a ride-sharing system, a passenger
agent is defined as A : ≔ < n, Rc, Rp,Ng,Qr > , where n is
the identification of the passenger agent; Rc expresses a role
that the agent is playing, that is, the driver of a car in which
the passenger agent is riding; Rp expresses a set of roles that
this agent may play in the future, i.e., the driver who will be
matched due to transfers in the travel; Ng indicates the
group number that this agent belongs to; and Qr expresses
the evaluation value of this agent for each role in the set of
roles. In the ride-sharing system, agent A expresses a passen-
ger who sends out the message about the departure time,
place, and destination.

Definition 3. L represents the passenger vector matched to
the drivers, i.e., the number of passengers that each driver
can be matched to within a certain time range.

Definition 4. The profit matrix Q of driver picking up pas-
sengers is a mxnmatrix, where Q ½i, j� represents the revenue
of the driver role jð0 ≤ j < nÞ picking up the passenger agent i
ð0 ≤ i <mÞ.

Definition 5. The matching matrix T is an mxn matrix,
where T ½i, j� represents whether the agent i is matched
to the role j. T ½i, j� = 1 indicates that the agent i is
matched to the role j. T ½i, j� = 0 indicates not. T ½2, 2� = 1
represents the third passenger agent is matched to the
third driver role.

Definition 6. When the number of passengers carried by the
driver role R in the same time is less than or equal to the
maximum passenger capacity of the car, the driver role R
is operable, i.e., ∑m

i=0T½i, j� ≤ L½j�.

Definition 7. Passengers may transfer many times from the
departure to the destination. La ½i� ð0 ≤ i <mÞ indicates the
maximum transfer times of passenger agent i. La ½i� = 0 indi-

cates that the passenger agent is not matched to a driver, and
the sharing request fails.

Definition 8. L½j� ∈Ν(0 ≤ j < n) is a driver role range vector,
where N is a natural number. In a ride-sharing travel sys-
tem, it represents the maximum number of passengers
carried by a car. For example, the maximum number of
passengers carried by a 5-seat car at the same time is 4,
i.e., L½j� = 4.

Definition 9. After determining the matching matrix T , the
total revenue r is the sum of all drivers’ revenue, i.e., r =
∑n−1

j=0∑
m−1
i=0 Q½i, j� × T½i, j�. The solution process of total

income is to multiply the revenue matrix Q by the matching
matrix T .

In the many drivers to many passenger mode, one driver
can pick up more than one passenger. It is assumed that
there is an intersection between ride time and distance. It
is in a flexible and acceptable time range. Let m represent
the number of passenger agents and n represent the number
of driver roles. There are N seats in cars. Each passenger can
transfer many times. The main objective is to maximize the
total revenue r of all drivers picking up and transporting
passengers. Let Ud represent drivers’ utility and Up repre-
sent passengers’ utility. To encourage more drivers and
passengers to participate in the ride-sharing system, the
gap between driver utility and passenger utility should be
within a reasonable range. A utility constraint is added to
the following model.

max r = 〠
n−1

j=0
〠
m−1

i=0
Q i, j½ � × T i, j½ �, ð2Þ

s:t:T i, j½ � ∈ 0, 1f g 0 ≤ i <m, 0 ≤ j < nð Þ, ð3Þ

〠
m−1

i=0
T i, j½ � = L j½ � ≤N‐1 0 ≤ j < nð Þ, ð4Þ

〠
n−1

j=0
T i, j½ � ≤ La i½ � 0 ≤ i <mð Þ, ð5Þ

Ud −Up

�� ��
Ud

≤ ε, ð6Þ

where expression (3) is a 0-1 constraint, and it represents
whether the passenger i is matched to the driver role j; (4)
guarantees passengers are allocated according to the number
of vacant seats; (5) indicates the maximum transfer times of
the passenger i; and (6) indicates the utility constraint
between drivers and passengers.

3.3.1. Case Analysis. It is assumed that 10 passengers send
ride requests at the same time within a certain acceptable
distance. There are 4 drivers available for dispatching. The
cars all have 5 seats. Passengers do not transfer. According
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to the distance between drivers and each passenger, the rev-
enue matrix R is as follows:

1 1 3 6
4 3 1 5
2 1 10 5
1 3 6 5
8 2 1 7
10 2 1 5
9 4 6 1
7 1 10 2
8 4 1 3
1 8 3 9

2
666666666666666666666664

3
777777777777777777777775

: ð7Þ

The matching matrix T may be as follows: (a)

0 0 1 0
0 1 0 0
0 0 1 0
0 0 1 0
1 0 0 0
1 0 0 0
1 0 0 0
0 0 1 0
1 0 0 0
0 1 0 0

2
666666666666666666666664

3
777777777777777777777775

, ð8Þ

(b)

0 0 0 1
0 0 0 1
0 0 1 0
0 0 1 0
1 0 0 0
1 0 0 0
1 0 0 0
0 0 1 0
1 0 0 0
0 0 0 1

2
666666666666666666666664

3
777777777777777777777775

: ð9Þ

According to the matching matrix (a), the total revenue
is 75, and L ðaÞ = ½4, 2, 4, 0�. With the matching matrix (b),
the total revenue is 81, and L ðbÞ = ½4, 0, 3, 3�. In the match-
ing scheme (a), the 4th driver is not matched to a passenger,
and the 2nd driver is not matched to a passenger in the
matching scheme (b).

Algorithm 1: Solve OMPR.
Inputs:
the number of driver roles n
the number of passenger agents m
the number of passengers carried by the n-dimensional role range vector L
the passenger transfer vector La
An m x n revenue matrix Q for the drivers to pick up and drop off passengers
Outputs: optimal matching matrix T and time t
begin
(1) While (time < passenger acceptance time && vacant seats < loading)
(2) {
(3) Call the Kuhn_Munkres algorithm to get the matching matrix
(4) }
(4) If (transfer times < La) {
(5) Return optimal matching matrix T, time t}
(6) End if
end

Algorithm 1: Kuhn_Munkres solves the optimal matching problem of ride-sharing (OMPR).

Table 2: Experimental platform configuration.

Configuration name Configuration description

CPU
AMD Ryzen 5 PRO 3500U w/Radeon Vega

Mobile Gfx 2.10GHz

MM 8GB

OS Microsoft Windows 10 Home

Eclipse Version: Eclipse Java Oxygen (4.7.3)

JDK 1.8.0_181
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3.4. Algorithm Analysis. The time complexity of K-M algo-
rithm [18, 19] is O (m3), which is better than the exhaustive
search method. The above problem can be transformed into
integer programming to solve the maximum matching
matrix T . The algorithm is described as follows:

4. Simulation Experiments and Result Analysis

The experimental platform is shown in Table 2. To check the
applicability and performance of the proposed model, the
experiments are conducted. The values of the revenue matrix
Q are produced randomly between 0 and 10. We let m =
f100, 200,⋯, 900,100g, n =m, m = 2n, L½j� ∈ ½0, 1, 2�, ε = 0:2.

According to the revenue matrix, simulate the scenarios
with the same and different number of drivers and passen-
gers as follows.

4.1. Nonutility Scenario. The utility of drivers and passengers
is not considered. For each scale, the matching times in
Kuhn-Munkres algorithm are collected. The total revenue r
is shown with m = n and m = 2n in Figure 1. Tables 3 and
4 show the matching times with m = n and m = 2n.

4.2. Utility Scenario. The utility of drivers and passengers is
considered. In utility scenario, we let ε = 0:2. The utility of
one-to-one and one-to-many matching when m = n and
m = 2n is shown in Figure 2. The time of one-to-one
and one-to-many matching when m = n and m = 2n is
shown in Figure 3.

The experiments indicate that the greater the gap
between the number of passengers and drivers, the less the
total revenue and utility. When the number of drivers and
passengers is the same, the utility of one-to-one matching
between drivers and passengers is approximately equal to
one-to-many matching. When the number of drivers and
passengers is different, the utility of one-to-one matching is
the least.

In terms of the time spent on matching, Figure 3 shows
that the time cost increases with the increase of the number
of drivers and passengers participating in the ride-sharing

10000

8000

m = n
m = 2n

6000

4000

2000

0 100 200 300 400 500 600

m

r

700 800 900 1000

Figure 1: The total revenue with m = n and m = 2n.

Table 3: The times (ms) for the assignment algorithm with m = n.

m n Largest Smallest Average

100 100 58.8402 34.7006 42.33467

200 200 211.0163 135.737 163.0133

300 300 595.0694 470.5191 518.6717

400 400 1694.838 1189.367 1451.6

500 500 5313.623 2639.78 3282.617

600 600 8314.075 5864.875 6565.413

700 700 12101.59 6828.488 9727.422

800 800 18487.95 12509.08 13758.43

900 900 25012.89 21341.05 23315.23

1000 1000 41122.11 34377.18 37197.4

Table 4: The times (ms) for the assignment algorithm with m = 2n.

m n Largest Smallest Average

100 50 35.7345 24.7931 28.50592

200 100 146.3957 102.3475 119.7406

300 150 473.8116 389.648 435.9143

400 200 1375.672 1157.329 1262.229

500 250 2927.459 2546.168 2786.129

600 300 6049.835 5204.061 5663.721

700 350 11628.82 9658.468 10809.14

800 400 21250.19 17858.75 19202.92

900 450 32658.36 28327.54 30718.17

1000 500 49614.14 42969.37 47163.84
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system. When m is bigger than a certain value (m > 600),
time cost increases sharply in both matching methods.
When the number of drivers and passengers is different,
one-to-many matching takes the least time, and one-to-one
matching takes more time. When the number of drivers
and passengers is the same, the time cost of one-to-one
matching increases sharply with m > 800. The results show
that our solutions are practical.

5. Conclusions

The matching optimization is a general problem in a ride-
sharing system. In this paper, under the constraints of
vacant seats and passenger transferring, the matching prob-
lem in the ride-sharing system is formally modelled based on
the E-CARGO model. First, the E-CARGO model and travel

utility are introduced. Next, the proposed method is formal-
ized. Then, algorithm analysis is provided. Finally, the
Kuhn-Munkres algorithm is used to solve the optimal
matching matrix. The analysis of time performance shows
that the proposed method is practical.

In the future work, we will further study methods to
solve matching optimization problems. To improve the
matching rate and time performance, we will improve
the algorithm to meet the real-time requirements of
dynamic ride sharing matching. We plan to study the
relationship between pricing and matching based on the
E-CARGO model and utility theory. Besides, to attract
more and more passengers and drivers to participate in
the ride-sharing system, utility incentive mechanism is
also the direction and content of our research in the
future.

10000

8000

m = n, one-to-one
m = n, one-to-many

m = 2n, one-to-one
m = 2n, one-to-many

6000

2000

4000

0
0 100 200 300 400 500 600

m

U
til

ity

700 800 900 1000

Figure 2: The utility of one-to-one and one-to-many matching with m = n and m = 2n.
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Figure 3: The utility of one-to-one and one-to-many matching with m = n and m = 2n.
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